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Abstract— In a recent paper it has been shown that the
existence, for a MIMO nonlinear system, of normal forms with
a special structure that proves to be useful in the design of
feedback laws is implied by an assumption introduced a long
time ago by Hirschorn in his work on systems invertibility. In
this paper, we provide an alternative viewpoint and prove that a
necessary and sufficient condition for the existence of such kind
of normal forms can be identified in a special feature of the
so-called maximal controlled invariant distribution algorithm.

I. INTRODUCTION

The problem of controlling a MIMO system is a funda-
mental problem in control theory. If the system is nonlinear,
and in what follows we refer in particular to the case
of the so-called input-affine systems, solving major design
problems – such as stabilization, disturbance-isolation, non-
interacting control, asymptotic tracking/rejection of exoge-
nous inputs – is not terribly difficult if the system has a vector
relative degree. As a matter of fact, successful solutions to
such problems became available in the 1980’s, and appro-
priate robust versions thereof in the two subsequent decades.
However, as it is well-known, having a vector relative degree
is a quite restrictive hypothesis. A much broader class of
systems would be that of those systems that are invertible,
from an input-output viewpoint. In fact, invertibility is a
fundamental property that makes it possible to solve a variety
of design problems for linear MIMO systems. Therefore, it
makes sense to try to address similar design problems for
such broader class of systems. For an input-affine MIMO
system, characterization – and exploitation in the context of
feedback design – of the property of invertibility reposes on
suitable recursive algorithms, known as structure algorithms,
which can be seen as extensions of an algorithm introduced
by Silverman [1] for the construction of inverses of a linear
MIMO system, extended by Hirschorn [2] and then further
extended by Singh [3], a special case of which is the so-
called zero dynamics algorithm [7, pp. 294-296] (see also [6]
for analysis of various related issues). The specific features
of the algorithm of [3] were in fact exploited for the design
of globally stabilizing feedback laws by Liberzon in [11],
where it is shown that global stabilization can be achieved via
state feedback if the system is invertible and has a property
that can be viewed as an extension of the property of being
minimum-phase. To the best of our knowledge, this seems
to be the only available result, to date, dealing with the
design of globally stabilizing feedback laws for such broad
class of systems. The method in question, though, reposes
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on auxiliary hypotheses that are not easy to test, requires
accurate knowledge of all functions that characterize the
model of the system, and full access to the state.

An approach that has proven very successful in feedback
design for SISO systems, and for those MIMO systems that
have vector relative degree, is the one based on transforming
the model of the system into its so-called normal form. It is
for this reason that, in recent years, the analysis of normal
forms for MIMO systems that do not possess a relative
degree, but are otherwise invertible, gained interest.

The nonlinear versions of the structure algorithms used
to characterize invertibility do in fact provide data that can
be used to define a change of coordinates yielding a normal
form (see, e.g., [9] and [10, pp. 109-124]). However, such
normal forms are not of immediate use in the solution of
design problems, unless extra assumptions are made. By
taking such assumptions (that will be described in detail in
section III), a class of systems that sits between the “broad”
class of systems that are invertible and the “narrow” class
of systems that have a relative degree is identified. Such
class has been recently successfully considered in [15], for
the design of observer-based stabilizing laws, and in [16],
which extends to MIMO systems an important result of
Freidovich and Khalil [12] concerning the design of feedback
laws by means of which it is possible to robustly recover the
performances achievable by means of feedback-linearization-
based methods.

The assumptions in question are specified in terms of
properties of various functions that characterize the expres-
sion of the system in normal form. Thus, in principle, it is
not possible to say whether or not the system belongs to
such special class until the normal form has been actually
built, and this is a non-negligible issue. Hence, the interest
arises of determining conditions (sufficient or, if possible,
necessary and sufficient), in terms of the original system’s
data, ensuring the existence of normal forms with such spe-
cial properties. This problem has been addressed in [14] for
systems having two inputs, and – in a general setting – in the
recent paper [17], where it was shown that the existence of
normal forms with such properties is actually a consequence
of a stronger property of invertibility, characterized by an
assumption introduced much earlier by Hirschorn in [2].
In the present paper we take an alternative viewpoint and
we show that a necessary and sufficient condition for the
existence of a normal form having such special properties can
be determined by looking at certain features of the algorithm
for computing the largest controlled invariant distribution
contained in the kernel of the differential of the output map.
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II. NORMAL FORMS OF MIMO SQUARE SYSTEMS

