
An Adaptive Distributed Observer for A Class of Discrete-time
Uncertain Linear Systems over Acyclic Digraphs

Tao Liu and Jie Huang

Abstract— This paper proposes an adaptive distributed ob-
server for a class of discrete-time uncertain linear leader
systems. The leader system is assumed to be neutrally stable
with unknown parameters in the system matrix. Such a leader
system can produce multi-tone sinusoidal signals with unknown
frequencies, magnitudes, and phases. Under the assumption
that the digraph of the communication network is a spanning
tree with the leader system as the root, the proposed adaptive
distributed observer is shown to be capable of estimating over
the communication network not only the leader’s state, but also
the unknown parameters of the leader’s system matrix.

I. INTRODUCTION

The research of multi-agent control systems is constantly
expanding its frontiers [2], [7], [13], [14], [15], [20]. A
typical multi-agent system consists of a leader producing a
class of command signals and a group of followers whose
outputs asymptotically track the command signals of the
leader in a coordinated fashion [3], [4], [5], [12]. The leader
and the followers are called agents and the communications
among different agents are described by a communication
network. A control law that satisfies the communication
constraints imposed by the communication network is called
a distributed control law. An effective approach for designing
a distributed control law is called the distributed observ-
er based approach, which contains a distributed dynamic
compensator called the distributed observer that is able to
estimate the leader’s state over the communication network
and pass the estimated state of the leader to each follower’s
controller. The first distributed observer was developed in
[16] for studying the cooperative output regulation problem
of linear multi-agent systems assuming every follower can
access the dynamics of the leader. Later in [1], the distributed
observer was further rendered the capability of estimating
and transmitting not only the leader’s state but also the
leader’s dynamics assuming only the leader’s children know
the leader’s dynamics. Such a distributed observer is called
an adaptive distributed observer for a known leader. In
practice, the leader’s dynamics may contain some unknown
parameters. In this case, none of the followers know the
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exact dynamics of the leader. Thus, reference [11] proposed
a model-free distributed dynamic compensator that can esti-
mate the leader’s state without using the exact dynamics of
the leader. Such a distributed dynamic compensator is called
an adaptive distributed observer for an uncertain leader. Ref-
erence [17] further proposed an adaptive distributed observer
for an uncertain leader and gave a sufficient condition on the
convergence of the estimated unknown parameters to their
actual values. Other relevant results can be found in [18]
and [19].

All the references mentioned above focus on the design
of distributed observers for continuous-time systems. Since
2016, the distributed observers have also been developed for
discrete-time systems. For example, the discrete-time coun-
terpart of the continuous-time adaptive distributed observer
for a known leader was established in [6]. Nevertheless, the
discrete-time counterpart of the adaptive distributed observer
for an uncertain leader has not been touched so far.

This paper aims to develop an adaptive distributed ob-
server for a class of discrete-time linear leader systems,
which are neutrally stable with unknown parameters in the
system matrix. Such a leader system can produce a multi-
tone sinusoidal signal with unknown frequencies, magni-
tudes, and phases. Motivated by our recent study on the
exponential estimation problem of the unknown frequencies
of discrete-time multi-tone sinusoidal signals in [9] and [10],
we propose an adaptive distributed observer for the uncertain
leader system. Under the assumption that the digraph of the
communication network is a spanning tree with the leader
system as the root, we show that the proposed adaptive
distributed observer is capable of providing for each follower,
not only an exponentially convergent estimate of the leader’s
state, but also an exponentially convergent estimate of the
unknown parameters of the leader’s uncertain system matrix.
Compared with the continuous-time adaptive distributed ob-
servers in [11], [17], [19], which rely on the leader’s state,
one distinct feature of the proposed discrete-time adaptive
distributed observer is that it only relies on the leader’s output
and thus it works when only the leader’s output is available.
Compared with the continuous-time output-based adaptive
distributed observer in [18], which requires to transmit the
estimated states among the followers, the proposed discrete-
time adaptive distributed observer only requires to transmit
the estimated outputs of the leader among the followers.

