
Supervisor Fortification Against Covert Actuator Attacks*

Ruochen Tai1, Liyong Lin1 and Rong Su1

Abstract— This work considers the supervisor fortification
problem against covert actuator attacks. A supervisor S′ is said
to fortify the supervisor S, the latter of which is non-resilient
against covert actuator attacks, if S′ satisfies two conditions:
1) any covert actuator attack cannot cause damage infliction
against S′, and 2) S′ is control equivalent to S. The key result
of this work is that we show the problem of determining
the existence of a fortified supervisor to defend against any
covert actuator attack, an “exist-for all” decidability question,
is decidable. To show the decidability result, we provide a
complete and sound procedure that ensures to synthesize a
fortified supervisor as long as there exists one.

I. INTRODUCTION

In the event-driven automated systems, a large amount of
works have been done to address the supervisor synthesis
problem [1]. However, the network has become an absolutely
necessary ingredient nowadays, which might be compro-
mised and used by malicious attacks to inflict damage. In
such a cyber-threat environment, the supervisor synthesized
without considering the effects of adversaries might not be
able to ensure the safe operation anymore. It is then of
interest to synthesize a new resilient supervisor that not only
can defend against attacks, but also preserve the original
closed-loop system behavior, i.e., enforce control equiva-
lence. The requirement of control equivalence is motivated
by the observation that we are often asked to design a
supervisor to achieve certain performance. In the following
text, we call such a resilient and control equivalent supervisor
a fortified supervisor. This work centers on the synthesis of
fortified supervisors to prevent damage infliction under smart
actuator attacks that remain covert without being discovered
by particular monitoring mechanisms. Indeed, we shall put
efforts on the decidability of whether there exists such a
fortified supervisor.

In the discrete-event systems community [2], existing
works have proposed many supervisor design strategies
against attacks. The strategies of synthesizing supervisors
to satisfy a given requirement against a given attack model
have been studied in [3]-[13], which are different from
our problem because a fortified supervisor is required to
defend against all possible covert attacks while [3]-[13] only
consider a given attack model, e.g., the worst-case attack
[3]. Note that the the worst-case attack does not care about
exposing itself while covert attacks target to cause damage
infliction without being detected. Such a difference makes
our studied problem more tricky because an infinite number
of covert attacks generally exist for a supervisor, making the

*The research of the project was supported by the Agency for Sci-
ence, Technology and Research (A*STAR) under its IAF-ICP Programme
ICP1900093 and the Schaeffler Hub for Advanced Research at NTU.

1The authors are affliated with School of Electrical and
Electronic Engineering, Nanyang Technological University, Singapore.
ruochen001@e.ntu.edu.sg; llin5@e.ntu.edu.sg;
rsu@ntu.edu.sg.

approaches developed in [3]-[13] ineffective. In [14]-[21],
diagnostic methods are designed for the worst-case attacks
to disable all the controllable but not vulnerable events
when unsafe strings are identified. By comparison, a fortified
supervisor does not use a diagnostic tool. In addition, a forti-
fied supervisor defends against covert attacks instead of the
worst-case attacks; consequently, disabling all controllable
but not vulnerable events is no longer compulsory in our
work. The recent work [22] introduces a new strategy of
selecting the active supervisor for a given time to defend
against sensor attacks. It is clear that the supervisor fortifi-
cation problem differs from such a supervisor coordination
problem.

The works of [23]-[26] are more closely related to this
work in terms of the setup. [23]-[25] synthesize resilient
supervisors against covert sensor(-actuator) attacks. [26] also
studies supervisor fortification against covert actuator at-
tacks. However, none of [23]-[25] has considered the control
equivalence. In addition, [23] and [24] only consider sensor
attacks that must have the same observations as the supervi-
sor, while our work considers actuator attacks that may have
observations different from those of the supervisor. In terms
of the technical methods, [23] proposed a heuristic approach,
and [25], [26] proposed constraint-based approaches, but all
of them are incomplete and cannot solve the decidability
issue. [24] solves the decidability issue. However, due to the
above-mentioned differences, the technique of [24] fails to
solve our studied decidability problem.

In this work, we show the problem of whether there
exists a fortified supervisor against covert actuator attacks is
decidable, which to our best knowledge has not been solved
before. We remark that this is a non-trivial “exist-for all”
decision problem due to the following two challenges. Firstly,
an infinite number of control equivalent supervisors generally
exist. Thus, the approach proposed in [26] of exhaustively
verifying the resilience of each control equivalent supervisor
is infeasible. Secondly, there can be an infinite number of
covert actuator attacks for any supervisor. Consequently, it
is infeasible to adopt the approaches proposed in [3]-[5] of
reducing this problem to a standard supervisory control prob-
lem by treating the composition of the plant and the given
attack model as a new plant and the resilient supervisor to
be synthesized as a new supervisor. To solve the decidability
issue, we first group all the control equivalent supervisors in
a finite-state structure, called bipartite behavior-preserving
structure, which is a structure of independent interest that
is related to supervisor reduction [27]. We remark that All
Inclusive Controller (AIC) structure [28], [29] is also a
bipartite structure used for supervisor synthesis. However,
the behavior-preserving structure constructed in this paper
needs to ensure control equivalence, which is not realized in
AIC. This difference naturally makes the behavior-preserving
structure different from AIC. Then, we perform the chaining

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 7911

of three delicately constructed supervisor synthesis proce-
dures to compute a finite-state structure, called bipartite for-
tified command-nondeterministic supervisor, which encodes
all the fortified supervisors. Note that neither the AIC in [28],
[29] nor the AIC for Opacity in [30] encodes supervisors
satisfying the resilience against covert actuator attacks. We
remark that the opacity studied in [30] is defined under the
passive intruder that does not influence the dynamics of the
closed-loop system. In contrast, the resilience considered in
our work is defined under the active actuator attack that could
influence the dynamics of the closed-loop system. Thus, our
constructed fortified command-nondeterministic supervisor
has a different structure from the AIC (for Opacity) in [28]-
[30], making the construction techniques presented there not
applicable for our work.

