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Abstract— The almost-supermartingale convergence theorem
of Robbins and Siegmund (1971) is a fundamental tool for
establishing the convergence of various stochastic iterative
algorithms including system identification, adaptive control, and
reinforcement learning. The theorem is stated for non-negative
scalar valued stochastic processes. In this paper, we generalize
the theorem to non-negative vector valued stochastic processes
and provide two set of sufficient conditions for such processes
to converge almost surely. We present several applications of
vector almost-supermartingale convergence theorem, includ-
ing convergence of autoregressive supermartingales, delayed
supermartingales, and stochastic approximation with delayed
updates.

I. INTRODUCTION

Stochastic iterative algorithms, where one starts with an
initial guess θ0 ∈ Rp and recursively updates it based on the
outcome of a stochastic experiment, arise in a variety of ap-
plications. Examples include recursive least square methods
in system identification [1]–[3], certainty equivalent methods
in adaptive control [1], [4], [5], stochastic gradient descent
methods in machine learning [6], [7], various learning algo-
rithms such as Q-learning in reinforcement learning [8], [9],
and distributed consensus [10], [11]. Broadly speaking, two
methodologies are used to analyze the convergence of such
algorithms: the martingale approach [12]–[15] and the ODE
(ordinary differential equation) approach [16]–[20]. We refer
the reader to [4], [21]–[23] for an overview.

The focus of this paper is a fundamental result used in
the martingale approach. For the sake of completeness, we
start with a brief overview of supermartingales. See [24],
[25] for a detailed treatment and see [26] for an introduction
of the use of martingale theory in Systems and Control as
well as some of the earliest results in the area. Consider
a probability space (Ω,F ,P). A filtration {Ft}t≥1 is an
increasing family of sub-sigma-algebras of F , i.e., for any
s < t, Fs ⊆ Ft ⊆ F . A family of integrable random
variables {Xt}t≥1 is said to be adapted with respect to the
filtration {Ft}t≥1 if Xt if Ft-measurable for each t. Such a
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family is called a supermartingale if

Et[Xt+1] ≤ Xt, ∀t ≥ 1

where the notation Et[·] is a shorthand for E[ · | Ft]. Roughly
speaking, supermartingales generalize the notion of mono-
tonically decreasing sequences to stochastic processes, see,
e.g., [27]. A fundamental result in martingale theory is the
supermartingale convergence theorem [24], [25], which
states that non-negative supermartingales converge almost
surely.

When analyzing convergence of stochastic iterative algo-
rithms, it is not always convenient to directly apply the super-
martingale convergence theorem and a slight generalization,
initially proposed by Robins and Siegmund [28], is much
more useful:

Theorem 1 (Almost supermartingale convergence)
Suppose {Xt}t≥1, {βt}t≥1, {Yt}t≥1, {Zt}t≥1 are R+-
valued stochastic processes adapted to some filtration
{Ft}t≥1 that satisfy

Et[Xt+1] ≤ (1 + βt)Xt + Yt − Zt, t ≥ 1 (1)

Define the set Ω0 by

Ω0 =

{
ω ∈ Ω :

∑
t≥1

βt(ω) < ∞
}
∩
{
ω :

∑
t≥1

Yt(ω) < ∞
}
.

Then, for all ω ∈ Ω0, we have that
1) limt→∞ Xt(ω) exists and is finite.
2)

∑
t≥1 Zt(ω) < ∞.

Note that all processes in Theorem 1 are R+-valued. In
this paper, we investigate variation of Theorem 1 for general
R

p
+-valued processes. Such a generalization is trivial for

the standard supermartingale convergence theorem (which
is the special case of Theorem 1 when the {Yt}t≥1 and
{Zt}t≥1 processes are identically zero) because we can use
the scalar supermartingale convergence theorem to argue
that each component of the vector-valued process {Xt}t≥1

converges. However, such simple arguments do not work in
the almost-supermartingale case.

In this paper, we present two sufficient conditions under
which the vector-valued almost supermartingales converge.
Our conditions rely on the existence of the limit of infinite
product of matrices. So, we review some basic results of
infinite product of matrices in Sec. II and then present the
two main convergence theorems in Sec. III. We then present
application of these theorems in Sec. IV to provide sufficient
conditions for convergence of auto-regressive supermartin-
gales, delayed supermartingales, and delayed temporal dif-
ference learning.
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II. REVIEW OF INFINITE PRODUCT OF MATRICES

We start with a review of infinite product of matrices. If
{Bn}n≥1 are p× p real matrices, we define

m∏
k=n

Bk =

{
BmBm−1 · · ·Bn if n ≤ m,

I if n > m;

to be the product where successive terms multiply on the
left.