The rest of this paper is organized as follows. We first
formulate the problem in Section II. Then, we establish a
so-called identified leader system in Section III. Our design
of the adaptive distributed observer is presented in Section
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IV and some concluding remarks are drawn in Section V.

Notation. R denotes the set of real numbers and Z+ denotes
the set of nonnegative integers. col(x1, . . . , xn) denotes a
column vector in Rn whose ith component is xi ∈ R, i =
1, . . . , n. For any x ∈ Rn, ‖x‖ denotes the Euclidean norm
of x. A discrete-time signal x(t) ∈ Rn is said to be bounded
over Z+ if ‖x(t)‖ ≤ M,∀ t ∈ Z+ for some finite number
M , and is said to be persistently exciting (PE), if there exist
a positive integer T and a positive constant α such that∑t0+T−1
t=t0

x(t)x(t)T ≥ αIn,∀ t0 ∈ Z+.

II. PROBLEM FORMULATION

Consider the following multi-tone sinusoidal signal:

y0(t) =

n∑
i=1

Ωi sin(ωit+ σi), t ∈ Z+ (1)

where, for i = 1, . . . , n, 0 < ωi < π are n distinct unknown
frequencies, Ωi > 0 are unknown amplitudes, and −π ≤
σi ≤ π are unknown phases.

First, let ω = col(ω1, ω2, . . . , ωn). It is easy to show that
y0(t) can be generated by the following system:

τ(t+ 1) = S̄(ω)τ(t), y0(t) = c̄τ(t), t ∈ Z+ (2)

with c̄ =
[

1 0 1 0 · · · 1 0
]
∈ R1×2n,

S̄(ω) = block diag
{[

cosωi sinωi
− sinωi cosωi

]
, i = 1, . . . , n

}
and the following initial condition:

τ(0) = col (Ω1 sinσ1,Ω1 cosσ1, . . . ,Ωn sinσn,Ωn cosσn) .

Next, notice that the characteristic polynomial of the
system matrix S̄(ω) of (2) is given by
n∏
i=1

(
s2 − (2 cosωi)s+ 1

)
=: s2n + θ1s

2n−1 + θ2s
2n−2+

· · ·+ θns
n + · · ·+ θ2s

2 + θ1s+ 1

which establishes a one-to-one correspondence between the
n unknown frequencies ω and the n unknown parameters
θ = col(θ1, θ2, . . . , θn).

Since system (2) is observable, there exists a nonsingular
matrix P ∈ R2n×2n that defines a coordinate transformation
v0(t) = Pτ(t), and, under which, system (2) is transformed
into the following observable canonical form:

v0(t+ 1) = S(θ)v0(t), y0(t) = cv0(t), t ∈ Z+ (3)

with c =
[

1 0 · · · 0
]
∈ R1×2n and

S(θ) =

[
0 I2n−1
0 0

]
−
[
θ1 · · · θn · · · θ1 1

]T
c ∈ R2n×2n.

As pointed out in the introduction, the distributed observer
arises in studying the cooperative output regulation problem
of linear multi-agent systems with one leader and N fol-
lowers [16]. Like in [16], we can describe the communi-
cation network for this leader-follower multi-agent system

of (N + 1) agents by a digraph Ḡ = {V̄, Ē}, where V̄ =
{0, 1, . . . , N} is called the node set and Ē ⊆ V̄ × V̄ is called
the edge set. We associate node 0 with the leader system
(3) and node i, i = 1, . . . , N , with the ith follower. Then,
(j, i) ∈ Ē , i 6= j, indicates that ith agent can access the
information of the jth agent, and agent j is called a neighbor
of agent i. We define N̄i := {j ∈ V̄ : (j, i) ∈ Ē} as the
neighbor set of agent i.

