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Abstract— This paper investigates a multi-objective distribut-
ed resource allocation problem, where the economic cost in-
cluding the transmission loss, and the environmental pollution
are taken into account simultaneously. To settle this problem,
a Pareto-based zeroth-order fast distributed optimization al-
gorithm is proposed, which can always balance the overall
energy demand with generation. In the algorithm design, the
acceleration idea of the momentum method is tailored for
the gradient estimation update, which gives a more accurate
descent direction. Moreover, the unknown effect causes the
gradient of the objective function to be unavailable and only
the function values to be observed. Different from the gradient-
based methods, a zeroth-order method is proposed to solve the
distributed resource allocation problem with gradient estima-
tion. Furthermore, the convergence of the designed algorithm
is proved theoretically, and the convergence rate of linear
speedup can be achieved. Finally, numerical simulations verify
the validity and applicability of the proposed algorithm.

I. INTRODUCTION

Over the past few years, distributed resource allocation
(DRA) [1] as an emerging research field has gained in-
creasing attention to mitigate the greenhouse effect. DRA
is a framework for coordinating the operation of multiple
distributed energy resources to optimize energy delivery
and consumption. It is regarded as a significant tool for
the smart grid modernization, which allows the integration
of renewable energy sources and improves the efficiency,
reliability, and security of the power grid [2].

Many centralized algorithms have been designed to ad-
dress the DRA problem. They can be mainly divided into
the heuristic-based algorithms such as the particle swarm
optimization [3], and the analysis-based algorithms including
the linear programming [4]. Additionally, research has been
conducted for DRA resorting to the artificial intelligence
and machine learning approaches [5]. However, the afore-
mentioned approaches are usually limited in scalability and
inefficient. Specially, they can be easily fooled or misled by
local optimums, resulting in suboptimal solutions. These lim-
itations have prompted the shift from centralized control to
distributed management in the power development industry.
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In recent years, distributed optimization algorithms have
been extensively studied to tackle the weakness of the
centralized methods [6]. For the next generation power
grid, one of the fundamental and important problems of
smart grid is to balance the energy demand with generation,
which involves handling the coupling constraints. To this
end, the continuous-time dynamic primal-dual method was
developed for optimization problems with affine equality
constraints in [7], while the dual decomposition method
was utilized in [8]. However, these algorithms are equipped
with slower convergence rates, and the introduction of dual
variables raises the requirements of computation and storage.
To further accelerate the convergence speed, the EXTRA
algorithm [9], the heavy ball method [10], the Nesterov
gradient descent algorithm [11], and the gradient tracking
method [12] were proposed. Despite these algorithms, it
is still challenging to fast handle optimization problems
with coupling constraints. This paper aims to fill this gap.
Furthermore, these accelerated works mainly focused on the
gradient-based algorithm research. Nowadays it is still an
open problem on how to realize the fast response of DRA
when the gradient information is unavailable.

To enable the power grid to operate in an efficient mode,
the gradient information of the objective function is generally
utilized to calculate the optimal operating points for genera-
tors. It can maximize the efficiency of the power system and
reduce the risk of power outages and other system failures. In
practice, smart grid integrates the renewable energy sources
into the power system. These renewable energy sources
are highly dependent on the weather, which leads to the
incompleteness of data and the difficulties in obtaining the
gradient information. Besides, the environmental pollution
from the power generation can only be observed with the
limited observation. On the other hand, it is noteworthy that
there is a growing interest in the zeroth-order distributed
optimization algorithms [13] when the gradient information
is not available. These situations usually occur when the
gradient of the objective function is infeasible or costly to
evaluate due to the limited access of distributed devices, or
when only the black-box programs are available to calculate
the function values. Moreover, the zeroth-order distributed
optimization algorithms require a small amount of com-
putation and can fast achieve a high-quality solution [14],
which is also suitable for large-scale resource allocation.
Concretely, the complexity bounds and the convergence rate
for the zeroth-order methods of convex optimization were
analyzed in [15]. The zeroth-order idea was designed into the
online alternating direction method of multipliers (ADMM)
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[16]. Thus, it is very interesting to adopt the zeroth-order
method to realize the fast demand response for DRA.

