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Abstract— In this paper, a constrained regulation problem
for networked control systems, whose plants are described by
polytopic linear descriptions with a partial state availability, is
considered when the communication medium is unreliable. To
address the issue, an ad-hoc state-estimate control architecture
has been deployed via a robust model predictive control strategy
that is resilient in achieving regulation goals. Additionally,
the proposed scheme is designed to prevent communication
disconnections in situations where reaching the origin goal is
not viable. A final solid numerical example puts in light the
effectiveness and the main benefits of the proposed solution.

I. INTRODUCTION

In the last years, Cyber-Physical Systems (CPSs) have
opened the doors to a myriad of contributions, see e.g., [1].
By now, it is widely accepted that although CPSs play an
important role in many practical configurations ranging from
manufacturing plants to intelligent transportation systems,
see [2] for a comprehensive review, they are quite vulnerable
to attacks and interference.

According to this premise, the class of Model Predictive
Control (MPC) schemes seems the more adequate approach
to formally address resilient issues when constrained CPSs
are under malicious intrusions see, e. g., [3]- [5]. Along
similar lines are the contributions [6]- [10] where denial-
of-service, replay and covert attacks are considered.
Here a novel observer-based resilient MPC control strategy
is conceived with a twofold aim: improve the overall control
performance by significantly increasing the domain of at-
traction under which the scheme is capable to contrast long
duration false data injection (FDI) occurrences; avoid the use
of software rejuvenation procedures [5].
First of all, it is important to underline that the detection
phase is different from previous similar approaches. In fact,
the possible FDI occurrence is checked both on the plant
and control side: the anomaly of the transmitted command
input is verified on the plant side, while the corruption of
the state measurement on the controller one. Although this
prescribes to store a little bit more of data on an actuator
buffer, it has the non-trivial advantage to avoid the design
of twin model that, by construction, it could reduce the
level of data accuracy during the packet transmission along
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the sensor-to-controller and controller-to-actuator channels.
Hence under the initial assumption that the plant is attack-
free, the system is regulated by resorting to a control strategy,
hereafter denotes as Healthy-MPC, designed according to
the prescriptions of [16] with a single time instant delay. In
order to make viable this approach, the domain of attraction
of the Healthy-MPC must be made safe, this is achieved
by proceeding along two parallel ways: 1) define a resilient
control strategy Resilient-MPC whose domain of attraction
is a subset of the Healthy-MPC one and where a MPC
sequence of length N is ad-hoc designed to drive the system
within a robust positively invariant region centered at the
origin; 2) off-line individuate a set of so-called parking spots
where the plant can lie until the attack ends. This prescribes
to determine a set of controllers, named Maintenance-MPC,
centered at the parking spots such that the resulting domain
of attractions plus the Resilient-MPC region completely
cover the Healthy-MPC one. Notice that such an approach
is in charge to support real time updates by keeping alive
the system thanks the action of another controller until the
normal operations are restarted [17]. Broadly speaking, in
the present approach and unlike from the standard litera-
ture meaning, the maintenance operations are in charge to
allow the plant of reducing as much as possible the failure
probability: this is done by off-line identifying a set of safe
and admissible dynamical behaviors that the regulated plant
can ”track”, even in a stand-by mode, until the operating
conditions go back to being favorable for satisfying the
prescribed goal.

NOTATION

Consider the discrete time linear model
x(t+ 1) = Ax(t) +Bu u(t) +Bd d(t) (1)

where t ∈ ZZ+ := {0, 1, ...}, x(t) ∈ Rnx , u(t) ∈ Rnu ,
d(t) ∈ Rnd and[

A Bu Bd

]
∈ co

({[
Ai Bu,i Bd,i

]}np

i=1

)
(2)

with co(·) the convex-hull operator, the one-step-ahead map
is then a set of states which, for a given triplet {x, u, d},
x ∈ Rnx , u ∈ Rnu , d ∈ Rnd , is characterized as follows
X ([A, Bu, Bd] , {x, u, d}) :={
ξ ∈ Rnx | ξ =

∑np

i=1 αiAi x+
∑np

i=1 αiBu,i u+
+
∑np

i=1 αiBd,i d, αi ≥ 0, i = 1, . . . , np

∑np

i=1 αi = 1
}

the k-th steps ahead map

X k
(
[A, Bu, Bd] ,

{
x, {u(i)}k−1

i=0 , {d(i)}k−1
i=0

})
, k ≥ 1
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is recursively defined as