We say that an infinite product
∏∞

n=1 Bn of p×p matrices
converges if there exists a finite integer N such that

QN = lim
m→∞

m∏
n=N

Bn

exists. In this case, we define
∏∞

n=1 Bn = QN

∏N−1
n=1 Bn.

Following [29], we say that the product
∏∞

n=1 Bn con-
verges invertibly if for all n ≥ N , Bn is invertible and
the product QN defined above is invertible as well. It was
argued in [29] that the above definition has the following
consequences:

(P1) An invertibly convergent infinite product is singular if
and only if at least one of its factors is singular.

(P2) If
∏∞

n=1 Bn converges invertibly then limn→∞ Bn =
I .

We now present some sufficient conditions for conver-
gence of infinite product of matrices. If the matrices being
multiplied are invertible, then the product converges to an
invertible limit. Let ∥·∥ denote any sub-multiplicative matrix
norm on Rp×p

(C1) If
∑∞

n=1∥Bn∥ < ∞ then
∏∞

n=1(I +Bn) converges.

(C2) Let {Rn}n≥1 be a sequence of p×p matrices such that
limn→∞ Rn = I and

∑∞
n=1∥(I +Bn)Rn −Rn+1∥ <

∞ then
∏∞

n=1(I +Bn) converges.

(C3) Let {Un}n≥1 be a sequence of invertible p×p matrices
such that ∥Un∥ = 1 for all n, there exists a N such that∏m

n=N Un converges for m → ∞, and
∑∞

n=1∥Bn∥ <
∞ then

∏∞
n=1(Un +Bn) converges.

Condition (C1) is a standard result and stated as Theorem 1
in [29]. Condition (C2) is Theorem 5 of [29]. Condition (C3)
is Theorem 2.1 combined with the remark on page 15 of [30].

III. A VECTOR-VALUED GENERALIZATION OF THE
ALMOST SUPERMARTINGALE CONVERGENCE THEOREM

Suppose {Xt}t≥1, {Yt}t≥1, and {Zt}t≥1 are Rp
+-valued

stochastic processes and {At}t≥1 is a Rp×p
+ -valued stochas-

tic process, all adapted to some filtration {Ft}t≥1 that satisfy

Et[Xt+1] ≤ AtXt + Yt − Zt, t ≥ 1. (2)

We assume that there exists a deterministic sequence
{Āt}t≥1, Āt ∈ Rp×p

+ that satisfies the following properties:

(A1) For each t, At ≤ Āt almost surely.
(A2) For each t, Āt is invertible

(A3) The infinite product

M :=

∞∏
t=1

Āt

converges invertibly. Clearly, M ∈ Rp×p
+ .

Remark 1 The sufficient conditions (C1)–(C3) mentioned
above for existence of infinite product of matrices can be
used to verify (A3). In particular, if we assume that At = I+
Bt where

∑
t≥1∥Bt∥ < ∞, we have a natural generalization

of the conditions in Theorem 1 to the vector case. However,
condition (A3) is more general. For example, as shown
in [29],

∏
t≥(I + Bt) converges even if

∑
t≥1∥Bt∥ = ∞

if condition (C2) holds.

Define
Ψt :=

∏
s≥t

Ās. (3)

It follows from (A2) and (A3) that Ψt is well defined for
all t because

Ψt = M

[ τ−1∏
t=1

Āτ

]−1

. (4)

It is also clear that for all t ≥ 1, Ψt ∈ Rp×p
+ , and

Ψt+1Āt = Ψt. (5)

Theorem 2 Suppose (A1)–(A3) hold. Define the set

Ω0 =

{
ω ∈ Ω :

∑
t≥1

Yt(ω) < ∞
}
.

Then, for all ω ∈ Ω0, we have that
1) limt→∞ Xt(ω) exists and is finite.
2)

∑
t≥1 Ψt+1Zt(ω) < ∞.

PROOF Observe that since all processes are non-negative,
Assumption (A1) implies that we can replace (2) by the
following:

Et[Xt+1] ≤ ĀtXt + Yt − Zt, t ≥ 1. (6)

Define X ′
t = ΨtXt, Y ′

t = Ψt+1Yt, and Z ′
t = Ψt+1Zt.