We consider in this paper MIMO systems modeled by
equations of the form

ẋ = f(x) + g(x)u x ∈ Rn, u ∈ Rm
y = h(x) y ∈ Rm , (1)

which we assume to be uniformly invertible in the sense
of Singh [3]. It has been shown in various earlier papers
(see, e.g., [9] and [10, pages 109-112]) that a consequence
of the property of uniform invertibility is the existence of a
submersion Ξ : Rn → Rd defined as

ξ = Ξ(x) := col{X1(x), X2(x), . . . , Xk∗(x)} , (2)

in which the Xi(x)’s are vector-valued functions, recursively
constructed by means of the so-called structure algorithm
(see [1][2][3] and [4]), that can be used to define a (partial
if d < n) set of new coordinates. The functions in question
have the following properties, inherited from the structure
algorithm:
• X1(x) = h(x)
• there exist an integer ` ≤ m, a strictly increasing

sequence 0 = r0 < r1 < r2 < . . . < r` = k∗ and,
for each i = 1, 2, . . . , k∗, a splitting

Xi(x) =

(
X ′i(x)
X ′′i (x)

)
in which the upper block X ′i of Xi is empty for

i = 1, . . . , r1 − 1, r1 + 1, . . . , r2 − 1, r2 + 1,
. . . , r3 − 1, r3 + 1, . . . , r` − 1,

while X ′r1 , X
′
r2 , . . . , X

′
r`

are not empty and X ′r` = Xr` .
• there exists a set of integers m1,m2, . . . ,m`, with∑`

j=1mj = m, such that Xi ∈ Rmj+···+m` , for
rj−1 + 1 ≤ i ≤ rj with j = 1, . . . `, and X ′rj ∈ Rmj .

• the matrix 1 
LgX

′
1(x)

LgX
′
2(x)
· · ·

LgX
′
k∗(x)


is square and nonsingular for each x ∈ Rn,

• for each i = 1, 2, . . . , k∗ − 1, there exists matrices
Fi,1(x), Fi,2(x), . . . , Fi,i(x) such that 2

LgX
′′
i (x)

= −
(
Fi,1(x) Fi,2(x) . . . Fi,i(x)

)
LgX

′
1(x)

LgX
′
2(x)
· · ·

LgX
′
i(x)


1It must be borne in mind that the only nonempty blocks of the matrix

below are the LgX′rj (x)’s, with j = 1, . . . , `. Since LgX′rj (x) ∈
Rmj×m, the matrix in question is square.

2Clearly, the matrix Fi,h is empty if the corresponding block LgX′h is
empty. Thus, for i = 1, . . . , r1 − 1 all Fi,h’s are empty and, for each
rj ≤ i ≤ rj+1 − 1 , with j = 1, . . . , ` − 1, the only non-empty blocks
are Fi,r1 , Fi,r2 , . . . , Fi,rj . The notation used here may seem redundant.
However, it facilitates some passages in the subsequent analysis.

• for each i = 1, 2, . . . , k∗ − 1

Xi+1(x) = LfX
′′
i (x)

+
(
Fi,1(x) Fi,2(x) . . . Fi,i(x)

)
LfX

′
1(x)

LfX
′
2(x)
· · ·

LfX
′
i(x)

 .

By means of simple calculations (see [13, pp. 268-272]),
it is found that the sets X1, . . . , Xr1 satisfy equations of the
form

Ẋ1 = X2

· · ·
Ẋr1−1 = Xr1

Ẋ ′r1 = a1(x) + b1(x)u

Ẋ ′′r1 = Xr1+1 − Fr1,r1(x)[a1(x) + b1(x)u] ,

(3)

the sets Xr1+1, . . . , Xr2 satisfy equations of the form

Ẋr1+1 = Xr1+2 − Fr1+1,r1(x)[a1(x) + b1(x)u]
· · ·

Ẋr2−1 = Xr2 − Fr2−1,r1(x)[a1(x) + b1(x)u]

Ẋ ′r2 = a2(x) + b2(x)u

Ẋ ′′r2 = Xr2+1 −
∑2
j=1 Fr2,rj (x)[aj(x) + bj(x)u],

(4)
and so on, until it is found that the sets Xr`−1+1, . . . , Xr`

satisfy equations of the form

Ẋr`−1+1 = Xr`−1+2 −
∑`−1
j=1 Fr`−1+1,rj (x)[aj(x) + bj(x)u]

· · ·
Ẋr`−1 = Xr` −

∑`−1
j=1 Fr`−1,rj (x)[aj(x) + bj(x)u]

Ẋr` = a`(x) + b`(x)u .
(5)

where
aj(x) = LfX

′
rj (x)

bj(x) = LgX
′
rj (x).