Motivated by the above analysis, a zeroth-order fast dis-
tributed optimization algorithm is proposed for DRA in
this paper. The main contributions are illustrated in the
following aspects. Primarily, a novel multi-objective DRA
problem is introduced, which integrates the economic cost
and the environmental pollution simultaneously. In addition,
the transmission loss is taken into account in the economic
cost. Next, for the considered optimization problem, a zeroth-
order fast distributed optimization algorithm is developed.
The momentum method is employed to accelerate the con-
vergence rate, and the zeroth-order scheme is utilized to
address the unknown gradient information. Moreover, it is
theoretically proved that the designed algorithm can achieve
a linear-speedup convergence rate. Compared with the pre-
vious works, this new algorithm accelerates the convergence
on the premise of satisfying the coupling constraints.

The rest of this paper is organized as follows. Section II
introduces the graph theory, useful lemmas, and the problem
model. Section III presents the designed algorithm and
the convergence analysis. Section IV carries out simulation
experiments. Finally, Section V summarizes the whole paper.

Notation. R, Rn and Rm×n represent the spaces of real
numbers, n-dimensional real vectors and m×n real matrices,
respectively. ‖·‖ denotes the Euclidian norm. 1 denotes the
column vector with all elements being 1. ∇f(x) and ∇2f(x)
denote the gradient and Hessian matrix of function f(x). For
a real and symmetric matrix M , M � 0 (or M � 0) means
that it is negative (or positive) semidefinite. For a differen-
tiable function f(·) and for all u, v ∈ Rp, it is l1-strongly
convex if f (v) ≥ f (u)+〈∇f (u) , v−u〉+ l1

2 ‖v − u‖
2
, and

it is l2-smooth if ‖∇f (u)−∇f (v)‖ ≤ l2 ‖u− v‖ .

II. PRELIMINARIES AND PROBLEM
FORMULATION

A. Preliminaries

An undirected graph consisting of N nodes is depicted
as G = (V, E), where V = {1, 2, · · · , N} and E ⊆ V × V
denote the node set and the edge set, respectively. If nodes i
and j can communicate with each other, then (i, j) ∈ E . The
adjacency matrix W = [wij ] ∈ RN×N of graph G is defined
as wij = wji = 1 if (i, j) ∈ E , and wij = 0 otherwise.
Specially, wii = 0 for i = 1, 2, · · · , N . The Laplacian matrix
L is defined as L = D − W , where D ∈ RN×N is a
diagonal matrix with Dii =

∑N
j=1 wij , i ∈ {1, 2, · · · , N}

being diagonal elements. A path from node i0 to node im is a
sequence of nodes {i0, i1, · · · , im} satisfying (ij , ij+1) ∈ E ,
j = 0, 1, · · · ,m − 1. Graph G is called connected if each
node in G has a path to any other node.

Assumption 1: Graph G is undirected and connected.
The lemma presented below is beneficial to the conver-

gence analysis.
Lemma 1: Suppose that Q is a symmetric matrix with its

eigenvalues λ1, · · · , λN satisfying λ1 ≤ · · · ≤ λN and the
associated eigenvectors being u1, · · · , uN . Then xTQx ≥

λix
Tx holds for all x ∈ {x | x ⊥ uj , j = 1, 2, · · · , i − 1},

i = 1, 2, · · · , N .
Then, the deterministic gradient estimator for a differen-

tiable function f(x) : Rp 7→ R is designed as follows [17]:

∇̂δf(x) =
1

δ

p∑
l=1

(f(x+ δel)− f(x)) el, (1)

where δ > 0 is a parameter and el is a unit vector with the
lth element being 1 and the others being 0. The gradient
estimator ∇̂δf(x) can be obtained through sampling the
function values of f(x) at p + 1 points. The following
lemma reveals that ∇̂δf(x) can be very close to ∇f(x) for
a sufficiently small δ.

Lemma 2 ([17]): For a l-smooth function f(x), ∀x ∈ Rp
and ∀δ > 0, there holds∥∥∇̂δf(x)−∇f(x)∥∥ ≤ √plδ

2
. (2)

B. Problem Formulation

A novel DRA is proposed in this part, which aims at min-
imizing the economic cost and the environmental pollution
simultaneously for the power system with N generators on
the premise of satisfying the balance between the energy
supply and the demand. The involved cost functions are
modeled as follows.