Now we are ready to formulate the problem.
Problem 1: Given the digraph Ḡ and the leader system (3)

generating the output y0(t) of the form (1), design, for each
follower a dynamic compensator of the following form:

ζi(t+ 1) = fi
(
ζi(t), {yj(t) : j ∈ N̄i}

)
θ̂i(t+ 1) = gi

(
θ̂i(t), ζi(t), {yj(t)− yi(t) : j ∈ N̄i}

)
yi(t) = hi

(
ζi(t), θ̂i(t)

)
vi(t) = li

(
ζi(t), θ̂i(t)

)
, i = 1, . . . , N (4)

where, for i = 1, . . . , N , ζi(t) ∈ Rnζ with nζ being
some positive integer, θ̂i(t) ∈ Rn, yi(t) ∈ R, vi(t) ∈
R2n, and fi(·),gi(·), hi(·), li(·) are some globally de-
fined smooth functions, such that for any initial conditions(
ζi(0), θ̂i(0)

)
∈ Rnζ × Rn, i = 1, . . . , N , the solution of

system (4) is bounded over Z+ and satisfies

lim
t→∞

(
θ̂i(t)− θ

)
= 0, i = 1, . . . , N.

lim
t→∞

(yi(t)− y0(t)) = 0, i = 1, . . . , N

lim
t→∞

(vi(t)− v0(t)) = 0, i = 1, . . . , N

all exponentially.
Remark 1: If Problem 1 is solvable, then the distributed

dynamic compensator (4) is called an adaptive distributed
observer for the uncertain linear leader system (3).

III. THE IDENTIFIED LEADER SYSTEM

Since the system matrix S(θ) of the leader system (3)
contains the unknown parameters θ and hence cannot be
used, the design methodology of an adaptive distributed
observer for an uncertain leader system is entirely different
from that of a distributed observer for a known leader system.
Thus, we will first establish, in this section, another system
that is capable of recovering the unknown parameters θ and
the state v0(t) of the leader system (3) by using only the
output y0(t) of the leader system (3). We call this system
the identified leader system and will carry out our design
of the adaptive distributed observer based on this identified
leader system in the next section. The main results of this
section are summarized from [9] and [10].

First, let A =

[
0 I2n−1
0 0

]
∈ R2n×2n,b =

[
0
1

]
∈

R2n and let d ∈ R2n be such that the matrix D := A− dc
is Schur. Design two filters for the output y0(t) of the leader
system (3) as follows:

η0(t+ 1) = Dη0(t) + (d− b) y0(t) (5)
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ξ0(t+ 1) = Dξ0(t)− by0(t). (6)

Then, based on the state ξ0(t) of the filter (6), further define

Ξ0(t) :=
[

Ξ01(t) Ξ02(t) · · · Ξ0n(t)
]
∈ R2n×n

Ξ0j(t) :=

{(
Dj +D2n−j) ξ0(t), j = 1, . . . , n− 1

Dnξ0(t), j = n.

Lemma 1 (Lemma 2 of [9]): Given system (3), design t-
wo filters (5) and (6), and define

ṽ0(t) := η0(t) + Ξ0(t)θ − v0(t) ∈ R2n. (7)

Then, for any initial conditions (v0(0), η0(0), ξ0(0)) ∈ R2n×
R2n × R2n, limt→∞ ṽ0(t) = 0 exponentially.

Motivated by Lemma 1, we propose to estimate v0(t) by
v̂0(t) as follows:

v̂0(t) := η0(t) + Ξ0(t)θ̂0(t) ∈ R2n (8)

and propose to estimate y0(t) by ŷ0(t) as follows:

ŷ0(t) := c
(
η0(t) + Ξ0(t)θ̂0(t)

)
∈ Rn (9)

where, in (8) and (9), θ̂0(t) ∈ Rn is an estimate of the
unknown parameters θ, and is updated according to the
following adaptation law:

θ̂0(t+1) = θ̂0(t)+
γ1φ0(t)

1 + γ2φ0(t)Tφ0(t)
(y0(t)− ŷ0(t)) (10)

in which, 0 < γ1 ≤ 2γ2 are two constants and

φ0(t) := (cΞ0(t))
T ∈ Rn. (11)

Now we draw the main conclusion on the system com-
posed of (5), (6), and (10), into a proposition, which follows
from Theorem 2 of [10] and the above Lemma 1.

