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Abstract— A framework for dynamic system model identifi-
cation from scarce and noisy data is proposed. This framework
uses symbolic regression via genetic programming with a
gradient-based parameter estimation step to identify a dif-
ferential equation model and its parameters from available
system data. The effectiveness of the method is demonstrated
by identifying four synthetic systems: an ideal plug flow
reactor (PFR) with an irreversible chemical reaction, an ideal
continuously stirred tank reactor (CSTR) with an irreversible
chemical reaction, a system described by Burgers’ Equation,
and an ideal PFR with a reversible chemical reaction. The
results show that this framework can identify PDE models of
systems from broadly spaced and noisy data. When the data
was not sufficiently rich, the framework discovered a surrogate
model that described the observations in equal or fewer terms
than the true system model. Additionally, the method can select
relevant physics terms to describe a system from a list of
candidate arguments, providing valuable models for use in
controls applications.

I. INTRODUCTION
A model can have a profound effect on the entire life-

cycle of a process, so effective model discovery is vital to
the success of a project. Data-driven modeling approaches
(neural networks [1], Gaussian processes [2], and others [3],
[4]) can transform data into effective models that predict
dynamics well. These methods can integrate into control
systems [5], [6], help engineers design chemical processes
[7], and require little to no physics to train [8]. Despite their
success, physics-agnostic models fail to predict dynamics
well outside the bounds of their training data and do not
explain the phenomena responsible for the dynamics they
capture.

To overcome some of the limitations of traditional data-
driven modeling methods, engineers can fuse these ap-
proaches with domain expert knowledge to generate models
consistent with the phenomena that drive the dynamics of
a process. Physics-informed machine learning (PIML) lever-
ages domain expert knowledge and rich data sets to create
models. Models created using PIML approaches are capable
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of extrapolating beyond the bounds of their training data
better than their physics-agnostic counterparts [9], [10], learn
dynamics from scarce data [10], [11], and lend themselves
well to control applications [5].

Despite the injection of physics into data-driven modeling
methods, many PIML modeling methods still create black-
box models that can be difficult to interpret. The black-box
nature of a model makes it difficult to trust, justify, and
understand, especially outside the bounds of its training data.
One subset of PIML methods that can overcome the black-
box nature of many data-driven models is the subset that can
yield human-interpretable models. Symbolic regression (SR)
is one such method that automatically discovers mechanistic
or semi-empirical models from data and a physics-informed
argument set.

Two approaches in SR are genetic programming (GP)
and parametric regression algorithms. SR via parametric
regression linearly combines terms of a predefined candidate
library to generate a parsimonious model that agrees with the
training data. SR via constrained regression [12] and sequen-
tial threshold ridge regression [13], [14] are fast methods that
simultaneously discover a model shape and its parameters.
These methods can identify models expressed as algebraic
and differential equations. The work done by Rudy et al. [15],
and related works [16], [17], can recover partial differential
equation (PDE) models from measurements but struggle to
identify meaningful models once the data becomes too noisy.
In response to this limitation, Messenger and Bortz [18]
extended the work by Rudy et al. to consider the weak form
of PDEs. This approach integrates data using a data-driven
Galerkin method. The integration helps overcome sensitivity
to noise but model discovery depends on low integration
error which grows rapidly as the spacing between samples
increases.

SR via GP searches a symbol space for an optimal
expression by evolving a population of expressions rep-
resented as binary trees [19]. GP and other evolutionary
algorithms can discover physics models from data [14],
[20]. SR via GP can also discover differential equations
by either approximating derivatives from data [21], [22]
or integrating evolving expressions [23]. The flexibility of
GP means that it can discover ordinary differential equation
models from data that exhibit wide ranges of quantity and
quality. Genetic algorithms can also extend other data-driven
modeling methods to find PDE models [24]. To the best of
the authors’ knowledge, current methods of identifying PDE
models using genetic algorithms fail when confronted with
limited and noisy data.
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This work focuses on a novel framework using SR via
GP that can identify informative PDE models when only
spatially scarce and potentially noisy data is available.
This framework takes an incomplete system model, data, a
physics-informed argument set, and instructions for param-
eter inclusion and returns a parsimonious, descriptive, and
dynamic model. A bi-level optimization problem generates
this model. The upper-level optimization problem seeks to
minimize an information-theoretic criterion by exploring a
symbol space using GP. The information-theoretic criterion
should consider both the complexity of the evolving models
and how well those models agree with the data. The lower-
level optimization problem minimizes the difference between
the predicted and measured state variables by searching for
an optimal parameter set for a fixed model structure.