1) Economic cost: The economic cost mainly consists of
two parts: the generation cost for traditional generators or
the operation cost for wind generators, and the transmission
loss. Many geographically distributed controllable devices
raise new challenges for DRA, where the transmission line
loss has a distinct impact on the electricity scheduling due to
the long-distance transmission. Thus, the economic cost for
generator i, i = 1, · · ·, N , is modeled as follows [18], [19]:

f ecoi (Pi) = aiP
2
i + biPi + ci + diPi

2, (3)

where ai > 0, bi, and ci are the constant coefficients, Pi is
the supply of generator i, and di (0 < di < 1) is the constant
coefficient of the transmission loss.

2) Environmental pollution cost: The future power system
will be transformed to green and low carbon, which puts
forward higher requirements for gas emissions. During the
operation of conventional generators, the emission of harmful
gases generated by generator i including SOx, COx and
others can be modeled as follows [20], [21]:

f envi (Pi) = ãiP
2
i + b̃iPi + c̃i, (4)

where ãi > 0, b̃i, and c̃i are the constant coefficients.
According to the above analysis, combined with the supply

and demand balance constraints, the multi-objective opti-
mization problem is established as follows:

min

[
N∑
i=1

f ecoi (Pi),

N∑
i=1

f envi (Pi)

]
(5a)

s.t.

N∑
i=1

Pi = D, (5b)
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where constant D is the total demand. The contradiction
between multiple costs indicates that it is impossible to
minimize these goals simultaneously. Resorting to the Pareto
optimality [22], we transform this problem into a single
objective optimization problem through a weighted approach,
and further abbreviated as

min f(x) ,
N∑
i=1

fi(xi) (6a)

s.t.

N∑
i=1

xi = D, (6b)

where the decision variable xi is employed to represent Pi
in (5) for convenience, fi(xi) = η1f

eco
i (xi) + η2f

env
i (xi),

and the coefficients η1, η2 ∈ (0, 1) satisfies η1 + η2 = 1.
Clearly, f(x) is strongly-convex and smooth, thus we can let
l1I ≤ ∇2f(x) ≤ l2I , where l1 and l2 are positive constants.

III. MAIN RESULTS

A. Distributed Optimization Algorithm Design

A zeroth-order fast distributed optimization algorithm to
the problem (6) is proposed as follows:

xi(t) = xi(0)−
N∑
j=1

aij (ζi(t)−ζj(t)) , (7a)

yi(t) = xi(t) + α(t) (xi(t)−xi(t−1)) , (7b)
ζi(t+1) = ζi(t)

+β

N∑
j=1

aij

(
∇̂δi(t)fi(yi(t))−∇̂δj(t)fj(yj(t))

)
, (7c)

where xi(t) ∈ R is the decision variable of generator
i, yi(t) ∈ R and ζi(t) ∈ R are the auxiliary variables,
i = 1, 2, · · · , N , and α(t) and β are the step size param-
eters. Moreover, ∇̂δi(t)fi(yi(t)) is the deterministic gradient
estimator defined in (1) with the exploration step size δi(t).

Define x = [x1, · · · , xN ]T , ζ = [ζ1, · · · , ζN ]T ,
y = [y1, · · · , yN ], δ = [δ1, · · · , δN ], and ∇̂fδ(y) =
[∇̂fδ1(y1), · · · , ∇̂fδN (yN )]T . Then the algorithm (7) can be
written into the compact form

x(t) = x(0)− Lζ(t), (8a)
y(t) = x(t) + α(t)(x(t)− x(t− 1)), (8b)

ζ(t+ 1) = ζ(t) + βL∇̂fδ(t)(y(t)). (8c)

Proposition 1: For the algorithm (8), the equality con-
straint to the problem (6) is always satisfied if

∑N
i=1 xi(0) =

D.
Proof: Noting that 1TL = 0 and premultiplying both sides

of (8a) by 1T , we get that 1Tx(t)=1Tx(0)=D, ∀t > 0,
which implies that Proposition 1 holds.