There are some other works about actuator attacks (see
[19], [31]-[40]). However, they address the problem of covert
attacker synthesis, i.e., covert damage string identification,
instead of resilient supervisor synthesis. In addition, their
approaches also do not work for our problem. Firstly, [40]
targets to find all the covert damage strings, where each
one works for all the observation-consistent supervisors. In
contrast, after constructing the behavior-preserving structure
in our work, we solve a sub-problem to find all the covert
damage strings, where each one works for at least one con-
trol equivalent supervisor. Thus, the covert damage strings
identified in our work differ from those identified in [40],
making the approach of [40] no longer applicable. On the
other hand, [19], [31]-[39] only find covert damage strings
for one given supervisor; thus, their techniques do not apply
to identifying covert damage strings in our work, where there
can be in general an infinite number of control equivalent
supervisors.

This remaining sections are organized as follows. We
recap basic notations in Section II. The problem formulation
is shown in Section III. The methodology for supervisor
fortification problem is introduced in Section IV and Section
V. Section VI concludes this work. Due to space limitation,
we refer readers to [41] for proof details.

II. PRELIMINARIES

We introduce some preliminaries, mostly following [1],
[2]. Σ∗ is the Kleene-closure of a finite alphabet Σ. The
prefix closure of a language L ⊆ Σ∗ is defined as L =
{u ∈ Σ∗ | (∃v ∈ L)u ≤ v}. As usual, PΣ′ : Σ∗ → (Σ′)∗ is
the natural projection [1]. A finite-state automaton G is given
by a 5-tuple (Q,Σ, ξ, q0, Qm).We write ξ(q, σ)! to mean that
ξ(q, σ) is defined. We define EnG(q) = {σ ∈ Σ|ξ(q, σ)!}.
Let L(G) and Lm(G) denote the closed-behavior and the
marked behavior, respectively. When Qm = Q, we write
G = (Q,Σ, ξ, q0) for simplicity. Ac(G) represents the
automaton by removing those states (as well as the asso-
ciated transitions) that are not reachable in G [2]. G|Q−Q′

represents the automaton by removing those states (as well
as the associated transitions) in Q′ ⊆ Q. Under the subset
Σ′ ⊆ Σ, we define the “unobservable reach” of q ∈ Q
to be URG,Σ−Σ′(q) := {q′ ∈ Q|[∃s ∈ (Σ − Σ′)∗] q′ =
ξ(q, s)}. PΣ′(G) is defined as the finite-state automaton
(2Q−{∅},Σ, δ, URG,Σ−Σ′(q0)) over Σ, where the (partial)
transition function δ : (2Q − {∅}) × Σ → (2Q − {∅}) is
defined as follows: 1) for any ∅ ̸= Q′ ⊆ Q and any σ ∈ Σ′,

if ξ(Q′, σ) ̸= ∅, then δ(Q′, σ) = URG,Σ−Σ′(ξ(Q′, σ)), and
2) for any ∅ ̸= Q′ ⊆ Q and any σ ∈ Σ−Σ′, if there exists
q ∈ Q′ such that ξ(q, σ)!, then δ(Q′, σ) = Q′.

For any two finite-state automata G1 and G2, their
parallel composition [2] is denoted as G1||G2. Following
[1], [2], for a plant modeled as a finite-state automaton
G = (Q,Σ, ξ, q0, Qm), its event set Σ is partitioned into
Σ = Σc∪̇Σuc = Σo∪̇Σuo, where Σc (Σo) and Σuc (Σuo)
are defined as the sets of controllable (observable) and
uncontrollable (unobservable) events, respectively. A control
constraint over Σ is a tuple (Σc,Σo). The Basic Supervisory
Control and Observation Problem (BSCOP) [2] is as follows.

Definition II.1. (BSCOP). Given plant G and legal lan-
guage La = La, find a supervisor S over the control
constraint (Σc,Σo) such that 1) L(S||G) ⊆ La, and 2)
for any other supervisor S′ such that L(S′||G) ⊆ La,
L(S′||G) ⊆ L(S||G).

When Σc ⊆ Σo, the supremal solution always exists for
BSCOP [2], although it may be empty.

III. PROBLEM FORMULATION
We first present the system models in the supervisory

control architecture under attack. The supervisor fortification
problem is then formulated.

A. Component models

Plant G

Supervisor under Attack BT(S)
A

Command Execution under Attack CE
A 𝝈 ∈ 𝚺

𝜸 ∈ 𝚪

𝝈 ∈ 𝚺

 Actuator Attacker
𝜸 ∈ 𝚪 𝝈 ∈ 𝚺𝒐,𝒂

𝝈 ∈ 𝚺𝒐

𝜸 ∈ 𝚪

Fig. 1: System architecture.

Conceptually speaking, we consider four components in
the architecture shown in Fig. 1:

• Plant: There are some damage states in the plant, which
should be avoided under the control of a supervisor.

• Supervisor under attack: The supervisor issues one
control command in Γ = {γ ⊆ Σ|Σuc ⊆ γ} after the
system initiation or upon one observation. Once any
unexpected observable sequence is seen, the supervisor
asserts that the information inconsistency happens and
an attack is detected [23], [24].

• Command execution under attack: It describes the at-
tacked phase from control command reception to event
execution at the plant.