Now consider

Et[X
′
t+1] = Et[Ψt+1Xt+1]

(a)
= Ψt+1Et[Xt+1]

(b)

≤ Ψt+1

(
ĀtXt + Yt − Zt

)
(c)
= X ′

t + Y ′
t − Z ′

t (7)

where (a) follows because Ψt+1 is deterministic, (b) follows
from (6), and (c) follows from (5) and the definition of X ′

t,
Y ′
t , and Z ′

t. Note that (7) holds for every component.
Define

Ω′
0 =

{
ω ∈ Ω :

∑
t≥1

∥Ψt+1Yt(ω)∥ < ∞
}

(where ∥·∥ is any norm on Rp). Since all norms are equiv-
alent in a finite-dimensional space, we have that for any
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ω ∈ Ω′
0,
∑

t≥1[Y
′
t ]i < ∞, for all i ∈ {1, . . . , p}, where [Y ′

t ]i
denotes the i-th component of Y ′

t . Therefore, by applying
Theorem 1 to every component of (7), we get that for any
ω ∈ Ω′

0, limt→∞ X ′
t(ω) exists and

∑
t≥1 Z

′
t(ω) < ∞.

Now we will show that convergence of X ′
t implies con-

vergence of Xt. For ω ∈ Ω′
0, define

X∞(ω) := lim inf
t→∞

Xt(ω) and X∞(ω) := lim sup
t→∞

Xt(ω).

Let {ik}k≥0 be a subsequence such that Xik(ω) converges to
X∞(ω) and let {jk}k≥0 be a subsequence such that Xjk(ω)
converges to X∞(ω). Then,

lim
k→∞

ΨikXik(ω) = lim
k→∞

Ψik lim
k→∞

Xik = X∞(ω) (8)

and

lim
k→∞

ΨjkXjk(ω) = lim
k→∞

Ψjk lim
k→∞

Xjk = X∞(ω) (9)

because limt→∞ Ψt = I (which follows from (3)). However,
the left hand sides of (8) and (9) are the same because we
have shown that ΨtXt = X ′

t converges to a limit. Therefore,
X∞(ω) = X∞(ω). Consequently, {Xt(ω)}t≥1 converges to
a limit and that limit is the same as the limit of {X ′

t(ω)}t≥1.
So, we have shown that the result holds for all ω ∈ Ω′

0.
We will now show that Ω0 ⊆ Ω′

0. For any ω ∈ Ω0, we have
that

∑
t≥1∥Yt(ω)∥∞ < ∞. Due to the equivalence of norms

in a finite dimensional space, this implies that∑
t≥1

∥Yt(ω)∥ < ∞. (10)

From (A3), it follows that Ψ∗ := supt≥1∥Ψt∥ < ∞. Then,
for any ω ∈ Ω0,∑

t≥1

∥Ψt+1Yt(ω)∥ ≤ Ψ∗
∑
t≥1

∥Yt(ω)∥ < ∞

where the first inequality follows from the definition of Ψ∗

and the second inequality follows from (10). Thus, Ω0 ⊆ Ω′
0.

Hence, the result holds for all ω ∈ Ω0. ■

We now present a slightly different set of assumptions
under which (2) converges. In particular, assume that the
sequence {At}t≥1 satisfies the following assumptions:
(A4) For each t, At is inverible.
(A5) For each t, A−1

t ∈ Rp×p
+ .

Remark 2 A necessary and sufficient condition for (A5) is
that each At is monomial, i.e., for every t there exists a
permutation matrix Pt and a diagonal matrix Dt with strictly
positive diagonal elements such that At = PtDt.

Define Φt :=
∏

s≤t At. It follows from (A4) that Φt is
invertible and from (A5) that Φt ∈ R

p×p
+ . It is also clear

that for all t ≥ 1,

Φ−1
t+1At = Φ−1

t . (11)

Theorem 3 Suppose assumptions (A4) and (A5) hold. De-
fine

Ω0 =

{
ω : lim

t→∞
Φt(ω) < ∞

}
∩
{
ω :

∑
t≥1

Yt(ω) < ∞
}
.

(12)

Then, for all ω ∈ Ω0, we have that
1) limt→∞ Xt(ω) exists and is finite.
2)

∑
t≥1 Φ

−1
t+1(ω)Zt(ω) < ∞.