Remark 1: By virtue of the communication topology
structure, the algorithm (8) inherently guarantees the satisfac-
tion of the equation constraints. This inherent characteristic
sets it apart significantly from the approaches outlined in
[23] and [24]. Moreover, motivated by [25], the algorithm (8)
employs the momentum method to achieve a more accurate

descending direction than the approach presented in [26].
Furthermore, considering the unknown gradient information,
the zeroth-order scheme is utilized in the gradient update of
the algorithm (8).

B. Convergence Analysis

Now we analyze the convergence of the algorithm.
Theorem 1: Suppose that Assumption 1 holds. Then the

algorithm (8) solves the problem (6) at a linear-speedup
convergence rate, if 0 < β < 1/(l2‖L‖2) and α(t), δi(t) ∈
(0, ε̂t/2], where ε̂ ∈ (0, 1). Moreover, there holds

f(x(t))− f(x∗) ≤ (1− ε)t (f(x(0))− f(x∗))

+(m1M +m2)φ(ε, ε̂, ε̃), (9)

where m1, m2, M > 0 are constants, and

φ(ε, ε̂, ε̃) =



(1− ε)t

1− ε− ε̂
, if 1− ε > ε̂,

ε̂t

ε̂− 1 + ε
, if 1− ε < ε̂,

ε̃t

ε̃− ε̂
, if 1− ε = ε̂,

(10)

with ε̃ ∈ (1− ε, 1).
Proof: From (8a) and (8c), we have

x(t+1)−x(t)=−L(ζ(t+1)−ζ(t))=−βLTL∇̂fδ(t)(y(t)).

Combined with the fact ∇2f(x) ≤ l2I , we can obtain

f(x(t+ 1))− f(x(t))
≤ ∇f(x(t))T (x(t+ 1)− x(t))

+
l2
2
(x(t+ 1)− x(t))T (x(t+ 1)− x(t))

≤ −β(L∇f(x(t)))T(L∇̂fδ(t)(y(t)))

+
l2β

2‖L‖2

2

∥∥L∇̂fδ(t)(y(t))∥∥2
= −β(L∇f(x(t))− L∇̂fδ(t)(y(t)))T

(
L∇̂fδ(t)(y(t))

)
−(β − l2β

2‖L‖2

2
)
∥∥L∇̂fδ(t)(y(t))∥∥2

≤ β

2

∥∥L∇f(x(t))− L∇̂fδ(t)(y(t))∥∥2
−

(
β

2
− l2β

2‖L‖2

2

)∥∥L∇̂fδ(t)(y(t))∥∥2, (11)

where the Young’s inequality is utilized in the last inequality.
For the first term in the last inequality of (11), it follows from
Lemma 2 and (8b) that
β

2

∥∥L∇f(x(t))− L∇̂fδ(t)(y(t))∥∥2
=
β

2

∥∥L∇f(x(t))−L∇f(y(t))+L∇f(y(t))−L∇̂fδ(t)(y(t))∥∥2
≤βl22‖L‖2α2(t)‖x(t)−x(t−1)‖2+Nl

2
2β‖L‖2

4
δ2(t), (12)

with δ(t) = maxi=1,··· ,N{δi(t)}. For the second term in the
last inequality of (11), we have

−
∥∥L∇̂fδ(t)(y(t))∥∥2
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= −
∥∥L∇̂fδ(t)(y(t))− L∇f(y(t)) + L∇f(y(t))

−L∇f(x(t)) + L∇f(x(t))
∥∥2

≤
∥∥L∇̂fδ(t)(y(t))− L∇f(y(t))∥∥2 − 1

4
‖L∇f(x(t))‖2

+
1

2
‖L∇f(y(t))− L∇f(x(t))‖2

≤ Nl22‖L‖2

4
δ2(t) +

l22‖L‖2

2
α2(t)‖x(t)− x(t− 1)‖2

−1

4
‖L∇f(x(t))‖2, (13)

where the inequality −‖a+ b+ c‖2 ≤ ‖a‖2 + ‖b‖2/2 −
‖c‖2/4 is used in the first inequality of (13).