• Actuator attacker: The attacker can implement enable-
ment and disablement attacks over the attackable event
set Σc,a ⊆ Σc to distort a control command. The
attacker could observe control commands in Γ and
(plant) events in Σo,a ⊆ Σ. We assume that Σc,a ⊆
Σo,a. We consider nondeterministic attackers that have
more than one attack choice after an observation. Any
attacker needs to remain covert against the supervisor.

Remark III.1. Compared with [26] which also studies
supervisor fortification, our work considers a more general
setup by relaxing the assumptions Σc ⊆ Σo and Σo,a ⊆ Σo.
As we shall see later, the assumption Σc,a ⊆ Σo,a helps us
to establish the decidability result.

Next, we briefly introduce how to model these components
as finite-state automata.

7912

1) Plant: It is modeled by G = (Q,Σ, ξ, qinit, Qd). The
set of damage states is denoted by Qd.

2) Supervisor: For the supervisor1 S = (Qs,Σ, ξs, q
init
s),

we transform S into the bipartite supervisor where the
command sending is explicitly shown. For convenience, we
define Γ(q) := EnS(q) = {σ ∈ Σ|ξs(q, σ)!} ∈ Γ, which
is the command sent at state q. We denote the bipartite
supervisor by BT (S) = (Qbs,Σbs, ξbs, q

init
bs), where Qbs =

Qs ∪ Qcom
s = Qs ∪ {qcom | q ∈ Qs}, qinitbs = (qinits)com,

Σbs = Σ ∪ Γ, and ξbs is defined as follows:
1. (∀qcom ∈ Qcom

s) ξbs(q
com,Γ(q)) = q

2. (∀q ∈ Qs)(∀σ ∈ Σuo) ξs(q, σ)!⇒ ξbs(q, σ) = q

3. (∀q∈Qs)(∀σ∈Σo) ξs(q, σ)!⇒ξbs(q, σ)=(ξs(q, σ))
com

In the state set Qbs, any qcom ∈ Qcom
s is a control state, at

which Γ(q) is sent, and any q ∈ Qs is a reaction state, at
which any event in Γ(q) may be observed. Thus, the initial
state is (qinits)com. Case 1, Case 2, and Case 3 encode the
control command sending, unobservable event occurrence,
and observable event reception, respectively.

Based on BT (S), we construct the bipartite supervisor un-
der attack BT (S)A = (Qa

bs,Σ
a
bs, ξ

a
bs, q

a,init
bs), where Qa

bs =
Qbs ∪ {qdetect}, qa,initbs = qinitbs , Σa

bs = Σ ∪ Γ, and ξabs is
defined as follows:
1. (∀q, q′ ∈ Qa

bs)(∀σ ∈ Σ ∪ Γ)ξbs(q, σ)=q′⇒ξabs(q, σ)=q′

2. (∀q ∈ Qs)(∀σ ∈ Σc,a ∩Σuo)¬ξbs(q, σ)!⇒ ξabs(q, σ) = q

3. (∀q ∈ Qs)(∀σ ∈ Σo)¬ξbs(q, σ)!⇒ ξabs(q, σ) = qdetect

We add a new state qdetect, corresponding to the situation
where the actuator attack is detected. Case 2 models the
attack effects on unobservable events and Case 3 encodes
the attack detection situation.

3) Command execution automaton: To model the com-
mand execution process, we first build the automaton CE =
(Qce,Σce, ξce, q

init
ce) [33], where Qce = {qγ |γ ∈ Γ} ∪

{qinitce }, Σce = Γ ∪ Σ, and ξce is defined as follows:
1. (∀γ ∈ Γ)ξce(q

init
ce , γ) = qγ

2. (∀γ ∈ Γ)(∀σ ∈ γ ∩ Σo)ξce(q
γ , σ) = qinitce

3. (∀γ ∈ Γ)(∀σ ∈ γ ∩ Σuo)ξce(q
γ , σ) = qγ

Next, based on CE, we build the command execution au-
tomaton under attack CEA = (Qa

ce,Σ
a
ce, ξ

a
ce, q

a,init
ce), where

Qa
ce = Qce, qa,initce = qinitce , Σa

ce = Γ∪Σ, and ξace is defined
as follows:
1. (∀q, q′ ∈ Qa

ce)(∀σ ∈ Σ∪Γ)ξce(q, σ) = q′⇒ξace(q, σ)=q′

2. (∀γ ∈ Γ)(∀σ ∈ Σc,a ∩ Σo)¬ξce(qγ , σ)! ⇒ ξace(q
γ , σ) =

qa,initce

3. (∀γ ∈ Γ)(∀σ ∈ Σc,a∩Σuo)¬ξce(qγ , σ)!⇒ξace(q
γ , σ)=qγ

Case 2 and Case 3 encode actuator attack effects on the
attackable event set Σc,a.

4) Actuator attacker: We model the attacker by A =
(Qa,Σa = Σ ∪ Γ, ξa, q

init
a). Since only events in Σo,a ∪ Γ

can be observed and only events in Σc,a can be disabled
by the attacker, A should satisfy two conditions: 1) (A-
controllability) (∀q ∈ Qa)(∀σ ∈ Σa − Σc,a)ξa(q, σ)!,
and 2) (A-observability) (∀q ∈ Qa)(∀σ ∈ Σa − (Σo,a ∪
Γ))ξa(q, σ)!⇒ ξa(q, σ) = q.

1Any supervisor S satisfies two conditions [42]: 1) (state-controllability)
(∀q ∈ Qs)(∀σ ∈ Σuc)ξs(q, σ)!, and 2) (state-observability) (∀q ∈
Qs)(∀σ ∈ Σuo)ξs(q, σ)! ⇒ ξs(q, σ) = q.