PROOF Define X ′
t = Φ−1

t Xt, Y ′
t = Φ−1

t+1Yt, Z ′
t = Φ−1

t+1Zt.
Then,

Et[X
′
t+1]

(a)
= Φ−1

t+1Et[Xt+1]
(b)

≤ Φ−1
t+1[AtXt + Yt − Zt]

(c)
= Φ−1

t Xt +Φ−1
t+1Yt +Φ−1

t+1Zt = X ′
t + Y ′

t − Z ′
t, (13)

where (a) follows because Φt is Ft-measurable, (b) follows
from (2) and Φt ∈ R

p×p
+ and (c) follows from (11).

Inequality (13) holds for each component of the vectors.
Therefore, by applying Theorem 1 on each component, we
get that limt→∞ X ′

t(ω) and
∑

t≥1 Z
′
t(ω) exist and are finite

on the set
{
ω :

∑
t≥1 Y

′
t (ω) < ∞

}
.

Now, define the set

Ω′
0 =

{
ω : lim

t→∞
Φt(ω) < ∞

}
∩
{
ω :

∑
t≥1

Y ′
t (ω) < ∞

}
.

(14)
We have already shown that on Ω′

0, limt→∞ X ′
t(ω) exists

and is finite. Therefore,

lim
t→∞

Xt(ω) = lim
t→∞

Φt(ω)X
′
t(ω)

exists and is finite on Ω′
0. Denote this limit by X∞(ω).

Fix an ε > 0. Define

E =
⋂
s≥1

⋃
t≥s

1
{
|Xt(ω)−X∞(ω)| > ε

}
.

Since Xt(ω) converges almost surely to X∞(ω) on Ω′
0, we

have P(Ω′
0 ∩ E) = 0.

Now for any c > 0, define the set Ω(c) =
{
ω : Φt(ω) < cI

for all t ≥ 1
}

. Since Yt = Φt+1Y
′
t , we have Ω0∩Ω(c) ⊂ Ω′

0

and therefore

P(Ω(c) ∩ Ω0 ∩ E) ≤ P(Ω′
0 ∩ E) = 0. (15)

Let {ck}k≥1 be a countable sequence of positive numbers
diverging to infinity. Then, by countable additivity,

P(Ω0 ∩ E) = P( lim
k→∞

Ω(ck) ∩ Ω0 ∩ E)

= lim
k→∞

P(Ω(ck) ∩ Ω0 ∩ E) = 0 (16)

where the last equality follows from (15). Hence Xt(ω)
converges almost surely to X∞(ω) on Ω0. ■

IV. SOME APPLICATIONS

A. Autoregressive almost supermartingales

Consider R
p
+-valued stochastic processes {Xt}t≥1,

{Yt}t≥1, and {Zt}t≥1 and R+-valued stochastic processes
{at,d}t≥1, d ∈ {1, . . . , D}, all adapted to a filtration
{Ft}t≥1, that satisfy for all t ≥ 1,

Et[Xt+1] ≤ at,0Xt + at,1Xt−1 + · · ·+ at,DXt−D

+ Yt − Zt. (17)

We call such a process autoregressive almost supermartin-
gale.
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Define X̄t = vec(Xt−D, . . . , Xt). Then, the dynam-
ics (17) may be written as

Et[X̄t+1] ≤ AtX̄t + Yt − Zt (18)

where At ∈ Rp(D+1)×p(D+1)
+ is given by

At =



0 I 0 · · · 0

0 0 I
. . . 0

...
. . . . . . . . .

...

0 0
. . . 0 I

at,DI at,D−1I · · · · · · at,0I


(19)

where each block is p× p.

Proposition 1 Suppose at,D ̸= 0 and the matrices At

defined in (19) satisfy (A3). Define Ψt as in (3) and the
set Ω0 as in Theorem 2. Then, for all ω ∈ Ω0, we have

1) limt→∞ Xt(ω) exists and is finite.
2)

∑
t≥1 ΨtZt(ω) < ∞.

PROOF Eq. (18) may be viewed as a vector almost-
supermartingale. The matrices At satisfy (A1) and (A2). It is
assumed that (A3) is satisfied. Therefore, the result follows
from Theorem 2. ■

We now present two examples where we can explicitly
verify (A3).