Substituting (12) and (13) into (11) gives rise to

f(x(t+1))−f(x(t))
≤ m1α

2(t)‖x(t)−x(t−1)‖2+m2δ
2(t)

−β−l2‖L‖
2β2

8
‖L∇f(x(t))‖2, (14)

where m1 = βl22‖L‖2
(
5− βl2‖L‖2

)
/4 and m2 =

βNl22‖L‖2
(
3− βl2‖L‖2

)
/8. Then, we get the following

inequality using the convex property of f(x):

f(x(t))− f(x∗) ≤ ∇f(x(t))T (x(t)− x∗)

≤ −∇f(x(t))TL(ζ(t)− ζ∗), (15)

where ζ∗ ∈ RN satisfies x∗ = x(0)− Lζ∗. Define a set of
the unit orthogonal basis vectors u1, · · · ,uN ∈ RN , where
u1 satisfies Lu1 = 0 and uT1 u1 = 1. Based on this, there
exist real numbers c1, · · · , cN at step t such that

ζ(t)− ζ∗ =

N∑
j=1

ci(t)ui. (16)

It follows from (15) that

f(x(t))− f(x∗) ≤ −∇f(x(t))TL
N∑
j=2

ci(t)ui

≤ ‖∇f(x(t))TL‖
∥∥∥∥ N∑
j=2

ci(t)ui

∥∥∥∥. (17)

Using the Lagrangian multiplier method, we can know
that ∇f(x∗) = −λ∗1 with λ∗ being the optimal Lagrangian
multiplier, which indicates L∇f(x∗) = 0. Thus, it follows
from the condition ∇2f(x) ≥ l1I that

f(x(t))−f(x∗) ≥ ∇f(x∗)T (x(t)−x∗)+
l1
2
‖x(t)−x∗‖2

≥ −∇f(x∗)TL(ζ(t)−ζ∗)+ l1
2
‖x(t)−x∗‖2

≥ l1
2
‖x(t)−x∗‖2 . (18)

Moreover, from (16) and Lemma 1, we can get

f(x(t))−f(x∗) ≥ l1
2

∥∥∥∥L N∑
j=2

ci(t)ui

∥∥∥∥2

1

2 3

4

6 5

Fig. 1. Communication graph G with 6 generators.

≥ l1
2
λ2(L

TL)

∥∥∥∥ N∑
j=2

ci(t)ui

∥∥∥∥2, (19)

where λ2(LTL) represents the second smallest eigenvalue of
LTL. It can be deduced from (17) and (19) that∥∥∇f(x(t))TL∥∥2 ∥∥∥∥ N∑

j=2

ci(t)ui

∥∥∥∥2
≥ (f(x(t))−f(x∗))

2

≥ l1
2
λ2(L

TL)

∥∥∥∥ N∑
j=2

ci(t)ui

∥∥∥∥2(f(x(t))−f(x∗)),

which indicates

−‖L∇f(x(t))‖2 ≤ − l1
2
λ2(L

TL)(f(x(t))−f(x∗)). (20)

Substituting (20) into (14) produces

f(x(t+ 1))−f(x∗) ≤(1−ε)(f(x(t))−f(x∗))+m2δ
2(t)

+m1α
2(t)‖x(t)−x(t−1)‖2, (21)

where ε = (β−l2‖L‖2β2)l1λ2(L
TL)/16. From Proposi-

tion 1, we can know that xi(t) is bounded, thus let ‖x(t)−
x(t− 1)‖2 ≤M , ∀t > 0. We can further write (21) as

f(x(t+ 1))−f(x∗) ≤(1−ε)(f(x(t))−f(x∗))+m2δ
2(t)

+m1Mα2(t). (22)

It is easy to get

f(x(t+ 1))−f(x∗) ≤ (1−ε)t+1 (f(x(0))−f(x∗))

+

t∑
τ=0

(1− ε)τ
(
m1Mα2(t− τ) +m2δ

2(t− τ)
)
. (23)

With the parameters designed in the theorem, we can obtain
(9) from (23), which completes the proof.

Remark 2: According to Theorem 1, we can know that the
algorithm (8) can fast converge to the exact optimal solution
of the problem (6) with the appropriate parameter design.

IV. SIMULATION EXAMPLES

Numerical examples are presented in this section to verify
the theoretical results.