We refer to (Σo,a,Σc,a) as the attack constraint. Clearly,
A is nondeterministic in terms of making attack decisions
as it allows multiple attack choices w.r.t. Σc,a upon each
observation.

B. Problem formulation
With the above-constructed component models, we

model the closed-loop system under attack by CLSA =
G||CEA||BT (S)A||A = (Qa

cls,Σ
a
cls, ξ

a
cls, q

a,init
cls , Qa

cls,m).
Definition III.1. (Covertness). Given G and S,A is covert

against S over (Σo,a,Σc,a) if CLSA does not reach any state
in {(qg, qace, qabs, qa) ∈ Qa

cls|qabs = qdetect}.
Remark III.2. For a smart attacker, keeping stealthy at all

times is often important since remaining hidden in the system
paves the way for repetitive damage infliction in different
instances of the system. For example, functional abnormality
due to stealthy attackers that causes traffic accidents in
different autonomous driving cars may be diagnosed as
software bugs instead of attacks. From this point of view, we
study the resilient control against smart attacks that remain
covert at all times, captured by Definition III.1.

Definition III.2. (Damage-reachable). Given G and
S, A is damage-reachable against S over (Σo,a,Σc,a) if
Lm(CLSA) ̸= ∅.

Definition III.3. (Covert damage string). Given G, S,
and A that is covert and damage-reachable against S over
(Σo,a,Σc,a), any s ∈ Lm(G||CEA||BT (S)A||A) is a covert
damage string that works for S.

Definition III.4. (Resilience). Given G, S is resilient
if there does not exist any A that is covert and damage-
reachable against S over (Σo,a,Σc,a).

It is assumed there is an original supervisor, denoted as
Sori, which is known and non-resilient.

Definition III.5. (Control equivalence). Given G and
Sori, a supervisor S′ is control equivalent to Sori if
L(G||Sori) = L(G||S′).

Definition III.6. (Fortification). Given G and Sori, S′ is
said to be a fortification for Sori if S′ is resilient and control
equivalent to Sori.

Problem 1. Given G, Sori, and (Σo,a,Σc,a), determine
whether there exists a fortification for Sori.

IV. BEHAVIOR-PRESERVING STRUCTURE
In this section, we introduce how to group all the control

equivalent supervisors in a finite-state structure.

A. Equivalent behavior computation
Firstly, we compute G||Sori, the closed-loop system under

Sori. Then we construct the structure (cf. Section II) B =
PΣo

(G||Sori) = (Qb,Σb = Σ, ξb, q
init
b), which adds self-

loops labelled by unobservable events for each state in the
observer [2] of G||Sori. Based on B, we could find all the
feasible control commands w.r.t. each observation, which
would be explained later.

B. Feasible control commands completion
Based on B, we construct a bipartite structure. The idea

is as follows. After an observation encoded in B, we add all
the feasible control commands that could retain the control
equivalence. We call this structure the bipartite behavior-
preserving structure BPS = (Qbps,Σbps, ξbps, q

init
bps), where

7913

Qbps = Qb ∪ Qcom
b ∪ {qdump} = Qb ∪ {qcom|q ∈ Qb} ∪

{qdump}, qinitbps = (qinitb)com, Σbps = Σ ∪ Γ, and ξbps is
defined as follows:
1. (∀q ∈ Qb)(∀γ ∈ Γ)C1 ∧ C2 ⇒ ξbps(q

com, γ) = q, where
i. C1 := EnB(q) ⊆ γ

ii. C2 := (∀(qg, qs) ∈ q)EnG(qg) ∩ γ ⊆ EnB(q)

2. (∀q ∈ Qb)(∀σ ∈ Σuo)ξb(q, σ)!⇒ ξbps(q, σ) = q

3. (∀q ∈ Qb)(∀σ ∈ Σo)ξb(q, σ)! ⇒ ξbps(q, σ) =
(ξb(q, σ))

com

4. (∀q ∈ Qb)(∀σ ∈ Σuo)¬ξb(q, σ)!⇒ ξbps(q, σ) = q

5. (∀q ∈ Qb)(∀σ ∈ Σo)¬ξb(q, σ)!⇒ ξbps(q, σ) = qdump

6. (∀σ ∈ Σ ∪ Γ)ξbps(q
dump, σ) = qdump

In the state set Qbps, similar to the bipartite supervisor, any
state qcom ∈ Qcom

b is a control state and any state q ∈ Qb

is a reaction state. However, different from the transition
definition of a bipartite supervisor, after an observable event
σ ∈ Σo occurs at a reaction state q, BPS transits to a
control state (ξb(q, σ))

com (Case 3) if σ is defined at q in
B; otherwise, i.e., σ is not defined at q in B, BPS transits
to the dump state qdump (Case 5).

In ξbps, for any control state qcom, Case 1 adds feasible
control commands that maintain equivalent behavior. Two
conditions, C1 and C2, should be satisfied for any control
command γ added at the control state qcom. Firstly, C1
ensures that any event in EnB(q) could be fired under γ.
Secondly, it can be checked that, all the possible plant states
for the observation sequence t ∈ Σ∗

o are contained in the state
ξb(q

init
b , t) = q . Thus, we need to ensure that all the events

that may be executed at any plant state qg ((qg, qs) ∈ q)
under γ are still contained in EnB(q), which is formulated
by C2. Case 2 and Case 3 retain the transitions encoded in
B. Notice that we are constructing a finite-state structure
to group all the control equivalent bipartite supervisors, and
recall that the structure of a bipartite supervisor requires that
all the events in a control command γ should be defined
after γ occurs. Hence, for reaction states, we complete events
in Σ which are not defined in B in Case 4 and Case 5,
where observable transitions lead to the state qdump and
unobservable transitions are self-loops. We define Case 6
to self-loop events in Γ ∪ Σ at the state qdump. Notice
that this would not break the control equivalence since
those completed observable events leading to the state qdump

would not occur at all.