Section II presents the mathematical background and the
formulation of the bi-level optimization problem. Section III
describes the synthetic experiments that tested the frame-
work’s ability to identify useful PDE models from data and
discard irrelevant physics terms. Section IV provides case
study results and discussion, and Section V concludes with
insights and future work.

II. MODEL DISCOVERY FRAMEWORK

This section summarizes the mathematical background of
the framework. A generalized formulation of the framework
that can automatically discover a PDE model and its parame-
ters from data is introduced. The PDE model should describe
the t, time-, and z, space-, dependent state variables x(t, z)
in the form below,

∂x(t, z)

∂t
= s(x(t, z);θ)

x(t, z) = x0 ∈ Rns at t = 0

x(t, z) = xf ∈ Rns at z = 0

∂x(t, z)

∂z
= 0 at z = l

0 ≤ t ≤ tf

0 ≤ z ≤ l

(1)

with ns equal to the number of state variables and the func-
tion s : Rns 7→ Rns . Time-dependent data, y(t) ∈ Rns×M

is collected for all ns state variables at M measurement
locations z = [z1, ...zM ]. ym represents the data collected
at zm with m = 1, ...,M .

The framework identifies a set of expressions in the
symbol space, s ∈ S, and its np parameters, θ ∈ Rnp ,
that minimizes an information-theoretic criterion, I. This can
be formulated as a bi-level optimization problem shown in
equation (2).

The upper bounds on the parameters, θub, and the lower
bounds on the parameters, θlb, constrain the parameter space.
An operator, augθ, augments each candidate set of expres-
sions, sc ∈ S, with parameters using a physics-informed
recipe. The optimization problem is formulated in this way
to separate the parameter search from the expression search,

reducing the size of the symbol space allowing for faster
model discovery.

s∗(x(t, z);θ) ∈ argmin
s∈S

I(s(x(t, z);θ))

s.t.

θ∗ ∈ arg min
θ∈Rnp

M∑
m=1

∫ tf

0

(ym(t)− x(t, zm))2

tf
dt

s.t.
∂x(t, z)

∂t
− s(x(t, z);θ) = 0

θlb − θ ≤ 0

θ − θub ≤ 0
(2)

A. Symbolic Regression via Genetic Programming

The upper level objective, I(s), is minimized by SR via
GP. GP begins searching S by initializing a population of
random differential equations represented as expression trees.
Each node in an expression tree is assigned from a physics-
informed argument set, P , or a primitive set, M.

The GP searches S by subjecting the population of expres-
sion trees to genetic operations. In each generation, the ge-
netic operations, cross-over, and mutation, randomly operate
on individuals within the population. This process generates
a new population of expression trees. Individuals from both
populations then compete in a tournament selection to select
the fittest individuals that will make up the next generation.
The genetic operations iteratively evolve the population until
generation count exceeds the generation limit.

When ns > 1, a co-evolution scheme searches S for
a combination of ns expressions that satisfy the objective
function. In this case, an individual is considered to be a
set of ns expressions that evolve from ns populations. Each
population has a P , and a M. An individual’s fitness depends
on each of its expressions and how well those expressions,
together, minimize I.

B. Gradient-Based Parameter Estimation

The lower-level optimization problem aims to provide
optimal parameters, θ∗, for each sc proposed by the GP.
A gradient-based optimization scheme attempts to give each
sc the best opportunity to minimize I by finding θ∗. One
of two parameter estimation schemes is used to find θ∗. For
experiments A and B, discussed later, a collocation scheme in
time and central finite difference scheme in space integrated
sc and an interior point solver estimated the parameters.
For experiments C and D, also discussed later, a nonlinear
least squares algorithm estimated the parameters using a
trust region reflective solver. Each sc was integrated using
a backward differentiation scheme with a preconditioned
Krylov iterative linear solver. Neither solver can guarantee
optimality so the framework checks the feasibility of each
sc by integrating sc with its θ∗ returned by the lower-level
optimization problem.
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C. Information Theoretic Criterion