X 1 ([A, Bu, Bd] , {x, u(0), d(0)}) :=
X ([A, Bu, Bd] , {x, u(0), d(0)})

X k
(
[A, Bu, Bd] ,

{
x, {u(i)}k−1

i=0 , {d(i)}k−1
i=0

})
:=

X
(
[A, Bu, Bd] ,

{
X k−1 ([A, Bu, Bd]{

x, {u(i)}k−2
i=0 , {d(i)}k−2

i=0

})
, u(k − 1), d(k − 1)

})
,

k > 1

Let v(t + k|t) ≜ vk(t) = v̂k be the k−steps state ahead
prediction of a generic system variable v from t onward.
Given a sequence of vector W = {w1, . . . , wl}, wi ∈ IRnw ,
dim(W ) denotes its length.
The vector 0n denote the column vector of n zero entries,
while In is the n× n identity matrix.

II. PROBLEM FORMULATION

Consider the class of systems described by the following
polytopic state space models{

x(t+ 1) = Ax(t) +Bu(t) + d(t)
ys(t) = C x(t) + v(t)

(3)

where x(t) ∈ IRnx denotes the state, u(t) ∈ IRnu the
command input, d(t) ∈ IRnd an exogenous disturbance,
ys(t) ∈ IRny the measured output and v(t) ∈ IRnv the sensor
error measurement,[

A B
]
∈ co

({[
Ai Bi

]}np

i=1

)
(4)

and the measurement matrix C ∈ Rny×nu is known. More-
over, the following state and input constraints are prescribed:

u(t) ∈ U := {u ∈ IRnu : uTu ≤ u2
max},

x(t) ∈ X := {x ∈ IRnx : xTx ≤ x2
max}, ∀t ≥ 0,

(5)

with U and X compact subsets of IRnu and IRnx , respec-
tively, and 0nu

∈ U , 0nx
∈ X . Moreover the exogenous

disturbance and the error measurement are persistent but
bounded signals d(t) ∈ D := {d ∈ IRnx |dT d ≤ d̄} ⊂ IRnx

and v(t) ∈ V := {v ∈ IRny |vT v ≤ v̄} ⊂ IRny , respectively.
Physical plant operations are supported by a communication
network where sensor measurements and command data are
transmitted and, since the communication network may be
unreliable, the data exchanged between the controller and the
plant may be possibly corrupted by malicious cyber-attacks
so that u(t) ̸= ua(t) and y(t) ̸= ys(t) for some t ∈ Z. i.e.
u(t) ∈ IRnu and y(t) ∈ IRny may denote corrupted control
signals and output measurements, respectively.
Then, the problem to solve is stated as follows:
Output resilient control for Cyber-Physical Systems
(ORC-CPS) - Given the plant (3), subject to the constraints
(5), design, under the occurrence of FDI attacks on both
communication channels:

• a detection framework capable to reveal unfavorable
and/or malicious events;

• a feedback control law on the basis of the available
measurements u(t) = g({ys(t), ys(t− 1), . . . }) such
that, despite any admissible disturbance/noise realiza-

tion, the regulated augmented plant trajectory is mini-
mum variance and uniformly ultimate bounded [13].

III. PROPOSED SOLUTION OUTLINE

The state estimation question is here approached by de-
convolution filtering arguments [14] where the state observer
is

xF (t+ 1) = AF xF (t) +BFy y(t) +BFu u(t) (6)

with xF (t) ∈ Rnx denoting the state plant estimate. As
consequence, the estimation error

e(t) ≜ x(t)− xF (t) (7)

characterizes the discrepancy between the state and its esti-
mate and the initial value, e(0), is assumed to belong to the
following ellipsoidal set

H ≜ {e ∈ Rnx | eT ΨH e ≤ 1} (8)

where ΨH = ΨT
H > 0, ΨH ∈ Rnx×nx denotes the initial

confidence shaping matrix for the state estimation error.
Therefore, from now on the closed-loop system is described
in terms of the augmented state sT (t) ≜ [xT

F (t) eT (t)]T ∈
R2nx . The second premise concerns with the system live-
ness when unpredictable external intrusions prevent and/or
deteriorate the normal system operations. To this end, the
idea consists in introducing two operating settings (OP):
Normal OP : the zero disturbance free nominal equilibrium
triplet (xe