C. Structure refinement

We refine BPS by computing BPS||CE because CE en-
codes all the bipartite supervisors. We call BPS||CE the bi-
partite behavior-preserving command-nondeterministic2 su-
pervisor BPNS = BPS||CE = (Qbpns,Σbpns = Σ ∪
Γ, ξbpns, q

init
bpns). It can be checked that Qbpns = ((Qb ∪

{qdump}) × {qγ |γ ∈ Γ})∪̇((Qcom
b ∪ {qdump}) × {qinitce }).

For convenience, we call any state in Qrea
bpns := (Qb ∪

{qdump}) × {qγ |γ ∈ Γ} a reaction state and any state in
Qcom

bpns := (Qcom
b ∪ {qdump}) × {qinitce } a control state. By

construction, events defined at reaction states belong to Σ,

2BPNS is deterministic, but command non-deterministic because more
than one control command may be defined at some control state.

and events defined at control states belong to Γ. We have
Qbpns = Qrea

bpns∪̇Qcom
bpns.

For convenience, the set of supervisors (satisfying state-
controllability and state-observability) is denoted by S ,
and the set of supervisors control equivalent to Sori is
denoted by Se(Sori) := {S′ ∈ S |L(G||Sori) = L(G||S′)}.
The following theorem indicates all the control equivalent
bipartite supervisors are exactly encoded in BPNS.

Theorem IV.1.
⋃

S′∈Se(Sori)

L(BT (S′)) = L(BPNS).

V. SYNTHESIS OF FORTIFIED SUPERVISORS

In this section, based on BPNS constructed in Section
IV, we synthesize a finite-state structure that encodes all the
fortified supervisors, from which we could extract one to
show the decidability of the supervisor fortification problem.

A. Covert damage strings identification
Firstly, to maintain control equivalence, any fortified su-

pervisor cannot affect its observations of the plant out-
put. Thus, to synthesize fortified supervisors based on
BPNS, we could only prune those illegal control com-
mands. This motivates us to first identify all the covert
damage strings, where each one works for at least one
control equivalent supervisor. However, BPNS does not
consider the actuator attack effects. Hence, we need to
build the version of BPNS under attack, denoted by
BPNSA = (Qa

bpns,Σ
a
bpns, ξ

a
bpns, q

a,init
bpns), where Qa

bpns =

Qbpns ∪ {qdetectbpns } = Qrea
bpns ∪ Qcom

bpns ∪ {qdetectbpns }, q
a,init
bpns =

qinitbpns, Σa
bpns = Σ ∪ Γ, and ξabpns is defined as follows:

1. (∀q, q′ ∈ Qa
bpns)(∀σ ∈ Σ ∪ Γ)ξbpns(q, σ) = q′ ⇒

ξabpns(q, σ) = q′

2. (∀q ∈ Qrea
bpns)(∀σ ∈ Σc,a ∩ Σuo)¬ξbpns(q, σ)! ⇒

ξabpns(q, σ) = q

3. (∀q ∈ Qrea
bpns)(∀σ ∈ Σo)¬ξbpns(q, σ)! ⇒ ξabpns(q, σ) =

qdetectbpns

The construction of BPNSA follows the similar process
of BT (S)A, which has been introduced in Section III-
A.2. When an unexpected observation is received (Case 3),
BPNSA reaches the state qdetectbpns . We have the following.

With BPNSA, we are ready to carry out the following
synthesis procedure to identify all the desired covert damage
strings.
Procedure 1:
1. Input: G, CEA, BPNSA, and Cac = (Σc,a,Σo,a ∪ Γ).
2. Compute P=G||CEA||BPNSA=(QP ,ΣP , ξP , q

init
P ,

QP,m).
3. Construct Pr = P |QP−Qbad , where Qbad =
{(q, qace, qabpns) ∈ QP |qabpns = qdetectbpns }.

4. Solve a BSCOP where the plant is P , the legal language
is L(Pr), and the control constraint is Cac = (Σc,a,Σo,a∪
Γ). The synthesized supremal solution is denoted as Â =
(Qâ,Σâ, ξâ, q

init
â).

5. Output: Â.
In Step 2, we generate P = G||CEA||BPNSA. Notice that
QP,m = Qd ×Qa

ce ×Qa
bpns. In Step 3, we remove the state

set Qbad in P to construct Pr. Intuitively speaking, any state
in Qbad denotes the situation where the covertness is broken.

7914

In Step 4, we construct a BSCOP, where P is the plant and
L(Pr) is the legal language. Notice that Σc,a ⊆ Σo,a∪Γ for
the control constraint Cac because of the assumption Σc,a ⊆
Σo,a. Thus, the supremal solution Â exists. For convenience,
the set of attackers that are damage-reachable and covert
against the supervisor S is denoted as A (S). The following
theorem shows that Lm(G||CEA||BPNSA||Â) encodes all
the covert damage strings, where each one works for at least
one control equivalent supervisor.

Theorem V.1. Lm(G||CEA||BPNSA||Â) =⋃
S′∈Se(S)

⋃
A∈A (S′)

Lm(G||CEA||BT (S′)A||A).