The framework requires an I(s) that considers both the
complexity of an expression and the degree to which the
complete system model agrees with y. Fitness evaluation cri-
teria like the mean squared error and R2 are great candidates
to quantify how well a model agrees with the data but do not
consider the complexity of a model. The Bayesian Informa-
tion Criterion (BIC) and Akaike Information Criterion (AIC)
both satisfy the requirements to consider the complexity of
the model and the fit to y. In this work, the I(s) is the BIC
because the BIC penalizes the complexity of a model slightly
more than the AIC. The BIC can be written as:

BIC = nd logmse+ cs log nd (3)

with nd representing the number of data points, mse rep-
resenting the mean squared error between the data and the
model prediction (also the lower-level optimization function),
and cs representing the complexity of sc. We consider the
complexity of sc to be equal to the number of terms in sc
that are in P .

III. SYNTHETIC EXPERIMENTS

Four flow systems designed to test the flexibility of the
framework and it scapacity to identify concise and descrip-
tive differentation equation models from broadly spaced and
noisy data were considered. For each of these flow systems,
a physics informed argument set, P , a parameter augmen-
tation operator, augθ, and a primitive set M, helped to
build human-interpretable models. The initial and boundary
conditions for all of the experiments are shown below:

x(t, z) = 0 at t = 0

x(t, z) = xf at z = 0

∂x(t, z)

∂z
= 0 at z = l

(4)

with l = 1 representing the length of the system, and
xf representing the system’s feed condition. We tasked the
framework with discovering the set of expressions, s, using
data collected at z = l from synthetic experiments with
added Gaussian noise.

A. Plug Flow Reactor

Experiment A tested the framework on an ideal, isothermal
plug flow reactor (PFR) home to a single, irreversible chemi-
cal reaction, 2A → B. A PFR is a chemical reactor in which
three phenomena drive the changes to the concentration
of a chemical species: bulk fluid flow, diffusion of the
species through the bulk fluid, and a chemical reaction.
The state variable of this PFR is the concentration of A.
The argument set, PA = {x, ∂x

∂z ,
∂2x
∂z2 , xf , v}, can describe a

chemical reaction, convection, diffusion, feed concentration
of A, and flow velocity through the reactor. The parameter
augmentation operator, augθ

A, multiplies each term in PA by
a parameter and raises the term used to describe a chemical
reaction expressed as x to the power of a parameter. The
primitive set, MA = {+,×,−}, allowed the framework

to add, subtract, and multiply terms. The experimental feed
conditions, xf and v are provided in TABLE I.

System
Admissible Inputs

System
Measured Outputs

Experiments xf v y
A-1 1.00 0.50

x(t, z) at z = lA-2 2.00 0.55

TABLE I
EXPERIMENT A

B. Continuously Stirred Tank Reactor

The synthetic system in experiment B is an ideal, isother-
mal continuously stirred tank reactor (CSTR) home to the
same chemical reaction of experiment A. A CSTR is a
homogeneous chemical reactor in which the concentration
of a chemical species depends on the influent and effluent
bulk fluid velocity and a chemical reaction. Again, the state
variable is the concentration of A. The argument set, param-
eter augmentation operator, and primitive set for experiment
B are identical to those for experiment A. The values for xf

and v are provided in TABLE II.

System
Admissible Inputs

System
Measured Outputs

Experiments xf v y
B-1 2.00 1.00

x(t, z) at z = lB-2 1.00 2.00
B-3 2.00 0.55

TABLE II
EXPERIMENT B

C. Burgers’ Equation

Burgers’ equation models the synthetic system of experi-
ment C, and the state variable is the fluid velocity. Burgers’
equation is a nonlinear PDE that describes dynamic viscous
fluid convection and diffusion in one spatial dimension. The
argument set, PC = {x, x2, ∂x

∂z ,
∂2x
∂z2 , xf}, contains terms that

can describe the fluid velocity, convection, diffusion, and
the feed flow velocity. The parameter augmentation operator,
augθ

C , multiplies each term in PC by a parameter. The values
for xf are provided in TABLE III.