If d < n, a complementary set of n− d coordinates z can
be found, so as to obtain a locally defined diffeomorphism.
Under appropriate hypotheses,3 it can be shown (see [9] and
also [13, pp. 274-275]) that a smooth map Z : Rn → Rn−d
exists, that makes the map

x̃ =

(
z
ξ

)
=

(
Z(x)
Ξ(x)

)
:= Φ(x)

a globally defined diffeomorphism. Accordingly, the normal
form can be completed by adding the dynamics

ż = f0(z, ξ) + g0(z, ξ)u (6)

in which f0(z, ξ) = LfZ(x)|x=Φ−1(x̃) and g0(z, ξ) =
LgZ(x)|x=Φ−1(x̃).

3The assumption in question considers the vector fields (11), and requires
that certain linear combinations of such vector fields, with coefficient that
are entries of the matrices Fi,h(x), be complete.
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III. A RELEVANT CLASS OF INVERTIBLE SYSTEMS

As shown in the recent papers [15] and [16], the structure
of the normal form thus described can be fruitfully exploited
in the design of feedback laws if the coefficient matrices
Fi,h(Φ−1(x̃)) are independent of the component z of x̃ and
depend on the components Xk’s of x̃ in a special “triangular”
fashion. More precisely, [15] and [16] considered the case
in which the normal form has the property indicated below.

Property P. For all rj ≤ i ≤ rj+1 − 1, h = r1, . . . rj and
j = 1, . . . , `− 1,

∂Fi,h(Φ−1(x̃))

∂z
= 0 , (7)

∂Fi,h(Φ−1(x̃))

∂Xk
= 0 if k > i . (8)

Indeed, not all invertible systems have a normal form
in which the properties indicated above hold. Nevertheless,
the properties in question make it possible to successfully
address various major problems of analysis and design. For
instance, it can be shown that, if d = n and property
(8) holds, the state x of such systems can be expressed
as a function of its output and of a suitable set of its
higher-order time-derivatives, that is the system is uniformly
completely observable (UCO) in the sense of [8]. For such
systems it is possible to design a dynamical extension
yielding an (extended) system having vector relative degree
{r`, . . . , r`}, a property that can be exploited in the design
of observer-based dynamic output-feedback stabilizers [15].
In case d > n, if both properties (7) and (8) hold and the
system is strongly minimum phase, in the sense of [17],
it is possible to robustly recover, by means of appropriate
output-feedback control laws, the dynamic performances that
would have been achieved by means of the classical (non-
robust) feedback-linearization methods and to solve problems
of robust output regulation [16][17].

In view of the convenience of dealing with systems for
which such property holds, the problem arose of determining
conditions, on the data f(x), g(x), h(x) that characterize the
model (1), to the purpose of directly identifying the class
of systems that possess a normal form of this kind, without
explicit computation of the normal form itself. A preliminary
answer was given in the paper [14], but this was limited
only to the case of system with two inputs. In the recent
paper [18], assuming (7), it was shown that the special
dependence on the Xk’s indicated in (8) is a consequence of
an hypothesis introduced earlier by Hirschorn in his seminal
work [2] on invertibility of nonlinear, input-affine, systems.
In this paper we present an alternative set of hypothesis,
implying – for the Fi,h(Φ−1(x̃))’s – the properties indicated
in (7) and (8), by showing that this is a consequence of
certain properties of the algorithm for computing the so-
called maximal controlled invariant distribution contained in
ker(dh) (see [7, section 6.3]).