0, ue
0, ys,e0 ) ≡

(
0nx

, 0nu
, 0ny

)
which represents

a satisfactory time behavior; Maintenance OP : a finite
collection of i = 1, 2, . . . , L > 0 equilibrium points
(i.e. parking spots) belonging to the plant operating region
(xe

i , ue
i , ys,ei ) ̸=

(
0nx

, 0nu
, 0ny

)
, i.e. safe although not

satisfactory plant configuration.
The reasons behind this characterization can be better under-
stood according to the following reasoning. Three different
scenarios are considered: 1) healthy operations: in absence of
unfavorable events one has the domain of attraction (DoA) T
associated to the stabilizing control law gT (x); 2) resilient
operations: the region Ω, associated to gΩ(x), collects all
the plant states for which there exists a sequence of ad-
missible commands capable to accomplish the prescribed
task despite FDI occurrences; 3) maintenance operations: the
pairs (Θi, gΘi

(x)), i = 1, . . . , L, designed with respect to
the equilibria xe

i , i = 1, . . . , L, for which during malicious
intrusions there exists a sequence of admissible commands
capable to drive the regulated plant trajectory towards a safe
neighbor of xe

i . It is important to underline that the DoAs
Θi are overlapped because they are computed under the
fulfillment of the following set-inclusion

T \ Ω ⊆
L⋃

i=1

Θi (9)

As the FDI occurrence is concerned, it is assumed that a-
priori information are not available and any delivered data
along the communication medium could be affected. Then,
the proposed control architecture is schematically reported
in Fig. 1. There, at each time instant the deconvolution filter
(6) receives the state measurement y(t) exploited together
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with the computed control action ū(t) for state estimation
purposes, i.e., xF (t). The Controller is designed by resorting
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Fig. 1. An estimator based maintenance devoted control architecture against
FDI attacks

to well-established MPC ideas here properly adapted to the
state estimate case. According to the above discussion, three
observer based control units are considered: Healthy-MPC
used in attack-free scenarios and in charge to regulate the
plant towards the Normal OP; Resilient-MPC usable when
the attack is underway and the state estimate belongs to
its DoA, i.e., xF (t) ∈ Ω; by construction it asymptotically
drives the regulated state trajectory towards the Normal OP;
Maintenance-MPC usable when the plant is recognized to
be under attack and the state estimation is outside Ω, i.e.
xF (t) ∈ Θi. It drives the state trajectory towards a neighbor
of the parking spot xe

i (Maintenance OP) and there it is
confined until a recovery phase takes place.
The Controller Buffer is introduced to store the last attack-
free state estimate xF,−1 to be used, whenever necessary,
to update the controllers Resilient-MPC and Maintenance-
MPC and to be shared with the plant side for detection
purposes. Since the controller output ū(t) strictly depends
on the attack scenario, it can be a single action uH(t) or a
sequence of commands (uMPC

R (t), uMPC
Mi

(t)) that are timely
and properly exploited by the Deconvolutor.

On the plant side, it is assumed that an Actuator Buffer
takes trace of the following data: 1) the command u(t− 1)
related to the attack-free scenario that is feasible at the
current time instant t; 2) the healthy domain of attraction
T and its state-dependent control law gT (x); 3) a sequence
of admissible commands uMPC

stored selected within the family{
uMPC
R (t) ∪

{
uMPC
Mi

(t)
}L

i=1

}
; 4) the state-dependent con-

trol laws gΩ(x) and gΘi(x) associated to the regions Ω and
Θi, i = 1, . . . , L.
Moreover, a Smart Actuator is in charge to recognize the
structure of the received packet (xF (t), u(t),u

MPC
current(t))

and to perform adequate actions:
• u(t) is a single command: the Actuator Buffer is

activated and, by using xF and the healthy DoA (T ),
anomalous behaviors are investigated. If an attack is

underway, ufeas(t) ← u(t − 1) otherwise ufeas(t) ←
u(t) and u(t− 1)← u(t) and uMPC

stored ← uMPC
current(t);

• u(t) is the sequence uMPC
R (t) : the plant is under attack

and xF,−1 ∈ Ω. Then, ufeas(t) ← uMPC
stored,k is k − th

move;
• u(t) is the sequence uMPC

Mi (t) : the plant is under attack
and xF,−1 ∈ Θi. Then, ufeas(t)← uMPC

stored,k is k − th
move.