Proposition 1: Consider system (3) generating the output
y0(t) of the form (1) and the system composed of (5), (6),
and (10). For any initial conditions

(
η0(0), ξ0(0), θ̂0(0)

)
∈

R2n × R2n × Rn, the solution of the system composed of
(5), (6), and (10), is bounded over Z+ and satisfies

lim
t→∞

(
θ̂0(t)− θ

)
= 0

lim
t→∞

(ŷ0(t)− y0(t)) = 0

lim
t→∞

(v̂0(t)− v0(t)) = 0

all exponentially, where ŷ0(t) is given in (9) and v̂0(t) is
given in (8).

From Proposition 1, we see that the system composed
of (5), (6), and (10), has the capability of recovering the
unknown parameters, the output, and the state of the leader
system (3). Thus, we call this system the identified leader
system for the uncertain leader system (3).

IV. SOLVABILITY OF THE PROBLEM

Having obtained the so-called identified leader system, we
will first show, in this section, that the solvability of Problem
1 reduces to the solvability of a leader-following consensus
problem with the identified leader system composed of
(5), (6), and (10), as the leader and the proposed adaptive
distributed observer as followers. Then, we will further solve
this leader-following consensus problem that leads to the
solution of Problem 1. As the identified leader system is
a known system, we have converted a seemingly intractable
problem into a tractable problem.

To begin with, we make the following assumption on
the digraph Ḡ describing the communication network of the
leader-follower multi-agent system.

Assumption 1: The digraph Ḡ is a spanning tree with node
0 as the root.

Let Ā := [aij ]
N
i,j=0 ∈ R(N+1)×(N+1) denote the weighted

adjacency matrix of the digraph Ḡ, where aii = 0, and,
for i 6= j, aij > 0 if and only if (j, i) ∈ Ē . Then, under
Assumption 1, we have

∑N
j=0 aij > 0, i = 1, . . . , N.

Define wij :=
aij∑N
j=0 aij

, i = 1, . . . , N, j = 0, 1, . . . , N.

Then, for i = 1, . . . , N , we construct two distributed filters
of the following forms:

ηi(t+ 1) = Dηi(t) + (d− b)

N∑
j=0

wijyj(t) (12)

ξi(t+ 1) = Dξi(t)− b

N∑
j=0

wijyj(t) (13)

where, for i = 1, . . . , N , yi(t) is an estimate of y0(t) by the
ith follower and is defined as follows:

yi(t) := c
(
ηi(t) + Ξi(t)θ̂i(t)

)
∈ R (14)

in which,

Ξi(t) :=
[

Ξi1(t) Ξi2(t) · · · Ξin(t)
]
∈ R2n×n

Ξij(t) :=

{(
Dj +D2n−j) ξi(t), j = 1, . . . , n− 1

Dnξi(t), j = n.

Moreover, for i = 1, . . . , N , θ̂i(t) ∈ Rn in the definition of
yi(t) in (14) is an estimate of the unknown parameters θ by
the ith follower, and is updated according to the following
distributed adaptation law:

θ̂i(t+1) = θ̂i(t)+
γ1φi(t)

1 + γ2φi(t)Tφi(t)

N∑
j=0

wij (yj(t)− yi(t))

(15)
where 0 < γ1 ≤ 2γ2 are two constants and φi(t) :=
(cΞi(t))

T ∈ Rn. Also, for i = 1, . . . , N , define

vi(t) := ηi(t) + Ξi(t)θ̂i(t) ∈ R2n (16)

as an estimate of v0(t) by the ith follower.
Remark 2: We call the system composed of (12), (13),

and (15), an adaptive distributed observer candidate for the
leader system (3), which is in the form of (4) with nζ = 4n,

407



ζi(t) = col(ηi(t), ξi(t)), yi(t) given by (14), and vi(t) given
by (16), i = 1, . . . , N . If Problem 1 is solvable, then the
adaptive distributed observer candidate is further called an
adaptive distributed observer.