IV. EXPLOITING CONTROLLED INVARIANCE

We assume in what follows that the reader is familiar with
the notion of controlled invariance for a nonlinear, input-
affine, system and on the consequence of such notion on the
internal structure of a system.4

Since the map Ξ is a submersion, the d rows of dΞ are
linearly independent at each x ∈ Rn. Thus, the codistribu-
tion span{dΞ} is a codistribution of dimension d and the
distribution

∆ = (span{dΞ})⊥

is an involutive distribution of dimension n − d. In what
follows, we discuss conditions under which this distribution
is controlled invariant and the consequences of such property
on the dependence of the coefficient matrices Fi,h(Φ−1(x̃))
on the components z and X1, X2, . . . , Xk∗ of x̃.

To this end, observe that the vectors ai(x) and the matrices
bi(x), i = 1, . . . , `, appearing in the equations that charac-
terize the normal form can be arranged into a single vector
A(x) ∈ Rm and a single matrix B(x) ∈ Rm×m defined as

A(x) =

a1(x)
· · ·
a`(x)

 =

LfX ′r1· · ·
LfX

′
r`



B(x) =

b1(x)
· · ·
b`(x)

 =

LgX ′r1· · ·
LgX

′
r`


(9)

where, as a consequence of the property of uniform invert-
ibility, the matrix B(x) is nonsingular for all x ∈ Rn. Hence,
for any choice of v = col(v1, . . . , v`) with vj ∈ Rmj , there
exists a unique u that makes

A(x) +B(x)u = v,

in which v ∈ Rm is seen as a new input. The feedback
transformation implicitly defined by such equation,

u = α(x) + β(x)v

= −B−1(x)A(x) +B−1(x)v
(10)

which changes the vector fields of (1) into vector fields
defined as

f̃(x) = f(x) + g(x)α(x)

g̃(x) =
(
g̃1(x) · · · g̃m(x)

)
=
(
g1(x) · · · gm(x)

)
β(x) ,

(11)

4See, e.g., [7]. In particular, the following notations, borrowed from [7],
are used here. For a real-valued function λ : Rn → R we denote by dλ its
differential

dλ =
(
∂λ
∂x1

· · · ∂λ
∂xn

)
viewed as a covector field on Rn. For a vector-valued function Λ :
Rn → Rp we denote by dΛ the p × n matrix whose i-th row is the
differential dλi of the i-th component λi of Λ. By span{dΛ} we mean
the codistribution spanned by the d covector fields dλ1, . . . , dλp. The
annihilator of a distribution ∆ is the codistribution ∆⊥ = {ω ∈ (Rn)∗ :
<ω, v>= 0, for all v ∈ ∆}. Likewise, the annihilator of a codistribution
Ω is the distribution Ω⊥ = {v ∈ Rn : < ω, v >= 0, for all ω ∈ Ω}.
For consistency with the notations of [7], we use ker(dh) to denote the
annihilator of the codistribution span{dh}.
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is such that
Ẋ ′rj = Lf̃+g̃vX

′
rj = vj

for j = 1, . . . , ` and hence

Lf̃X
′
rj = 0 for j = 1, . . . , `Lg̃1X ′r1 · · · Lg̃mX

′
r1

· · · · ·
Lg̃1X

′
r`
· · · Lg̃mX

′
r`

 = I .

Changing f, g1, . . . , gm into the vector fields f̃ , g̃1, . . . , g̃m
has the effect, on the normal form (3), (4), . . . , (5), of
changing aj(x) + bj(x)u into vj , for i = 1, . . . , `. A
consequence of this is that, in the new coordinates (z, ξ),
the vector field f̃ appears decomposed as

f̃(z, ξ) =

(
f0(z, ξ)
f1(ξ)

)
from which it is seen that the distribution ∆ is invariant
under f̃ .

This is not the case, though, for the vector fields g̃i. Invari-
ance under (all) the g̃i’s would occur if all Fi,h(Φ−1(x̃))’s
were independent of z. In this case, in fact, a decomposition
of the form

g̃i(z, ξ) =

(
g0,i(z, ξ)
g1,i(ξ)

)
would occur for all i.