Once the attack has been revealed, the plant proceeds in an
open-loop fashion according to the sequence uMPC

stored towards
0x (resp. xe

i ) the state trajectory can be indefinitely confined
within a neighbor of 0x (resp. xe

i ) under the action of
gΩ(0x) (gΘi(xe

i )). Notice that the resilient controller leads
to the satisfaction of the ORC-CPS, while uMPC

Mi (t) drives
the plant to the parking spot xe

i where it remains in a
Maintenance OP mode thanks to gΘi(xe

i ) until a recovery
phase is completed. Then, a switching to the Healthy-MPC
comes to play and the above procedure is iterated.

Finally, it is important to underline that uMPC
stored is updated

whenever an attack is detected and the Resilient-MPC
(xF,−1 ∈ Ω)) or a Maintenance-MPC (xF,−1 /∈ Ω ∧
xF,−1 ∈ Θi) scheme should be applied. Since the controller-
to-actuator link is always unreliable, it is required that the
following operating assumption must hold.

Assumption 1 After any anomaly detection, a data protec-
tion mechanism along the controller-to-actuator channel is
adopted so that, for at least a time instant, inferences on the
packet integrity are hampered. 2

IV. THE RESILIENT AND MAINTENANCE RECEDING
HORIZON CONTROL ARCHITECTURE

In the sequel, the set-theoretic receding horizon control
strategy [12] is customized to the architecture of Fig. 1.

A. Controller

1) Healthy-MPC: The Healthy-MPC unit is designed un-
der the following reasoning. Since this controller acts during
the on-line normal operations, the packet (xF,−1, ū) could
be affected during the transmission along the controller-
to-actuator channel and the anomaly detected directly on
the plant side (via the Actuator Detector), it must be
ensured that an admissible command is always available to
be applied before the switching to the Resilient-MPC or
Maintenance-MPC units is viable. Therefore, the idea is to
design Healthy-MPC such any its control action is feasible
for two consecutive time instant. To this end, the arguments
of [16] are customized to the proposed framework.
First, an admissible terminal region is derived by considering
the following state-feedback control law

uH(t) = KH xF (t− 1) (10)

which satisfies the prescribed constraints (5) and ensures that
the regulated state trajectory

s(t+ 1) ∈X

(
[Φ, Υ, Γ] ,

{
s(t), uH(t),

[
d(t)
v(t)

]})
(11)
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where

Φ :=

[
AF +BFy

C BFy
C

A−AF −BFy
C A−BFy

C

]
, Υ :=

[
BFu

B −BFu

]
,

Γ :=

[
0 BFy

I −BFy

]
enjoys minimum variance irrespective of the delay occur-
rence τ(t) ≤ 1 and ∀α ∈ Σ, ∀n(t) ∈ N , ∀d(t) ∈ D.
By resorting to standard technicalities in time-delay systems,
[15], the following description is obtained from (11)

s(t+ 1) = h(t) + s(t)
0 = −h(t) + Φ s(t)− s(t) + ΥKH xF (t− 1)+

Γ

[
d(t)
v(t)

]
(12)

where h(t) := s(t + 1) − s(t). By defining the augmented
state s̄(t) =

[
sT (t) hT (t)

]T ∈ R4nx , it can be proven that
the ellipsoidal set

E ≜ ProjxF
{s̄ ∈ IR4nx | s̄TΨs̄s̄ ≤ 1}

is a robust positively invariant region [13] for the closed-
loop state evolutions (11) complying with state and input
constraints (5), i.e E ⊂ X and KHE ⊂ U irrespective of the
one-time delay occurrence, estimation error e(t) ∈ H and
any noise/disturbance realizations n(t) ∈ V and d(t) ∈ D.
Hence, the sequence the ellipsoidal approximations of the
one-step state ahead controllable sets for the DT-LDI (3),
hereafter denoted as {Ei} , are computed by resorting to the
arguments developed in [16].
Finally, given a generic state estimate xF the Healthy-MPC
module updates the control move uH(t) according to the
following optimization problem

uH(t) := argminFj(t)(xF , uH) s.t. (13)

ProjxF
X ([Φ, Υ] , {s, uH}) ∈ Ei(t)−1, α ∈ Σ (14)

where Fj(t)(xF , uH) ∈ F := {Fh(xF , uH)}rh=1 is a set of
penalizing functions that are randomly chosen at each time
instant by the real-valued function j(t) : ZZ+ → {1, . . . , r}.