Next, we show that the solvability of Problem 1 can be
converted to that of a leader-following consensus problem
with the identified leader system composed of (5), (6), and
(10), as the leader and the adaptive distributed observer
candidate composed of (12), (13), and (15), as N followers.

Proposition 2: Under Assumption 1, Problem 1 is solv-
able if

lim
t→∞

(ηi(t)− η0(t)) = 0, i = 1, . . . , N (17)

lim
t→∞

(ξi(t)− ξ0(t)) = 0, i = 1, . . . , N (18)

lim
t→∞

(
θ̂i(t)− θ̂0(t)

)
= 0, i = 1, . . . , N (19)

all exponentially.
Proof: First, by Proposition 1, we have

lim
t→∞

(
θ̂0(t)− θ

)
= 0 (20)

lim
t→∞

(ŷ0(t)− y0(t)) = 0 (21)

both exponentially. Hence, from (19) and (20), we have

lim
t→∞

(
θ̂i(t)− θ

)
= 0, i = 1, . . . , N (22)

exponentially.
Next, note that (18) implies

lim
t→∞

(Ξi(t)− Ξ0(t)) = 0, i = 1, . . . , N (23)

exponentially. Since the matrix D is Schur and y0(t) is
bounded over Z+, the state ξ0(t) of the filter (6) remains
bounded over Z+ and, as a linear function of ξ0(t), Ξ0(t)
also remains bounded over Z+. Then, by (23), Ξi(t), i =
1, . . . , N , are all bounded over Z+.

From the definitions of yi(t) in (14) and ŷ0(t) in (9), we
have, for i = 1, . . . , N ,

yi(t)− ŷ0(t)

= c
(
ηi(t)− η0(t) + Ξi(t)

(
θ̂i(t)− θ̂0(t)

)
+ (Ξi(t)− Ξ0(t)) θ̂0(t)

)
. (24)

By (17), (19), (23), and the fact that θ̂0(t) and Ξi(t), i =
1, . . . , N , are bounded over Z+, we have

lim
t→∞

(yi(t)− ŷ0(t)) = 0, i = 1, . . . , N (25)

exponentially. Thus, from (21) and (25), we have

lim
t→∞

(yi(t)− y0(t)) = 0, i = 1, . . . , N (26)

exponentially.
Now, from the definitions of vi(t), i = 1, . . . , N, in (16)

and ṽ0(t) in (7), we have, for i = 1, . . . , N ,

vi(t)− v0(t)

= ηi(t)− η0(t) + Ξi(t)
(
θ̂i(t)− θ

)

+ (Ξi(t)− Ξ0(t)) θ + ṽ0(t).

In particular, by Lemma 1, limt→∞ ṽ0(t) = 0 exponentially.
Thus, from (17), (22), (23), and the fact that Ξi(t), i =
1, . . . , N , are bounded over Z+, we have

lim
t→∞

(vi(t)− v0(t)) = 0, i = 1, . . . , N (27)

exponentially.
Finally, combining (22), (26), and (27) shows the solvabil-

ity of Problem 1. �
As a result of Proposition 2, in what follows, we will focus

on solving the leader-following consensus problem of the
identified leader system and the adaptive distributed observer
candidate. For this purpose, we first define, for i = 1, . . . , N ,
the following errors between the adaptive distributed observ-
er candidate and the identified leader system:

η̃i(t) = ηi(t)− η0(t), ξ̃i(t) = ξi(t)− ξ0(t)

θ̃i(t) = θ̂i(t)− θ̂0(t), Ξ̃i(t) = Ξi(t)− Ξ0(t). (28)

Then, from (24), we have

yi(t)− ŷ0(t) = c
(
η̃i(t) + Ξi(t)θ̃i(t) + Ξ̃i(t)θ̂0(t)

)
.