1) Example 1: Suppose that p = 1 and there exists a
deterministic sequence ād, d ∈ {0, . . . , D}, such that at,d ≤
ād for all d. Then, At ≤ Ā, where

Ā =



0 1 0 · · · 0

0 0 1
. . . 0

...
. . . . . . . . .

...

0 0
. . . 0 1

āD āD−1 · · · · · · ā0


.

Then, limt→∞ Āt exists if all the eigenvalues of Ā lie inside
the unit circle. A trivial instance is

∑D
d=1 ād < 1 where Ā is

a sub-stochastic matrix and therefore Āt converges to zero.
Note that in this case, if the inequality is replaced by an
equality, then Ā is an irreducible and aperiodic stochastic
matrix, and therefore Āt still converges to a finite limit. In
general, the characteristic polynomial of Ā is1

f(z) = det(zI − Ā) = zD+1 − ā0z
D − ā1z

D−1 − · · · − āD

Thus, the stability of Ā may be checked by applying the Jury
stability criteria to f(z).

2) Example 2: Suppose p = 1, D = 1, at,0 ≤ 1 + β0,t

and at,1 ≤ β1,t, where β0,t, β1,t ∈ [0, 1]. In this case,

Āt =

[
0 1 + β1,t

1 β2,t

]
=

[
0 1
1 0

]
+

[
0 0

β0,t β1,t

]
=: P +Bt,

1Since Ā is in controllable canonical form, its characteristic polynomial
can be written by inspection.

where P is a permutation matrix and P 2 = I . To argue that∏
t≥1 Āt converges, we decompose the product as∏

t≥1

Āt = · · · (Ā4Ā3)(Ā2Ā1).

Then, a generic factor of the form (Ā2tĀ2t−1) may be
simplified as:

Ā2tĀ2t−1 = (P +B2t)(P +B2t−1)

= P 2 + P (B2t +B2t−1) +B2tB2t−1

=: I + Ct. (20)

We now use condition (C1) to show that
∏

t≥1(I + Ct)
converges. In particular, we take ∥·∥ to be ℓ1 induced norm
given by ∥A∥ = maxj

∑
i|Aij |. Then,

∥Ct∥
(a)

≤ ∥P (B2t +B2t−1)∥+ ∥B2tB2t−1∥
(b)

≤ ∥B2t +B2t−1∥+ ∥B2tB2t−1∥
= (β0,2t + β0.2t−1 + β1,2t + β1,2t−1)

+ β1,2t(β0,2t−1 + β1,2t−1)

(c)

≤ 2(β0,2t + β0.2t−1 + β1,2t + β1,2t−1) (21)

where (a) follows from triangle inequality, (b) follows from
sub-multiplicative property of matrix norm and the fact that
∥P∥ = 1, and (c) follows from the fact that β1,t ∈ [0, 1].

Thus, Eq. (21) implies that a sufficient condition for (A3)
(i.e., convergence of

∏
t≥1 Āt =

∏
t≥1 C̄t) is∑

t≥1

(β0,2t + β0.2t−1 + β1,2t + β1,2t−1) < ∞ (22)

B. Delayed almost supermartingales

Consider R
p
+-valued stochastic processes {Xt}t≥1,

{Yt}t≥1, and {Zt}t≥1 and a {0, . . . , D}-valued stochastic
process {dt}t≥1, all adapted to a filtration {Ft}t≥1, that
satisfy for all t ≥ 1,

Et[Xt+1] ≤ Et[Xt−dt
] + Yt − Zt

≤
D∑

d=0

Pt(dt = d)Xt−d + Yt − Zt. (23)

We call {Xt}t≥1 a delayed almost supermartingale. Note
that when D = 0, the process reduces to a standard almost
supermartingale. Define at,d = Pt(dt = d). Then (23) is
equivalent to

Et[Xt+1] ≤
D∑

d=0

at,dXt−d + Yt − Zt (24)

which is a special case of autoregressive almost supermartin-
gale defined in Sec. IV-A.

Then, if the assumptions of Proposition 1 are satisfied,
{Xt}t≥1 converges almost surely. As argued in Example 1,
in the special case where at,d is time-homogeneous, the
matrix At is irreducible and aperiodic (provided aD ̸= 0),
and therefore assumption (A3) is satisfied.
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It is worth pointing out in the special case when at,D = 1
and at,d = 0 for d ̸= D, Assumption (A3) is not satisfied.
This is because in this case

At =



0 I 0 · · · 0

0 0 I
. . . 0

...
. . . . . . . . .