2) Resilient-MPC: The Resilient-MPC unit is designed
under the following prescriptions. Whenever an attack has
been detected and the current state estimate xF ∈ Ω, the con-
trol mode switching Healthy-MPC → Resilient-MPC
takes place, the resulting regulated state trajectory is driven
in a finite number of steps, say N, to a neighborhood of
0nx

and there indefinitely confined. To comply with these
requirements, the Resilient-MPC is hereafter designed as
a MPC controller of length N according to the following
requirements: 1) the domain of attraction of Resilient-
MPC is strictly contained in that of the Healthy-MPC; 2)
uMPC
R (t) ≜ {uH(t− 1), ûMPC

R,1 . . . , ûMPC
R,N−1}.

The point 2) is mandatory to harmonize the resilience action
with the healthy mode when the attack is detected by
the Actuator Buffer and the previous computed command
uH(t− 1) has been applied.
Let N ≤ N̄R, with N̄R the upper bound on the control
horizon length, and xF ∈ ΞN

i be given, then the following

convex optimization problem is stated:

min
{ûMPC

R,k }
J(xF ,u

MPC
R ) (15)

x̂F, k+1 ∈ ProjxF
X

(
[Φ, Υ, Γ] ,

{
sk, û

MPC
R,k ,

[
dTk , v

T
k

]})
∀dk ∈ D, vk ∈ V, ek ∈ H

(16)
x̂F,0 = AFxF,−1 +BFy

y(t− 1) +BFu
uH(t− 1) (17)

ûMPC
R,k ∈ U , k = 1, . . . , N − 1; (18)

x̂F,k ∈ ΞN−k, k = 2, . . . , N − 1; (19)

x̂F,N ∈ Ξ0; (20)

where

J(xF ,u
MPC
R )≜ min

uMPC
R,k

N−1∑
k=0

[
∥x̂F,k∥2RxF

+∥uMPC
R,k ∥2Ru

]
(21)

with RxF
= RT

xF
≥ 0 and Ru = RT

u > 0 state and input
shaping matrices, respectively.

3) Maintenance-MPC: Here, the aim is to design a bank
of Maintenance-MPC units such the associated domains of
attraction Θi, i = 1, . . . , L, comply with the requirement (9).
This is instrumental to take care of attack scenarios when
xF,−1 /∈ Ω and xF,−1 ∈ Θi, and the control mode switching
is mandatory Healthy-MPC → Maintainance-MPC. In
such a case, the resulting regulated state trajectory is driven
in a finite number of steps to a neighborhood of xe

i and there
is confined until a recovery phase is completed. The idea
is to determine a sequence of MPC controllers uMPC

Mi
(t) ≜

{uH(t−1), . . . , ûMPC
Mi,N−1}, i = 1, . . . , L, such the associated

domains of attraction Θi, i = 1, . . . , L, comply with the
requirement (9). Similar arguments of the Resilient-MPC
section are exploited with (xe

i , u
e
i ) in place of (0x, 0u).

Let Θi
0, i = 1, . . . , L, be the RPI region centered at xe

i and
KMi the associated stabilizing state estimate feedback laws,
then the sequence of time-delay free one-step state ahead
controllable sets is given by the following recursions:

Θi
j := ProjxF

{
s : ∃u ∈ U | ProjxF

X

(
[Φ, Υ, Γ] ,{

s, u,
[
dT , vT

]T}) ∈ Θj−1
i , xF ∈ X

∀e ∈ H,∀d ∈ D,∀v ∈ V

}
, i = 1, . . . , L

As outlined in the previous section, the computation of the
sequence of moves uMPC

Mi
prescribes to take care of the k−

step ahead state predictions

ŝk∈X k

(
[Φ,Υ,Γ] ,

{̂
s0,

{
ûMPC
Mi,j

}k

j=0
,
{[
dTj , v

T
j

]T}k

j=0

})
k = 0, . . . , N − 1

Then, in order to ensure the recursive feasibility property,
the family {Θi

j} must redefined by taking into account the
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disturbance component

X k

(
[Φ,Υ,Γ] ,

{
02nx

, {0nu
}kj=0 ,

{[
dTj , v

T
j

]T}k

j=0

})
Therefore, one has:

Πi
0 = Θ0

i

Πi
j = ProjxF

{
s ∈ IR2nx : ∃u∣∣∣∣X (

[Φ,Υ,Γ] ,

{
s, u,

[
d
v

]})
⊆ Θ̃i

j−1

}
where

Θ̃i
j := Θj

i ∼ ProjxF

{
s ∈ IR2nx : X N−j−1

(
[Φ, Υ, Γ] ,([

xe
i

0nx

]
, {ue

i}N−j−1
k=0 ,

{[
dk
vk

]}N−j−1

k=0

))
⊆Θ̃i

N−j−1

}
,

j = 1, . . . , N − 1

Then by assuming that xF ∈ Πi
N the same convex optimiza-

tion (15)-(20), with J(xF −xe
i , ũ−ue

i ) in place of (21) and
{Πi

j} in place of {Ξj}, comes out.

B. Detector units
As shown in Fig. 1, this task is split in two phases and

the Actuator Buffer stores the sequence of healthy one-step
state ahead controllable sets in the extended space (χ̄, uH),

i.e., {T ext
i }Ni=1, i.e., the domain of attraction T :=

N⋃
i=1

T ext
i .

Actuator Detector -
On the plant side, it is checked if the command input

ū(t) is altered by the action of the malicious agent via a
FDI ua(t). This can be done by resorting to set-membership
arguments by defining the prediction set:

U+ (xF (t− 1), u(t− 1)) :={
[xT

F uT ] ∈ Rnx+nu | [xT
F uT ]T ∈ ProjxF ,uX ([Φ, Υ, Γ] ,{[

xF (t− 1)T , eT
]T

, u(t− 1),
[
dT , vT

]})
,

∀d ∈ D, v ∈ V, e ∈ H
}
⊂ ProjxF ,uT ext

i−1

Then, the following detection logic comes out

D+
U (xF (t), u(t)) :=

 attack, if [xF (t)
T , u(t)T ]T /∈

U+ (xF (t−1), u(t−1))
no attack, otherwise

Controller Detector -
The validity of the received output measurement y(t)

is checked from the application of the feasible command
uH,−1(t) and the estimate based attack-free measurement
xF,−1 stored in the Controller Buffer. Specifically, the
prediction set Z+ is:

Z+ (xF,−1, uH,−1) :=
{
x+
F ∈Rnx|x+

F ∈ProjxF
X ([Φ, Υ, Γ] ,{[

xT
F,−1, e

T
]T
,uH,−1,

[
dT, vT

]})
,∀d∈D, v∈V, e∈H

}
⊂Ei−1

where xF,−1 ∈ Ei and uH,−1 are the stored estimate infor-
mation and feasible command at the previous time instant,

respectively. Therefore, the detection logics is:

D+
X(xF (t)) :=

{
attack, if xF (t) /∈ Z+ (xF,−1, uH,−1)
no attack, otherwise

C. Smart Actuator

First, the actions of this unit can be summarized as
follows: 1) identify the nature of the received signal u(t);
2) store updated data; 3) apply an admissible input ufeas(t)
to the plant P. As the first point is concerned, this device
is instructed to recognize the class of the received packed
according to the following logic:

ufeas(t) =


uH(t), If dim(u(t)) = 1
uMPC
(stored)k

, If dim(u(t)) > 1

u(t− 1), If D+
U (xF (t), u(t)) = attack

In order to make easy the packet classification, the controller
side sends the sequence ū(t) built as reported in Table I.

TABLE I
SEQUENCE DIMENSION versus DATA STRUCTURE

dim(ū(t)) ū(t)

1 uH(t)
N uMPC

R (t)

N + 1
{
uMPC
M1 (t), 0nu

}
...

...

N + L

uML(t),

L︷ ︸︸ ︷
0nu , . . . , 0nu


The following reasoning applies. Once the packet u(t)
is received, the Smart Actuator checks its dimension:
if dim(ū(t)), then the Actuator detector is activated: if
uH(t) is applied, then the stored command is updated, i.e.,
u(t − 1) ← uH(t), otherwise the packet

{
ys(t), 0ny

}
is

transmitted to make aware the remote side that an attack is
underway on the controller-to-actuator channel. Conversely
if dim, (u(t)) = N, an attack has been detected on the
controller side and the sequence of resilient moves uMPC

R (t)
has been safely sent (in virtue of Assumption 1): it is stored
uMPC
stored ← uMPC

R (t) and completely driving the regulated
state trajectory inside Ξ0 where the state estimate feedback
law gΩ(0x) = KHxF (t) can be indefinitely applied. The
same reasoning applies to the maintenance scenarios with
Πi

0 in place of Ξ0 and gi(x
e
i ) = KMi(xF (t)− xe

i ) + ue
i .