It is noted that, under Assumption 1, by appropriately
labeling the nodes i, i = 1, . . . , N , we have,

∑N
j=0 wij =∑i−1

j=0 wij = 1. Thus, for i = 1, . . . , N , the error dynamics
of the distributed filter (12) are governed by

η̃i(t+ 1)

= Dη̃i(t) + (d− b) (1− wi0)(ŷ0(t)− y0(t))

+ (d− b)

i−1∑
j=1

wij(yj(t)− ŷ0(t))

= Dη̃i(t) + (d− b) (1− wi0)(ŷ0(t)− y0(t))

+ (d− b) c

i−1∑
j=1

wij

(
η̃j(t) + Ξj(t)θ̃j(t) + Ξ̃j(t)θ̂0(t)

)
,

(29)

the error dynamics of the distributed filter (13) are governed
by

ξ̃i(t+ 1)

= Dξ̃i(t)− b(1− wi0)(ŷ0(t)− y0(t))

− b

i−1∑
j=1

wij(yj(t)− ŷ0(t))

= Dξ̃i(t)− b(1− wi0)(ŷ0(t)− y0(t))

− bc

i−1∑
j=1

wij

(
η̃j(t) + Ξj(t)θ̃j(t) + Ξ̃j(t)θ̂0(t)

)
, (30)

and the error dynamics of the distributed adaptation law (15)
are governed by

θ̃i(t+ 1)

= θ̃i(t) +
γ1φi(t)

1 + γ2φi(t)Tφi(t)

i−1∑
j=0

wij (yj(t)− yi(t))
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− γ1φ0(t)

1 + γ2φ0(t)Tφ0(t)
(y0(t)− ŷ0(t))

= θ̃i(t)−
γ1φi(t)

1 + γ2φi(t)Tφi(t)
(yi(t)− ŷ0(t))

+
γ1φi(t)

1 + γ2φi(t)Tφi(t)

i−1∑
j=0

wij (yj(t)− ŷ0(t))

− γ1φ0(t)

1 + γ2φ0(t)Tφ0(t)
(y0(t)− ŷ0(t))

=

(
In −

γ1φi(t)φi(t)
T

1 + γ2φi(t)Tφi(t)

)
θ̃i(t)

− γ1φi(t)

1 + γ2φi(t)Tφi(t)
c
(
η̃i(t) + Ξ̃i(t)θ̂0(t)

)
+

γ1φi(t)

1 + γ2φi(t)Tφi(t)

i−1∑
j=1

wij (yj(t)− ŷ0(t))

+
γ1φi(t)wi0

1 + γ2φi(t)Tφi(t)
(y0(t)− ŷ0(t))

− γ1φ0(t)

1 + γ2φ0(t)Tφ0(t)
(y0(t)− ŷ0(t)). (31)

Before proceeding, we present another technical lemma
whose proof is omitted due to the space limit.

Lemma 2: Suppose that φ(t) ∈ Rn and φ̄(t) ∈ Rn are
bounded over Z+ and are such that limt→∞

(
φ̄(t)− φ(t)

)
=

0. Then, φ̄(t) is PE if and only if φ(t) is PE.
Proposition 3: Given the digraph Ḡ and the leader system

(3) generating the output y0(t) of the form (1), under
Assumption 1, the identified leader system composed of (5),
(6), and (10), and the adaptive distributed observer candidate
composed of (12), (13), and (15), have the property that, for
any initial conditions

(
ηi(0), ξi(0), θ̂i(0)

)
∈ R2n × R2n ×

Rn, i = 0, 1, . . . , N , their solutions satisfy

lim
t→∞

(ηi(t)− η0(t)) = 0, i = 1, . . . , N

lim
t→∞

(ξi(t)− ξ0(t)) = 0, i = 1, . . . , N

lim
t→∞

(
θ̂i(t)− θ̂0(t)

)
= 0, i = 1, . . . , N.