...

0 0
. . . 0 I

I 0 · · · · · · 0


where each block is p × p. Since At does not depend on
time t, we simply denote it by A. Observe that A is a
block permutation matrix and {At}t≥1 is a periodic process
with period D (because AD = I). Therefore the process
At does not converge. However, note that the matrices At

satisfy assumptions (A4) and (A5). Therefore, we can use
Theorem 3 to argue that in this case {Xt}t≥1 converges
almost surely.

C. Delayed temporal difference learning

Let H : Rp → Rp be a pseudo-contraction with respect to
the Euclidean norm ∥·∥, i.e., there exist a unique fixed point
θ∗ and a radius of contraction γ ∈ (0, 1) such that

∥Hθ − θ∗∥ ≤ γ∥θ − θ∗∥, ∀θ ∈ Rp. (25)

We impose the following assumption:
(TD) ∥θ∗∥ ≤ M .
Such an assumption is valid in reinforcement learning where
temporal difference learning is used to learn the action-value
function (i.e., the Q-function) of a policy. If the per-step
reward is bounded by Rmax, then we know that the action-
value function of any policy is bounded by Rmax/(1− γ).

We assume that there an agent who knows the bound M
and wants to find the fixed point θ∗. It has access to an
oracle which takes θ as inputs and returns Hθ+ ξ after one
step delay, where ξ is independent noise. We run temporal
difference learning to find the fixed point of H , i.e, we start
with an initial guess θ0 = θ1 and for t ≥ 1 update

θt+1 = ΠM

[
(1− αt)θt + αt

[
Hθt−1 + ξt+1

]]
, (26)

where {αt}t≥1 are the learning rates and ΠM is the pro-
jection from Rp to {θ : ∥θ∥ ≤ M}. Note that the term is
the square brackets denotes the output of the oracle, which
is delayed. We denote the noise by ξt+1 for consistency
of notation. Let Ft denote the σ-algebra generated by
(θ1:t, α1:t−1, ξ1:t). We consider the following assumptions
on the noise.
(N1) {ξt}t≥1 is a martingale difference sequence with re-

spect to {Ft}t≥1, i.e.,

Et[ξt+1] = 0, a.s., ∀t ≥ 1.

(N2) The noise {ξt}t≥1 satisfies ∥ξt+1∥ ≤ σ a.s. for all
t ≥ 1. Therefore,

Et[∥ξt+1∥2] ≤ σ2, a.s., ∀t ≥ 1.

Finally, we consider the following assumptions on the learn-
ing rates.

(R1)
∑

t≥1 α
2
t < ∞.

(R2)
∑

t≥1 αt = ∞.

Proposition 2 Under (TD), (N1) and (N2), we have the
following:

1) If (R1) holds, then θt converges to a limit almost surely.
2) If, in addition, (R2) holds, then θt → θ∗ almost surely

as t → ∞.

PROOF The boundedness of the iterates implies that

∥θt+1−θ∗∥ ≤ min
{
∥(θt−θ∗)+αt

[
Hθt−1−θt+ξt+1

]
∥, 2M

}
.

(27)
Thus,

Et[∥θt+1 − θ∗∥2] ≤ ∥θt − θ∗∥2 + α2
t ∥Hθt−1 − θt∥2 + α2

tσ
2

+ αt⟨θt − θ∗, Hθt−1 − θ∗⟩ (28)

Observe that

∥Hθt−1 − θt∥ ≤ ∥Hθt−1 − θ∗∥+ ∥θt − θ∗∥
≤ ∥θt−1 − θ∗∥+ ∥θt − θ∗∥ (29)

where the first inequality follows from triangle inequality
and the second follows from (25). For ease of notation, we
use ∆t = ∥θt − θ∗∥ for all t. Therefore, (29) implies

∥Hθt−1 − θt∥2 ≤ ∆2
t−1 +∆2

t + 2∆t∆t−1. (30)

Now consider

⟨θt − θ∗, Hθt−1 − θt⟩
= ⟨θt − θ∗, Hθt−1 − θ∗⟩ − ⟨θt − θ∗, θt − θ∗⟩
≤ ∥θt − θ∗∥∥Hθt−1 − θ∗∥ −∆2

t

≤ γ∆t−1∆t −∆2
t (31)

Substituting (30) and (31) in (28), we get

Et[∆
2
t+1] ≤ ∆2

t + α2
t [∆

2
t−1 +∆2

t + 2∆t−1∆t + σ2]

+ αt

[
γ∆t−1∆t −∆2

t ] (32)

In non-delayed TD learning, the last term in the square
bracket is γ∆2

t −∆2
t , which is negative and therefore can be

ignored. However, that is not possible when we have delay,
so a different method is needed to bound this term. We do
so by exploiting the boundedness of the iterates.