Since we are interested in seeking conditions for the
Fi,h(Φ−1(x̃))’s to be independent of z, it is important to
establish conditions under which the distribution ∆ is invari-
ant also under all g̃i’s. Motivated by this, we exploit some
features of the algorithm for computing the largest controlled
invariant distribution in contained in ker(dh), known as the
Controlled Invariant Distribution Algorithm.5 Having set

G = span{g1, . . . , gm},

the algorithm in question begins with the codistribution

Ω1 = span{dh},

and generates, at each i > 1, a codistribution defined as

Ωi = Ωi−1 + Lf (Ωi−1 ∩G⊥) +

m∑
j=1

Lgj (Ωi−1 ∩G⊥) .

(12)
The following (classical) result holds (see, e.g., [7, Lemma

6.6.3]).
Lemma 1: Suppose there is an integer k∗ such that Ωk∗ =

Ωk∗+1 and set ∆∗ = Ω⊥k∗ . Suppose ∆∗ and ∆∗ + G are
nonsingular. Then ∆? is involutive and is the largest locally
controlled invariant distribution contained in ker(dh).

The following result presents a sufficient condition for
(span{dΞ})⊥ to be the largest controlled invariant distri-
bution contained in ker(dh).

5The analysis that follows is based on and extends to the present setting
the analysis carried out in [7, pp. 325-329].

Proposition 1: Assume system (1) is uniformly invertible
and the map Φ is a globally defined diffeomorphism. Suppose

Lgj (Ωi ∩G⊥) ⊂ Ωi for all j = 1, . . . ,m and all i ≥ 0.
(13)

Then

Ωi = span{dX1}+ span{dX2}+ · · ·+ span{dXi}. (14)

As a consequence, (span{dΞ})⊥ is the largest controlled
invariant distribution in ker(dh).

Proof: By definition, (14) is true for i = 1. We proceed
by induction. Suppose (14) holds for some i ≥ 1. It is known
that the right-hand side of (12) is invariant under a feedback
transformation of the form (10) with invertible β. Hence
Ωi+1 can be computed via the formula

Ωi+1 = Ωi + Lf̃ (Ωi ∩G⊥) +

m∑
j=1

Lg̃j (Ωi ∩G⊥)

in which the vector fields f̃ , g̃1, . . . , g̃m are the vector fields
defined in (11).

Using assumption (13), it is seen 6 that Lg̃j (Ωi∩G⊥) ⊂ Ωi
and hence Ωi+1 can be computed as

Ωi+1 = Ωi + Lf̃ (Ωi ∩G⊥) .

Any covector field in Ωi ∩G⊥ is a linear combination ω =∑i
k=1 γkdXk, with γ =

(
γ1 · · · γi

)
such that

0 = γ

dX1

· · ·
dXi

 g = γ

LgX1

· · ·
LgXi

 . (15)

Bearing in mind the properties of the various Xi(x)’s re-
called in section II, observe that

F11LgX
′
1 + LgX

′′
1 = 0

F21LgX
′
1 + F22LgX

′
2 + LgX

′′
2 = 0

Fi1LgX
′
1 + Fi2LgX

′
2 + · · ·+ FiiLgX

′
i + LgX

′′
i = 0

from which it can be seen that the space of solutions γ of
(15) is spanned by the rows of a matrix of the form

F11 M1 0 0 · · · 0 0
F21 0 F22 M2 · · · 0 0
· · · · · · · · ·
Fi1 0 Fi2 0 · · · Fii Mi

 (16)

in which, for 1 ≤ 1 ≤ r1 − 1, all Fi,h’s are empty
and Mi is an identity matrix of dimension m, while, for
rj ≤ i ≤ rj+1 − 1 with j = 1, . . . , ` − 1, the only non-
empty blocks are Fi,r1 , Fi,r2 , . . . , Fi,rj and Mi is an identity
matrix of dimension mj := m −m1 − . . . −mj .7 Clearly,

6If ω is a covector field in Ωi ∩ G⊥, we have Lg̃jω =∑m
k=1(Lgkω)βkj+

∑m
k=1 <ω, gk> dβkj =

∑m
k=1(Lgkω)βkj because

<ω, gk>= 0. Hence Lg̃j (Ωi ∩ G⊥) ⊂
∑m
k=1 Lgk (Ωi ∩ G⊥). Since β

is invertible, also the reverse inclusion holds.
7An easy, but a bit tedious, calculation shows that number of rows of the

matrix (16), linearly independent by construction, is exactly equal to the
dimension of the space of solutions of (15). In fact, for 1 ≤ i ≤ r1 − 1,
the space of solutions of (15) has dimension m · i, while, for rj ≤ i ≤
rj+1−1 with j = 1, . . . , `−1, the space of solutions of (15) has dimension
(m−m1−. . .−mj)·i+(r1−1)m1+. . .+(rj−1)mj . Such dimensions
coincide, for each i, with the number of rows of the matrix (16).
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linear combinations with coefficients taken from the first i−1
block-rows of the matrix (16) generate covector fields that
are in