B. Illegal control commands pruning

Since Lm(G||CEA||BPNSA||Â) encodes all the covert
damage strings based on Theorem V.2 and the attacked
versions of all the control equivalent supervisors are en-
coded in BPNSA, we perform the following procedure to
carry out the pruning on BPNSA with the guidance of
Lm(G||CEA||BPNSA||Â).
Procedure 2:
1. Input: G, CEA, BPNSA, Â, Σo and Γ.
2. Compute P = G||CEA||BPNSA||Â = (QP ,ΣP = Σ∪

Γ, ξP , q
init
P , QP,m).

3. Construct Pr = (QPr ,ΣPr , ξPr , q
init
Pr

) based on P , where
a. QPr

= (QP −QP,m) ∪ {qdump}
b. ΣPr

= Σ ∪ Γ

c. qinitPr
= qinitP

d. ξPr
is defined as:

i. (∀q, q′ ∈ QP − QP,m)(∀σ ∈ Σ ∪ Γ)ξP(q, σ) =
q′ ⇒ ξPr

(q, σ) = q′

ii. (∀q ∈ QP − QP,m)(∀σ ∈ Σ ∪ Γ)¬ξP(q, σ)! ⇒
ξPr (q, σ) = qdump

iii. (∀σ ∈ Σ ∪ Γ)ξPr (q
dump, σ) = qdump

4. Solve a BSCOP where the plant is BPNSA, the legal
language is L(Pr), and the control constraint is (Γ,Σo ∪
Γ). The synthesized supremal solution is denoted as SA

0 =
(QSA

0
,ΣSA

0
= Σ ∪ Γ, ξSA

0
, qinit

SA
0
).

5. Output: SA
0 .

In Step 2, we compute P = G||CEA||BPNSA||Â. In Step
3.a, we construct Pr by removing the marker state set of
P and adding a new state qdump. Then, 1) in Step 3.d.i,
for any two non-marker states, the transitions between them
defined in P are retained, 2) in Step 3.d.ii, we add undefined
events in Σ∪Γ at any non-marker state of P , and those added
transitions lead to the new state qdump, and 3) in Step 3.d.iii,
for the state qdump, we define the events in Σ∪Γ. We remark
that only the strings leading to damage infliction should be
forbidden. Thus, Steps 3.d.ii and 3.d.iii are necessary as they
ensure all the legal strings are specified in Pr. Notice that
Pr is not a complete automaton because 1) when any state
q ∈ QP,m is removed, all the transitions attached to this state
q are also removed, and 2) the removed transitions are not
completed in Steps 3.d.ii and 3.d.iii. In Step 4, we construct
a BSCOP, where BPNSA is the plant and L(Pr) is the legal
language.

C. Fortified supervisor synthesis

Since the final goal is to synthesize the fortified supervisor,
we transform SA

0 to the version in the absence of attacks,
denoted as S0 = (QS0

,ΣS0
, ξS0

, qinitS0
), where QS0

= QSA
0

,
qinitS0

= qinit
SA
0

, ΣS0 = Σ ∪ Γ, and ξS0 is defined as follows:

1. (∀q, q′ ∈ QS0)(∀γ ∈ Γ)ξSA
0
(q, γ) = q′ ⇒ ξS0(q, γ) = q′

2. (∀q, q′ ∈ QS0)(∀γ ∈ Γ)(∀σ ∈ γ ∩Σuo)ξSA
0
(q, γ) = q′ ⇒

ξS0(q
′, σ) = q′

3. (∀q, q′, q′′ ∈ QS0)(∀γ ∈ Γ)(∀σ ∈ γ ∩ Σo)ξSA
0
(q, γ) = q′

∧ ξSA
0
(q′, σ) = q′′ ⇒ ξS0(q

′, σ) = q′′

Case 1 preserves the transitions labelled by control com-
mands in SA

0 . Case 2 and Case 3 eliminate actuator attack
effects by only keeping the transitions labelled as events in
γ after γ occurs. In the following text, we refer to Ac(S0)
whenever we talk about S0. It can be checked that S0 is a
bipartite structure. Thus, we artificially divide the state set
of S0 and write QS0 = Qrea

S0
∪̇Qcom

S0
, where Qcom

S0
is the set

of control states and Qrea
S0

is the set of reaction states. We
have the following observations:
1) Any event in Σ is not defined at any state of Qcom

S0
;

2) Any command in Γ is not defined at any state of Qrea
S0

;
3) For any state of Qcom

S0
, once a command in Γ occurs, S0

transits to a reaction state;
4) For any state of Qrea

S0
, once an observable event in Σo

occurs, S0 transits to a control state, and any defined
unobservable event in Σuo is self-looped.

Next, we continue to perform the pruning on S0 by treating
the control states of S0, where any control command is
not defined, as bad states. Notice that this step is necessary
because the structure of S0 may not be consistent with that of
a bipartite supervisor which requires that an observation must
be followed by a control command, as defined in Section
III-A. The following iterative synthesis procedure helps us
to remove those states causing structure inconsistencies.
Procedure 3:
1. Input: S0, Σo, and Γ.
2. Let k := 0.
3. Compute Qk,del := {q ∈ Qcom

Sk
|EnSk

(q) = ∅}.
4. If Qk,del ̸= ∅, then go to Step 5; if Qk,del = ∅, then

denote FNS := Sk and go to Step 8.