From (27) (evaluated at t− 1), we have

∆t ≤ ∆t−1 + αt∥Hθt−2 − θ∗∥+ αt∥ξt∥
≤ ∆t−1 + αtγ∆t−2 + αt∥ξt∥ (33)

Substituting the above, in the last term in (32), we get

αt

[
γ∆t−1∆t −∆2

t ] = αtγ
[
∆t−1∆t −∆2

t ]− αtγ̄∆
2
t

≤ α2
tγ∆t

[
∆t−2 + ∥ξt∥

]
− αtγ̄∆

2
t
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where we use γ̄ = (1−γ). Substituting back in (32), we get

Et[∆
2
t+1] ≤ ∆2

t + α2
t [∆

2
t−1 +∆2

t + 2∆t−1∆t + σ2]

+ α2
tγ∆t

[
∆t−2 + ∥ξt∥

]
− α2γ̄∆t

(a)

≤ (1 + α2
t )∆

2
t + α2

t∆
2
t−1

+ α2
t

[
(8 + 4γ)M2 + σ2 + γσ

]
− αtγ̄∆t (34)

where (a) uses ∆t ≤ 2M from (27).
Now observe that (34) is a autoregressive almost super-

martingale of the form presented in Example 2 in Sec. IV-
A.2 with Xt = ∆2

t , Yt = α2
t

[
(8 + 4γ)M2 + σ2 + γσ

]
and

Zt = αtγ̄∆t. Note that (22) is equivalent to (R1), thus (A3)
is satisfied. Thus, we can apply the result of Proposition 1.

For the choice of Yt above, (R1) implies that Ω0 defined
in Theorem 2 is almost surely equal to Ω. Thus, from
Proposition 1 and Theorem 2, we get that ∆2

t converges
almost surely. This proves the first part of the proposition.

For any ω ∈ Ω, let ζ(ω) := limt→∞ ∆2
t (ω). To prove

the second part, we will show that ζ(ω) = 0. We start with
the observation that Proposition 1 and Theorem 2 imply that
almost surely. ∑

t≥1

Ψt+1Zt+1 < ∞.

Recall that in Sec. IV-A.2, we have argued that Ā2tĀ2t−1

is of the form I + Ct, where Ct is a non-negative matrix.
Therefore, Ψt+1 is element-wise greater than or equal to I .
Hence, ∑

t≥1

Zt+1 ≤
∑
t≥1

Ψt+1Zt+1 < ∞. (35)

We now show that ζ(ω) = 0 by contraction. Assume that
for some ω ∈ Ω0, ζ(ω) = 2ε > 0. Choose a T (ω) such that
for all t > T (ω), we have ∆2

t (ω) > ε. Therefore,∑
t≥T (ω)

Zt(ω) =
∑

t≥T (ω)

αt∆
2
t (ω) ≥

∑
t≥T (ω)

αtε = ∞

where the last equality follows from (R2). The above limit
contradicts (35). Therefore, for almost all ω ∈ Ω0, ζ(ω) = 0,
i.e., ∆2

t (ω) → 0 almost surely. Therefore, θt → θ∗, almost
surely. ■

V. CONCLUSION

In this paper, we consider a generalization of almost su-
permartingale convergence theorem from scalar-valued non-
negative processes to vector-valued non-negative processes.
We provide two sufficient conditions for convergence which
rely on convergence of infinite product of matrices which
might be viewed as generalization of the conditions for con-
vergence in the scalar case. We show that the vector-valued
almost supermartingales can be used to prove convergence
of what we call almost auto-regressive supermartingales. We
use convergence of almost auto-regressive supermartingales
to establish convergence of delayed almost supermartingales
and delayed temporal difference learning. In general, we be-
lieve that vector-valued almost supermartingale convergence
theorem could be fundamental tool to establish convergence
of delayed version of various learning algorithms.
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