System
Admissible Inputs

System
Measured Outputs

Experiments xf y
C-1 3.00

x(t, z) at z = lC-2 1.50

TABLE III
EXPERIMENT C

D. Plug Flow Reactor with Reversible Reaction

The synthetic system in experiment D is a PFR with a
reversible chemical reaction 2A ⇌ B. In this experiment,
there are two state variables: x1 is the concentration of A,
and x2 is the concentration of B. The two primitive sets are
identical. MD,1 = MD,2 = MA. The argument set for the
first expression, PD,1 = {x1, x

2
1, x2, x

2
2,

∂x1

∂z , ∂2x1

∂z2 }, contains
terms that can describe a chemical reaction, and convection
and diffusion of A through the reactor. The argument set for
the second expression, PD,2 = {x1, x

2
1, x2, x

2
2,

∂x2

∂z , ∂2x2

∂z2 }, is
similar to PD,1, but describes the convection of diffusion of
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B through the reactor rather than A. The parameter augmen-
tation operator, augθ

D is identical to augθ
C . The experimental

pairs of xf are provided in TABLE IV.

System
Admissible Inputs

System
Measured Outputs

Experiments xf,1 xf,2 y
D-1 1.50 0.00

x(t, z) at z = lD-2 1.00 0.00
D-2 0.50 0.10

TABLE IV
EXPERIMENT D

IV. RESULTS AND DISCUSSION

A. Plug Flow Reactor

Experiment A tested the framework on a system that is
modeled by a quasi-linear PDE. To successfully identify the
PFR equation, the framework needed to linearly combine the
convection, diffusion, and reaction terms. The framework
also needed to correctly identify nonlinear reaction term,
x2.00. The model discovered by the framework matches
the model used to generate the synthetic data and both are
shown in TABLE V and in Fig. 1.

Conclusion 1: The framework can identify quasi-linear
models from broadly spaced and noisy data without
predefined exponent terms.

Fig. 1. The discovered model for x at the outlet of the PFR compared to
the synthetic data from experiment A. The inset parity plot shows strong
agreement between the discovered model and the experimental data.

B. Continuously Stirred Tank Reactor

Experiment B tested the framework’s ability to disregard
incorrect physics. The set up for experiment B was identical
to the set up for experiment A, but the data was generated
by the CSTR model rather than the PFR model. To
correctly identify the CSTR model, the framework needed
to determine that the convection and diffusion terms in
PB were not useful in describing the CSTR. The model
discovered by the framework matches the model used to
generate the synthetic data and both are shown in TABLE
V and in Fig. 2.

Conclusion 2: The framework can reject physics in
the physics-informed argument set if those physics are not
useful in describing a system model.

To correctly identify the CSTR model, the framework
also needed sufficiently rich data. When data from only two
of the three experiments were provided to the framework, it
found models of equal or lesser complexity that agree with
the data just as well as the underlying model. It was not
until the framework was given data from all three of the
experiments shown in TABLE II that it could discover the
underlying CSTR model. Even with all three experiments,
the framework still struggles to correctly identify the CSTR
model and its parameters, evident in the difference of
parameters in TABLE II between the generating model and
the recovered model. This is an issue of model identifiability,
which can be explored with methods such as those discussed
in Han et al. [25].

Conclusion 3: The framework can find a model consistent
with the data and equally or less complex than the
underlying model when the broadly spaced and noisy data
are not sufficiently rich to identify the underlying model.

Fig. 2. The discovered model for x at the outlet of the CSTR compared
to the synthetic data from experiment B. The inset parity plot shows strong
agreement between the discovered model and the experimental data.

C. Burgers’ Equation

Experiments A and B tested the framework’s ability to
identify a quasi-linear PDE model and an ODE model.
Experiment C tested the framework’s ability to identify a
nonlinear PDE model without any predefined combinations
of terms. The framework successfully identified the
nonlinear convection term. The model used to generate the
synthetic data and the model discovered by the framework
are shown in TABLE V and in Fig. 3.

Conclusion 4: The framework can identify nonlinear
combinations of terms from the argument set from broadly
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Experiment True Expression Recovered Expression

A - PFR 0.01 ∂2x
∂z2

− 1.00v ∂x
∂z

− 1.00x2.00 0.01 ∂2x
∂z2

− 0.99v ∂x
∂z

− 0.99x1.95

B - CSTR 1.00v(1.00xf − 1.00x1.00)− 1.00x2.00 1.00v(0.99xf − 1.03x1.12)− 0.96x1.98

C - Burgers’ 0.01 ∂2x
∂z2

− 0.10x ∂x
∂z

0.01 ∂2x
∂z2

− 0.10x ∂x
∂z

D - PFR Rev. Rxn 0.01 ∂2x1
∂z2

− 0.50 ∂x1
∂z

− 0.9x2
1 + 0.2x2 0.01 ∂2x1

∂z2
− 0.50 ∂x1

∂z
− 0.71x2

1

0.01 ∂2x2
∂z2

− 0.50 ∂x2
∂z

+ 0.45x2
1 − 0.1x2 0.01 ∂2x2

∂z2
− 0.50 ∂x2

∂z
+ 0.35x2

1

TABLE V
RECOVERED MODELS

spaced and noisy data without prior term combination
definitions.