D. Smart Deconvolutor

The primary aim of this unit is to provide a state estimate
xF (t) by exploiting the input and output data, ū(t) and
y(t), respectively. Unfortunately, communictaion links are
unreliable and, therefore, whenever an attack is detected by
the Actuator Detector this information must be available
on the controller side for resilient/maintenance operations.
Accordingly, the Smart Deconvolutor recognizes the at-
tack occurrence on the plant side by simply analyzing the
dimension of the received data y(t), i.e. dim(y(t)) = 2.
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Accordingly, the Controller Detector is skipped and one
the following actions takes place:

If xF,−1 ∈
N⋃
j=1

Ξj , then compute uMPC
R (t)

If xF,−1 ∈
N⋃
j=1

Πi
i, then compute uMPC

Mi (t)

(22)

V. NUMERICAL EXAMPLE

Consider a differential drive-robot described by a noisy
driven nonlinear continuous-time model fully reported in
[18], where px(t), py(t) denote the lateral/longitudinal posi-
tions and θ(t) the cart attitude, while ωr(t), ωl(t) account for
the right and left angular velocities (control signals). More-
over, the lateral and longitudinal positions satisfy the follow-
ing constraints: |ωr(t)| ≤ 2[rad/sec], |ωl(t)| ≤ 2[rad/sec].
The measured output consists in the lateral and longitudinal
positions; the process noise and the measurement errors are
gaussian unitary variance white stochastic processes. The
plant dynamics is embedded within a 4-vertices polytopic
linear differential inclusion and discretized with a ZOH
scheme by choosing the sampling time equal to Ts = 0.1 sec.
The following operating scenario is hypothesized: 1) Normal
OP : Zero lateral and longitudinal positions (the attitude is
zero according to a modulo 2π rule); 2) Maintenance OP
: Parking spot [−1.7 − 2.1] near a superellptic trajectory
centered around the Normal OP. The control horizon length
has been selected as N = 40. The numerical simulations
have been performed over a 600 sec time horizon, the initial
state estimate of the cart is [1, 0.3, 0] (the real initial state is
[4, 4, 0] and three distinct diagnostic scenarios are performed
(for the sake of space depicted on the same graph): Healthy -
absence of attacks; Maintenance - attack along the actuator
channel over the time window [50, 150] sec .; Resilient
- attack along the sensor measurement channel over the
time window [250, 350] sec. By comparing the dynamical
behaviors of the three operating scenarios and, as expected,
the maintenance mode leads to the worst performance, see
the red dotted line in Fig. 2. This is clearly due to the
fact that the vehicle moves towards the ”parking spot”
xe = [−1.7 − 2.1]T . Conversely, within the resilient mode,
the vehicle keeps the zero target (orange dotted line) at a
price of more conservative performance with respect to the
completely healthy behavior (continuous blue line).

VI. CONCLUSIONS

In this paper, a control architecture based on the design of
a state estimate model predictive control scheme has been
presented for cyber-physical systems subject to malicious
external actions on the communication links. One of the most
relevant features of the proposed solution relies on its capa-
bility to keep the plant ”alive” regardless of the occurrence
of severe attacks and without resorting to communication
refresh procedures.
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[4] G. Franzè, W. Lucia, and F. Tedesco, “Resilient model predictive
control for constrained cyber-physical systems subject to severe attacks
on the communication channels,” IEEE Transactions on Automatic
Control, Vol. 67, No. 4, pp. 1822-1836, 2022.

[5] R. Romagnoli, B. H. Krogh, D. de Niz,A. D. Hristozov and B. Si-
nopoli, “Software Rejuvenation for Safe Operation of Cyber–Physical
Systems in the Presence of Run-Time Cyberattacks,” IEEE Trans. on
Contr. Sys. Tech., Vol. 31, No.4, pp.1565-1580, 2023.

[6] Y.-C. Sun and G.-H. Yang, “Robust event-triggered model predictive
control for cyber-physical systems under denial-of-service attacks,”
Int. J. Rob. and Nonl. Contr., Vol. 29, No.14, pp. 4797-4811, 2019.
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