∑i−1
k=1 span{dXk} = Ωi−1 and hence not relevant

for the computation of Ωi+1. Thus, the only covector fields
of interest in Ωi ∩ G⊥ are those resulting from coefficients
taken in the last block-row. Such covector fields span a
codistribution

Ω = span{ω1, ω2, . . . , ωmj
} (17)

in which 8

ωp = e>p
[
Fi1dX

′
1 + Fi2dX

′
2 + FiidX

′
i + dX ′′i

]
where ep is a vector whose p-th entry is 1 while all others
are 0. That is, any covector ω ∈ Ω can be expressed as ω =∑mj

p=1 cpωp. Recalling the formula Lf̃ (cpωp) = (Lf̃cp)ωp +
cpLf̃ωp we see that

Lf̃ (cpωp)=(Lf̃cp)ωp + cpLf̃
[∑i

k=1 e
>
p FikdX

′
k + e>p dX

′′
i

]
=(Lf̃cp)ωp +

∑i
k=1 cpe

>
p (Lf̃Fik)dX ′k

+
∑i
k=1 cpe

>
p FikdLf̃X

′
k + cpe

>
p dLf̃X

′′
i .

The covector fields in the first two terms are in Ωi and hence
not relevant for the computation of Ωi+1. So long as the
covector fields in the third term are concerned, observe that
the choice of α is such that Lf̃X

′
k = 0 for k = 1, . . . , i.9 As

a consequence, we see that

Ωi+1 = Ωi + Lf̃ (Ωi ∩G⊥) = Ωi + span{dLf̃X
′′
i } .

Finally, observe that

Lf+gαX
′′
i = LfX

′′
i + LgX

′′
i α

= LfX
′′
i −

∑i
k=1 FikLgX

′
kα

= LfX
′′
i +

∑i
k=1 FikLfX

′
k

−
∑i
k=1 FikLfX

′
k −

∑i
k=1 FikLgX

′
kα

= Xi+1 −
∑i
k=1 FikLf+gαX

′
k

= Xi+1

(18)
because the choice of α yields Lf+gαX

′
k = 0 for all k =

1, . . . , i. Thus, it is seen that, if assumption (13) holds,

Ωi+1 = Ωi + span{dXi+1}

and this completes the proof.
We have show in this way that, if assumption (13) holds,

the distribution ∆ is the largest controlled invariant distri-
bution in ker(dh). We are not done yet, though, because
we have not formally shown that the Fi,h(Φ−1(x̃))’s are
independent of z nor that the Fi,h(Φ−1(x̃))’s are independent
of Xk for k > i, which are the properties indicated in (7) and

8We tacitly assume i ≥ r1, because for i < r1 we simply have Ωi ∩
G⊥ = Ωi, and we observe that, for rj ≤ i ≤ rj+1 − 1 with j =
1, . . . , `− 1, the the number of rows of dX′′i is mj .

9Strictly speaking, we have shown before that the choice of α is such
that Lf̃X

′
rj

= 0. However, the only Xk(x)’s for which the component
X′k(x) is nonempty are precisely the Xrj (x)’s and thus we can claim that
Lf̃X

′
k = 0 for all k.

(8). However, it is possible to prove that both such properties
are again consequences of assumption (13).

Proposition 2: Assume system (1) is uniformly invertible
and the map Φ is a globally defined diffeomorphism. Prop-
erty P holds if, and only if, (13) holds.

Proof: The “ if ” part. We know from the previous
proposition that (13) implies (14). Hence we can evaluate
Ωi ∩ G> as done in the proof of this proposition. Arguing
as in this proof, it is seen that assumption (13) implies

Lg̃jΩ ⊂ Ωi (19)

where Ω is the codistribution (17). Now

Lg̃j (cpωp)

= (Lg̃jcp)ωp + cpLg̃j
[∑i

k=1 e
>
p FikdX

′
k + e>p dX

′′
i

]
= (Lg̃jcp)ωp +

∑i
k=1 cpe

>
p (Lg̃jFik)dX ′k

+
∑i
k=1 cpe

>
p FikdLg̃jX

′
k + cpe

>
p dLg̃iX

′′
i .