Fig. 3. The discovered model for x at the outlet of the system described
by Burgers’ equation compared to the synthetic data from experiment C.
The inset parity plot shows strong agreement between the discovered model
and the experimental data.

D. Plug Flow Reactor with Reversible Reaction

Each of the other experiments identifies a differential
equation model when ns = 1. Experiment D tests the
framework by tasking it with identifying a PDE model
when ns = 2. The framework failed to identify the exact
generating expressions but still discovered an informative
model. It correctly identified the flow terms of the PFR and
their parameters. The first parameter, 0.01, is the correct
coefficient of diffusivity, and the second parameter, 0.50, is
the correct flow velocity through the reactor. The framework
also correctly discovered conservation of mass. Although
the domain expert knowledge provided to the framework did
not include conservation of mass, the framework identified
a reaction scheme that correctly conserved mass. Finally,
although the discovered model is incorrect, it approximates
the available data with fewer terms than the underlying
model. The framework may need better experimental design
or additional sensor locations to uniquely identify the
underlying model. Both the discovered model and the model
used to generate the synthetic data are provided in TABLE
V and Fig. 4 and Fig. 5.

Conclusion 5: The framework can find a model consistent
with physics even if it fails to identify the underlying
physics model of broadly spaced and noisy data.

Fig. 4. The discovered model for x1 at the outlet of the PFR compared
to the synthetic data from experiment D. The inset parity plot shows strong
agreement between the discovered model and the experimental data.

E. Discussion

The results in this work demonstrate several advantages
of using the framework to discover PDE models. The frame-
work can combine domain expert knowledge with broadly
spaced and potentially noisy data to identify underlying
physics or surrogate models. It can help identify PDE models
of systems when the state variable is difficult to measure
in frequent intervals in space. The method is also not
constrained to predefined combinations of the argument set.
SR via GP can combine terms flexibly to create expressions
that are not linear combinations of the argument set.

Although the framework can discover PDE models, it is
computationally expensive. The framework can be parallized
to reduce time, but takes on the order of half an hour to find
simple models like the PFR and Burgers’ equation models
and two hours to find the reversible reaction model using
eight threads running on an Intel Xeon processor and 32
GB. The algorithm is executed in python version 3.9.7. The
computational cost grows with model complexity and symbol
space size. This cost growth can become intractable as the
complexity of a model or the number of variables increases.
The framework is also limited in its integration scheme. If an
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Fig. 5. The discovered model for x2 at the outlet of the PFR compared
to the synthetic data from experiment D. The inset parity plot shows strong
agreement between the discovered model and the experimental data.

integration scheme cannot integrate a proposed expression,
then the fitness of that expression may not reflect its actual
fitness. Similarly, an inadequate parameter estimation scheme
can effect the framework’s ability to find models. More
robust integration and parameter estimation methods may
help to overcome this problem, but often at the cost of
additional computational expense.

V. CONCLUSIONS AND FUTURE WORK

A novel framework for the discovery of partial differential
equation models from broadly spaced and noisy data is
introduced. This framework can leverage data and domain
expert knowledge to generate clear, concise, and human-
interpretable differential equation models. It is flexible
enough to identify free-form expressions and find nonlinear
parameters that are not specified a-priori. When experimental
data was not sufficiently rich, the framework identified a sur-
rogate model that described the data in fewer mathematical
terms than the underlying model.

This work presents simple test cases, and further investi-
gation of the framework is warranted. Better design of ex-
periments can aid the framework in correct model discovery.
Information theory and optimal design of experiments can
improve model and parameter identifiability. The practical
and theoretical limitations of the framework must also be
considered. In future work, the affect of system complexity
on the quality of the models discovered by the framework
will be explored. Exploration of alternative methods in SR
and parameter estimation may also be valuable in broadening
the complexity of models discoverable by this tool.
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