all exponentially.
Proof: First, we note that the filter (6) is a stable linear
system subject to a bounded input y0(t). Thus, for any
ξ0(0) ∈ R2n, its state ξ0(t) remains bounded over Z+. Since
φ0(t) in (11) is a linear function of ξ0(t), φ0(t) is also
bounded over Z+. In addition, by Proposition 1, we have

lim
t→∞

(
θ̂0(t)− θ

)
= 0 and lim

t→∞
(ŷ0(t)− y0(t)) = 0 (32)

both exponentially. Hence, θ̂0(t) is also bounded over Z+.
For i = 1, . . . , N , define η̃i(t), ξ̃i(t), θ̃i(t), and Ξ̃i(t) as

in (28), and put the error dynamics in (29), (30), and (31)
into the following compact forms, respectively:

η̃i(t+ 1) = Dη̃i(t) + ηdi,0(t) + ηdi,i−1(t) (33)

ξ̃i(t+ 1) = Dξ̃i(t)− ξdi,0(t)− ξdi,i−1(t) (34)

θ̃i(t+ 1) =

(
In −

γ1φi(t)φi(t)
T

1 + γ2φi(t)Tφi(t)

)
θ̃i(t)

+ θdi,0(t) + θdi,i−1(t)− θdi,i(t). (35)

where, for i = 1, . . . , N ,

ηdi,0(t) = (d− b) (1− wi0)(ŷ0(t)− y0(t))

ηdi,i−1(t) = (d− b) c

i−1∑
j=1

wij

(
η̃j(t) + Ξj(t)θ̃j(t)

+ Ξ̃j(t)θ̂0(t)

)
ξdi,0(t) = b(1− wi0)(ŷ0(t)− y0(t))

ξdi,i−1(t) = bc

i−1∑
j=1

wij

(
η̃j(t) + Ξj(t)θ̃j(t) + Ξ̃j(t)θ̂0(t)

)
θdi,0(t) =

γ1φi(t)wi0
1 + γ2φi(t)Tφi(t)

(y0(t)− ŷ0(t))

− γ1φ0(t)

1 + γ2φ0(t)Tφ0(t)
(y0(t)− ŷ0(t))

θdi,i−1(t) =
γ1φi(t)

1 + γ2φi(t)Tφi(t)

i−1∑
j=1

wij (yj(t)− ŷ0(t))

θdi,i(t) =
γ1φi(t)

1 + γ2φi(t)Tφi(t)
c
(
η̃i(t) + Ξ̃i(t)θ̂0(t)

)
.

Consider the base case with i = 1. Systems (33) to (35)
become

η̃1(t+ 1) = Dη̃1(t) + ηd1,0(t) (36)

ξ̃1(t+ 1) = Dξ̃1(t)− ξd1,0(t) (37)

θ̃1(t+ 1) =

(
In −

γ1φ1(t)φ1(t)T

1 + γ2φ1(t)Tφ1(t)

)
θ̃1(t)

+ θd1,0(t)− θd1,1(t). (38)

In particular, since w10 = 1, ηd1,0(t) ≡ 0 and ξd1,0(t) ≡ 0.
Then, we have

lim
t→∞

η̃1(t) = 0 and lim
t→∞

ξ̃1(t) = 0 (39)

both exponentially, which further implies that

lim
t→∞

Ξ̃1(t) = 0 and lim
t→∞

(φ1(t)− φ0(t)) = 0 (40)

both exponentially. Since φ0(t) is bounded over Z+, so
is φ1(t), i.e., there exists ϕ1 > 0 such that ‖φ1(t)‖2 ≤
ϕ1,∀ t ∈ Z+. Moreover, by Lemma 3 of [9], φ0(t) is PE.
Hence, by Lemma 2, φ1(t) is also PE.

Now we consider system (38). By (32), (39), (40), and
the fact that θ̂0(t) and φ0(t) are bounded over Z+, we have
limt→∞ θd1,0(t) = 0 and limt→∞ θd1,1(t) = 0 both exponen-
tially. Further, since φ1(t) is PE and satisfies ‖φ1(t)‖2 ≤
ϕ1,∀ t ∈ Z+ and γ1 − 2γ2 ≤ 0 < 2

ϕ1
, by Lemma 1 of [10],

the following system:

θ̃1(t+ 1) =

(
In −

γ1φ1(t)φ1(t)T

1 + γ2φ1(t)Tφ1(t)

)
θ̃1(t)

is exponentially stable. Thus, system (38) is seen to be an
exponentially stable linear system subject to a bounded and
exponentially decaying input. By invoking Lemma 1 of [8],
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we have limt→∞ θ̃1(t) = 0 exponentially, which together
with (39) proves the base case.