We validate the effectiveness of the designed algorithm
(8) on the IEEE 30-bus system with 6 generators and 30
buses. The communication interaction topology G satisfying
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TABLE I
COEFFICIENTS SETTING FOR THE ECONOMIC COST

G ai[$/MW 2h] bi[$/MWh] ci[$/MWh] di[$/MW 2h]

1 0.00375 2.0 0 0.00005437
2 0.0175 1.75 0 0.00003421
3 0.0625 1.0 0 0.00004213
4 0.00834 3.25 0 0.00002812
5 0.025 3.0 0 0.00003523
6 0.025 3.0 0 0.00003352

TABLE II
COEFFICIENTS SETTING FOR THE ENVIRONMENTAL POLLUTION

G ãi[ton/MW 2] b̃i[ton/MW ] c̃i[ton/MW ]

1 0.0101 −0.0277 0
2 0.0156 −0.0302 0
3 0.0124 −0.0254 0
4 0.0245 −0.0177 0
5 0.0125 −0.0271 0
6 0.0532 −0.0045 0

Assumption 1 is shown in Fig. 1. The involved coefficients
of the economic cost and the environmental pollution for
generators are listed in Table I and Table II, respectively.
Moreover, set the weight coefficients η1 = 0.7, η2 = 0.3
and the total demand D = 300MW . The initial states of
generators are set as x1(0) = 80MW , x2(0) = 120MW ,
x3(0) = 5MW , x4(0) = 45MW , x5(0) = 35MW , and
x6(0) = 15MW , which satisfy

∑6
i=1 xi(0) = D. The

exploration parameters are uniformly set as δi(t) = 0.8t for
convenience, and let the step sizes α(t) = 0.5680.6t and
β = 0.05. To demonstrate the validity and flexibility of the
proposed algorithm, some simulations over the undirected
graph depicted in Fig. 1 will be performed in Example 1
and Example 2, respectively.

Example 1 (Convergence verification): For the distribu-
tion power grid, there is the line loss during the actual
transmission process. With the aforementioned parameter
settings, the simulation results of the algorithm (8) are
presented in Figs. 2–4. Specifically, it can be seen from Fig. 2
that the supply power of each generator can converge to the
optimal value, respectively, i.e., x∗1 = 149.5952MW , x∗2 =
55.4165MW , x∗3 = 25.2910MW , x∗4 = 31.2435MW ,
x∗5 = 23.5757MW , and x∗6 = 14.8782MW . The combined
cost also reaches the optimum value f∗ = 686.5190$ as
shown in Fig. 3. It is noted that the total power supply of
the generators is always equal to the total demand D during
the algorithm operation as indicated in Fig. 4.

Example 2 (Plug-and-play capability): To further present
the flexibility of the designed algorithm, we consider the
plug and play of generator 6 in this example. Assume that
generator 6 loses connection at iteration step t = 150. Let
anyone of its neighbors takes on its current supply. Then
generator 6 returns to the power system with x6(0) = 0MW
at t = 300. The simulation results are displayed in Figs. 5
and 6, respectively. As can be seen from Fig. 5, the remaining
five generators begin to seek the new optimal solution at
t = 150. After generator 6 returns to the system at t = 300,
all generators can anew reach the previous optimal solution
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Fig. 2. The evolution of the power supplies x1, x2, · · · , x6 under the
algorithm (8) in Example 1.
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Fig. 3. The combined cost evolution f under the algorithm (8) in
Example 1.
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Fig. 4. The evolution of the total power supply
∑6

i=1 xi under the
algorithm (8) in Example 1.

quickly. Accordingly, the cost reaches the optimal value after
the system experiences two fluctuations at t = 150 and t =
300 as shown in Fig. 6.
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Fig. 5. The evolution of the power supplies x1, x2, · · · , x6 under the
algorithm (8) in Example 2.
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Fig. 6. The cost evolution under the algorithm (8) in Example 2.

V. CONCLUSION

In this paper, a multi-objective DRA problem has been
constructed, which takes into account the economic cost
and the environmental pollution simultaneously. For the
established optimization problem, a zeroth-order accelerated
distributed optimization algorithm has been proposed. For the
algorithm design, the momentum method has been employed
to accelerate the convergence speed through estimating a
more accurate descent direction. Moreover, the zeroth-order
scheme has been utilized to address the unknown gradient
information. It has been shown that the proposed algorithm
can reach the linear-speedup convergence rate and can always
satisfy the equality constraint. Future work will be to design
an accelerated DRA algorithm over directed graphs subject
to multiple constraints.
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