5. Construct Sk,r = S
|QSk

−Qk,del

k .
6. Solve a BSCOP where the plant is Sk, the legal language

is L(Sk,r), and the control constraint is (Γ,Σo ∪ Γ).
The synthesized supremal solution is denoted as Sk+1 =
(QSk+1

,ΣSk+1
= Σ ∪ Γ, ξSk+1

, qinitSk+1
). We also denote

QSk+1
= Qrea

Sk+1
∪̇Qcom

Sk+1
, where Qrea

Sk+1
is the set of

reaction states and Qcom
Sk+1

is the set of control states3.
7. Let k ← k + 1 and go to Step 3.
8. Output: FNS.
In Step 2, we introduce a counter k and set it to 0. Step
3 - Step 7 carry out the iteration synthesis. In Step 3, for
the k-th iteration, we first find in Sk any control state q ∈
Qcom

Sk
satisfying the condition EnSk

(q) = ∅, i.e., there is

3The division rule is the same as that of QS0 = Qrea
S0

∪̇Qcom
S0

.

7915

no control command defined. For convenience, we denote by
Qk,del the set of those identified control states. As long as
Qk,del is not empty, we proceed to Step 5 to construct Sk,r by
removing Qk,del from Sk, and then proceed to Step 6 to carry
out the synthesis where the plant is Sk with L(Sk,r) being the
legal language. The supremal solution of the synthesis always
exists as Γ ⊆ Σo ∪ Γ, and we denote it by Sk+1. In Step
4, if Qk,del is empty, then we proceed to Step 8 and output
FNS := Sk as the final result. We name the output FNS as
the bipartite fortified command-nondeterministic supervisor.
The following theorem shows that FNS exactly encodes all
the fortifications for Sori.

Theorem V.2.
⋃

S′∈Sf (Sori)

L(BT (S′)) = L(FNS).

Theorem V.3. Problem 1 is decidable.

VI. CONCLUSIONS

This paper answered a decidability question: whether
determining the existence of a fortification (for a non-
resilient supervisor) against covert actuator attacks is decid-
able, where the supervisor and attacker may have different
observations. To show the decidability result, we propose
a sound and complete decision procedure. In future works,
there are several interesting directions. One is to generalize
the result in this work by considering the defense against
covert sensor-actuator attacks, and another is to relax the
assumption Σc,a ⊆ Σo,a.

REFERENCES

[1] W. M. Wonham and K. Cai, Supervisory Control of Discrete-Event
Systems. Cham, Switzerland: Springer, 2019.

[2] C. Cassandras and S. Lafortune, Introduction to discrete event systems.
New York, NY, USA: Springer, 2009.

[3] R. Meira-Goes, H. Marchand, S. Lafortune, “Towards resilient super-
visors against sensor deception attacks”, Proc. IEEE 58th Annu. Conf.
Decis. Control (CDC), pp. 5144-5149, 2019.

[4] R. Meira-Goes, S. Lafortune, H. Marchand, “Synthesis of supervisors
robust against sensor deception attacks”, IEEE Trans. Autom. Control,
DOI 10.1109/TAC.2021.3051459, 2021.

[5] Z. Ma, K. Cai, “On resilient supervisory control against indefinite
actuator attacks in discrete-event systems”, IEEE Control Systems
Letters, DOI 10.1109/LCSYS.2022.3168926, 2022.

[6] M. Wakaiki, P. Tabuada, J. P. Hespanha, “Supervisory control of
discrete-event systems under attacks”, Dynamic Games and Applica-
tions, vol. 9, no. 4, pp. 965–983, 2019.

[7] Y. Wang and M. Pajic, ”Supervisory control of discrete event systems
in the presence of sensor and actuator attacks”, Proc. IEEE 58th Annu.
Conf. Decis. Control (CDC), pp. 5350-5355, 2019.

[8] S. Zheng, S. Shu and F. Lin, “Modeling and Control of Discrete
Event Systems under Joint Sensor-Actuator Cyber Attacks”, 2021
6th International Conference on Automation, Control and Robotics
Engineering (CACRE), pp. 216-220, 2021.

[9] M. R. C. Alves, P. N. Pena, K. Rudie, “Discrete-event systems subject
to unknown sensor attacks”. Discrete Event Dyn. Syst., vol. 32, no. 1,
pp. 143-158, 2022.

[10] Y. Wang, Y. T. Li, Z. H. Yu, N. Q. Wu and Z. W. Li, “Supervisory
control of discrete-event systems under external attacks”, Inf. Sci., vol.
562, pp. 398-413, Jul. 2021.

[11] J. Yao, X. Yin and S. Li, “On attack mitigation in supervisory control
systems: A tolerant control approach”, Proc. IEEE 59th Annu. Conf.
Decis. Control (CDC), pp. 4504-4510, Dec. 2020.

[12] P. M. Lima, M. V. S. Alves, L. K. Carvalho and M. V. Moreira,
“Security of cyber-physical systems: Design of a security supervisor
to thwart attacks”, IEEE Trans. Autom. Sci. Eng., May, 2021.

[13] Y. Wang, M. Pajic, “Attack-resilient supervisory control with intermit-
tently secure communication”, Proc. IEEE 58th Annu. Conf. Decis.
Control (CDC), pp. 2015-2020, Dec. 2019.

[14] L. K. Carvalho, Y. C. Wu, R. Kwong and S. Lafortune, “Detection
and prevention of actuator enablement attacks in supervisory control
systems”, 13th International Workshop on Discrete Event Systems
(WODES), pp. 298-305, May 2016.

[15] L. K. Carvalho, Y.-C Wu, R. Kwong and S. Lafortune, “Detection
and mitigation of classes of attacks in supervisory control systems”,
Automatica, vol. 97, pp. 121-133, 2018.

[16] P. M. Lima, M. V. S. Alves, L. K. Carvalho and M. V. Moreira,
“Security against network attacks in supervisory control systems”,
IFAC-PapersOnLine, vol. 50, no. 1, pp. 12333-12338, 2017.