Next, suppose for some integer k with 2 ≤ k ≤ N − 1,

lim
t→∞

η̃j(t) = 0, lim
t→∞

ξ̃j(t) = 0, lim
t→∞

θ̃j(t) = 0 (41)

all exponentially, for j = 1, . . . , k − 1. Then, consider
systems (33) to (35) specified to i = k as follows:

η̃k(t+ 1) = Dη̃k(t) + ηdk,0(t) + ηdk,k−1(t) (42)

ξ̃k(t+ 1) = Dξ̃k(t)− ξdk,0(t)− ξdk,k−1(t) (43)

θ̃k(t+ 1) =

(
In −

γ1φk(t)φk(t)T

1 + γ2φk(t)Tφk(t)

)
θ̃k(t)

+ θdk,0(t) + θdk,k−1(t)− θdk,k(t). (44)

Similar to the base case, from (32), we first have
limt→∞ ηdk,0(t) = 0 and limt→∞ ξdk,0(t) = 0 both
exponentially. Then that limt→∞ ηdk,k−1(t) = 0 and
limt→∞ ξdk,k−1(t) = 0 both exponentially follows from (41)
and the fact that ξ0(t) and θ̂0(t) are bounded over Z+. Thus,
we obtain from (42) and (43) that

lim
t→∞

η̃k(t) = 0 and lim
t→∞

ξ̃k(t) = 0 (45)

both exponentially, and hence

lim
t→∞

Ξ̃k(t) = 0 and lim
t→∞

(φk(t)− φ0(t)) = 0 (46)

both exponentially. By the boundedness of φ0(t), φk(t) is
bounded and there exists ϕk > 0 such that ‖φk(t)‖2 ≤
ϕk,∀ t ∈ Z+. In addition, since φ0(t) is PE by Lemma 3
of [9], by Lemma 2, φk(t) is also PE.

Now we consider system (44). By (32), (41), (45), (46),
and the fact that θ̂0(t) and φ0(t) are bounded over Z+,
we have limt→∞ θdk,0(t) = 0, limt→∞ θdk,k−1(t) = 0, and
limt→∞ θdk,k(t) = 0 all exponentially. Further, since φk(t) is
PE and satisfies ‖φk(t)‖2 ≤ ϕk,∀ t ∈ Z+ and γ1 − 2γ2 ≤
0 < 2

ϕk
, by Lemma 1 of [10], the following system:

θ̃k(t+ 1) =

(
In −

γ1φk(t)φk(t)T

1 + γ2φk(t)Tφk(t)

)
θ̃k(t)

is exponentially stable. Thus, again, we can view system
(44) as an exponentially stable linear system subject to a
bounded and exponentially decaying input. Then, it follows
from Lemma 1 of [8] that limt→∞ θ̃k(t) = 0 exponentially,
which together with (45) establishes the induction step.

The overall proof is completed by induction. �
Finally, the conjunction of Propositions 2 and 3 gives the

following main result of this paper.
Theorem 1: Under Assumption 1, Problem 1 is solvable

by an adaptive distributed observer composed of (12), (13),
and (15), with the estimated output yi(t) given by (14) and
the estimated state vi(t) given by (16).

V. CONCLUSION

We have proposed an adaptive distributed observer for a
discrete-time linear leader system, whose system matrix is
uncertain and neutrally stable. By assuming that the digraph
of the communication network is a spanning tree with the

leader system as the root, we have shown that the proposed
adaptive distributed observer is able to provide for each
follower not only an estimate of the leader’s state, but also an
estimate of the unknown parameters of the leader’s uncertain
system matrix. An extension of the result of this paper is to
consider the same problem over general digraphs.
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