The covector fields in the first two terms are in Ωi and hence
not relevant in the fulfillment of (19). The vector fields in
the third term are all zero, because the choice of β is such
that 

Lg̃X
′
1

Lg̃X
′
2

· · ·
Lg̃X

′
`

 = I. (20)

Thus, (19) holds if and only if

dLg̃jX
′′
i ∈ Ωi =

i∑
k=1

span{dXk} . (21)

Moreover, using again the property (20) it is seen that

Lg̃X
′′
i = (LgX

′′
i )β = −

∑i
k=1 Fik(LgX

′
k)β

= −
∑i
k=1 FikLg̃X

′
k

= −
(
Fi1 Fi2 · · · Fii 0 · · · 0

)
.
(22)

Condition (21) constraints the differentials of Fi1, . . . , Fii
to be in

∑i
k=1 span{dXk}. Hence, such functions cannot

depend on z and Xi+1, . . . , Xk∗ , and this completes the
proof of the “ if ” part.

The “ only if ” part. We show that, if Property P holds
and Ωi = span{dX1} + · · · + span{dXi}, then (13) holds
and hence, as shown in Proposition 1, Ωi+1 = span{dX1}+
· · · + span{dXi+1}. Since Ω1 = span{dX1} by definition,
this provides the proof of the “ only if ” part.

We know from the proof of Proposition 1 that any covector
in ω ∈ Ωi ∩ G⊥ can be written as ω = ω′ + ω′′, with
ω′ ∈ Ωi−1 and ω′′ ∈ Ω where Ω is the codistribution (17).
By construction, Lg̃jω

′ ∈ Ωi. On the other hand, to evaluate
Lg̃jω

′′ we can use the same arguments used above in the
proof of the “ if ” part, and conclude that

Lg̃jω
′′ = ω̃′ + ω̃′′

where ω̃′ ∈ Ωi and ω̃′′ ∈ span{dLg̃jX ′′i }. Thus, in
summary Lg̃jω has a component ω′ ∈ Ωi and a component
ω′′ ∈ span{dLg̃jX ′′i }. If Property P holds, the functions
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Fi1, . . . , Fii only depend on X1, . . . , Xi. Hence, looking
at (22) we observe that also span{dLg̃jX ′′i } ∈ Ωi. Thus
Lg̃jω ∈ Ωi and this concludes the proof of the claim.

V. CONCLUSIONS

In some recent papers, it has been shown that vari-
ous relevant feedback design problems can be successfully
addressed, for an invertible MIMO input-affine nonlinear
system, if the systems in question have a normal forms in
which certain coefficients depend on the components of the
state in a special way. In view of this, it is important to be
able to determine whether or not a system possesses a normal
form of this kind, by means of direct tests on the data that
characterize the model of the system, skipping the actual
construction of a normal form. If fact, in the design of some
robust feedback laws, such as the one proposed in [16], it is
only needed to know that the system possesses a normal form
of this kind and the values the certain “structural” integers
(related to the structure algorithm)10 but not the specific
functions that appear in the normal form. Hence, for the
design of such laws, the explicit construction of the normal
form is not needed.

In a recent paper [17], it was shown that the existence of
a normal form of this kind is implied by certain hypotheses
introduced in [2]. Specifically, it was shown that such normal
for exists if the vector fields g̃1, . . . , g̃m defined in (11) are
such that [g̃i, τ ] ∈ ∆ for all τ ∈ ∆ = span{dΞ}⊥ and

LgiL
q
fLgjL

s
fh(x) = 0

i, j = 1, . . . ,m
0 ≤ q + s ≤ r` .

In the present paper, we present an alternative approach
and we identify a necessary and sufficient condition for the
existence of a normal form of this kind. Specifically, the
condition in question is that the sequence of codistributions
Ω1, . . . ,Ωi, . . . generated by means of the so-called con-
trolled invariant distribution algorithm (12) is such that the
property indicated in the crucial assumption (13) holds.
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