[17] P. M. Lima, L. K. Carvalho and M. V. Moreira, “Detectable and un-
detectable network attack security of cyber-physical systems”, IFAC-
PapersOnLine, vol. 51, no. 7, pp. 179-185, 2018.

[18] P. M. Lima, M. V. S. Alves, L. K. Carvalho and M. V. Moreira,
“Security against communication network attacks of cyber-physical
systems”, J. Control Autom. Elect. Syst., vol. 30, pp. 125-135, 2019.

[19] A. Khoumsi, “Sensor and actuator attacks of cyber-physical systems:
A study based on supervisory control of discrete event systems”,
International Conference on Systems and Control (ICSC), pp. 176-
182, 2019.

[20] Z. Wang, R. Meira-Goes, S. Lafortune and R. Kwong, “Mitigation
of classes of attacks using a probabilistic discrete event system
framework”, IFAC-PapersOnLine, vol. 53, no. 4, pp. 35-41, 2020.

[21] Y. Li, Y. Tong, and A. Giua. “Detection and prevention of cyber-attacks
in networked control systems”, Proc. 17th Int. Workshop Discrete
Event Syst., 2020, pp. 7–13.

[22] R. Meira-Goes and S. Lafortune, “Moving Target Defense based
on Switched Supervisory Control: A New Technique for Mitigating
Sensor Deception Attacks”, IFAC-PapersOnLine, vol. 53, no. 4, pp.
317-323, 2020.

[23] R. Su, “Supervisor synthesis to thwart cyber-attack with bounded
sensor reading alterations”, Automatica, vol. 94, pp. 35-44, 2018.

[24] R. Su, “On decidability of existence of nonblocking supervisors
resilient to smart sensor attacks”, arXiv: 2009.02626v1, 2020.

[25] L. Lin, Y. Zhu, R. Su, “Towards bounded synthesis of resilient
supervisors”, Proc. IEEE 58th Annu. Conf. Decis. Control (CDC), pp.
7659-7664, 2019.

[26] Y. Zhu, L. Lin, R. Su, “Supervisor obfuscation against actuator
enablement attack”, Proc. Eur. Control Conf., pp. 1760-1765, 2019.

[27] R. Su and W. M. Wonham, “Supervisor reduction for discrete-event
systems”, Discrete Event Dyn. Syst., vol. 14, no. 1, pp. 31-53, 2004.

[28] X. Yin and S. Lafortune, “Synthesis of maximally-permissive super-
visors for the range control problem”, IEEE Trans. Autom. Control,
vol. 62, no. 8, pp. 3914-3929, Aug. 2017.

[29] X. Yin and S. Lafortune, “Synthesis of maximally permissive su-
pervisors for partially-observed discrete-event systems”, IEEE Trans.
Autom. Control, vol. 61, no. 5, pp. 1239-1254, 2016.

[30] X. Yin and S. Lafortune, “A new approach for synthesizing opacity-
enforcing supervisors for partially-observed discrete-event systems”,
2015 American Control Conference (ACC), pp. 377-383, 2015.

[31] L. Lin, Y. Zhu, R. Su, “Synthesis of covert actuator attackers for free”,
Discrete Event Dyn. Syst., vol. 30, pp. 561–577, 2020.

[32] L. Lin and R. Su, “Synthesis of covert actuator and sensor attackers as
supervisor synthesis,” Proc. 15th Int. Workshop Discrete Event Syst.,
pp. 1-6, 2020.

[33] L. Lin, R. Su, “Synthesis of covert actuator and sensor attackers”,
Automatica, vol 130, 109714, 2021.

[34] L. Lin, S. Thuijsman, Y. Zhu, S. Ware, R. Su, M. Reniers, “Synthesis
of supremal successful normal actuator attackers on normal supervi-
sors”, American Control Conference, pp. 5614-5619, 2019.

[35] R. Meira-Goes, E. Kang, R. Kwong and S. Lafortune, “Stealthy
deception attacks for cyber-physical systems”, Proc. IEEE 56th Annu.
Conf. Decis. Control (CDC), pp. 4224-4230, Dec. 2017.

[36] R. Meira-Goes, E. Kang, R. Kwong and S. Lafortune, “Synthesis of
sensor deception attacks at the supervisory layer of cyber-physical
systems”, Automatica, vol. 121, 2020.

[37] S. Mohajerani, R. Meira-Goes and S. Lafortune, “Efficient Synthesis
of Sensor Deception Attacks Using Observation Equivalence-Based
Abstraction”, IFAC-Papers OnLine, vol. 53, no. 4, pp. 28-34, 2020.

[38] R. Meira-Goes, R. Kwong and S. Lafortune, “Synthesis of optimal
multi-objective attack strategies for controlled systems modeled by
probabilistic automata”, IEEE Trans. Autom. Control, vol. 67, no. 6,
pp. 2873-2888, 2022.

[39] Q. Zhang, C. Seatzu, Z. Li, and A. Giua, “A framework for the analysis
of supervised discrete event systems under attack”, 15th European
Workshop on Advanced Control and Diagnosis, pp. 529-546, 2022.

[40] R. Tai, L. Lin, Y. Zhu and R. Su, “Synthesis of the supremal covert
attacker against unknown supervisors by using observations”, IEEE
Trans. Autom. Control, vol. 86, no. 6, pp. 3453-3468, 2023.

[41] R. Tai, L. Lin, and R. Su, “Supervisor obfuscation against covert
actuator attackers”, arXiv preprint arXiv:2205.02383, 2022.

[42] A. Bergeron, “A unified approach to control problems in discrete event
processes”, RAIRO-Theoretical Informatics and Applications, vol. 27,
no. 6, pp. 555-573, 1993.

7916

