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Abstract— The theory of adaptive learning-based control
currently suffers from a mismatch between its empirical
performance and the theoretical characterization of its per-
formance, with consequences for, e.g., the understanding of
sample efficiency, safety, and robustness. The linear quadratic
regulator with unknown dynamics is a fundamental adaptive
control setting with significant structure in its dynamics and
cost function, yet even in this setting the ratio between the
best-known regret or estimation error upper bounds and
their corresponding best-known lower bounds is unbounded
due to polylogarithmic factors in T . This gap has not been
closed in any of the many papers theoretically studying the
linear quadratic regulator with unknown dynamics, and indeed
similar gaps have plagued other areas of theoretical online
learning such as reinforcement learning. The contribution of
this paper is to close that gap by establishing a novel regret
upper-bound of Op(

√
T ) , and simultaneously establishes an

estimation error bound on the dynamics of Op(T
−1/4). The

two keys to our improved proof technique are (1) a more
precise upper- and lower-bound on the system Gram matrix by
establishing exact rates of eigenvalues from different sub-spaces
and (2) a self-bounding argument for the expected estimation
error of the optimal controller. Our technique may shed light
on removing polylogarithmic factors in other adaptive learning
problems.

I. INTRODUCTION

We have witnessed an increasing drive to apply adaptive
learning-based control in real-world data-driven systems such
as self-driving cars [1] and automatic robots [2]. Yet real-
world deployment comes with increased risks and costs,
and as such has been hindered by the field’s limited un-
derstanding of the gap between theoretical bounds and the
empirical performance of adaptive control. One line of attack
for this problem is to deepen our understanding of relatively
simple yet fundamental systems such as the linear quadratic
regulator (LQR) with unknown dynamics.

A. Problem statement

In the LQR problem, the system dynamics are represented
by a linear state-space model starting from t = 0:

xt+1 = Axt +But + εt, (1)

where xt ∈ Rn represents the state of the system at
time t and starts at some initial state x0, ut ∈ Rd rep-
resents the action or control applied at time t, εt

i.i.d.∼
N (0, σ2

εIn) is the system noise, and A ∈ Rn×n and
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B ∈ Rn×d are matrices determining the system’s linear
dynamics. The goal is to find an algorithm U that, at each
time t, outputs a control ut = U(Ht) that is computed
using the entire thus-far-observed history of the system
Ht = {xt, ut−1, xt−1, . . . , u1, x1, u0, x0} to maximize the
system’s function while minimizing control effort. The cost
of the LQR problem up to a given finite time T is quadratic:

J (U, T ) =

T∑
t=1

(
x⊤
t Qxt + u⊤

t Rut

)
(2)

for some known positive definite matrices Q ∈ Rn×n and
R ∈ Rd×d. When the system dynamics A and B are
also known and T → ∞, the cost-minimizing algorithm
is known: u∗

t = U∗(Ht) = Kxt, where K ∈ Rd×n is
the efficiently-computable solution to a system of equations
that only depend on A, B, Q, and R. Like the Gaussian
linear model in supervised learning, the aforementioned
LQR problem is foundational to control theory because it is
conceptually simple yet it describes some real-world systems
remarkably well. In fact, many systems are close to linear
over their normal range of operation, and linearity is an
important factor in system design [3].

In this paper we consider the case when the system
dynamics A and B are unknown. Intuitively, one might hope
that after enough time observing a system controlled by
almost any algorithm, one should be able to estimate A and
B (and hence K) fairly well and thus be able to apply an
algorithm quite close to U∗. Indeed the key challenge in
LQR with unknown dynamics, as in any adaptive control or
reinforcement learning problem, is to trade off exploration
(actions that help estimate A and B) with exploitation
(actions that minimize cost). We will quantify the cost of
an algorithm by its regret, which is the difference in cost
achieved by the algorithm and that achieved by the oracle
optimal controller U∗:

R(U, T ) = J (U, T )− J (U∗, T ).

A key goal of the theoretical study of adaptive control is
to accurately characterize the performance of controlled sys-
tems. Unfortunately, the best-known upper-bound for the re-
gret of LQR with unknown dynamics is Op(

√
T polylog(T )),

which contains a polylogarithmic factor of T that is not
present in the best-known lower-bound of Ωp(

√
T ). This

means that the ratio of the best-known upper-bound and
the best-known lower-bound, which we would like to be as
small as possible in order to claim a tight characterization
of realistic linear adaptive control performance, is currently
unbounded in T .
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B. Technical contribution

This paper for the first time proves that this ratio is
bounded by establishing a regret upper bound of Op(

√
T ),

where the improvement comes from a new bound on the
system Gram matrix combined with a novel self-bounding
argument for the expected estimation error. As part of our
proof, we show that the algorithm that achieves our optimal
rate of regret also produces data that can be used for
system identification (estimation of A and B) at a rate of∥∥∥Â−A

∥∥∥
2
=
∥∥∥B̂ −B

∥∥∥
2
= Op(T

−1/4), which is also tighter

than the best-known bounds of Op(T
−1/4 polylog(T )) for

data from an algorithm achieving Op(
√
T polylog(T )) regret.

The key to removing the extra polylog(T ) terms is to prove
a high-probability upper- and lower-bound (Γ̄ and Γ) on the
system Gram matrix, so that the norm of their ratio

∥∥Γ̄Γ−1
∥∥

is bounded by a constant. This idea is potentially applicable
to other adaptive learning problems with extra logarithmic
terms in their high-probability estimation bounds.

The following two key insights comprise the main techni-
cal innovation of this paper.

1) The first step in tightly bounding the Gram matrix
is to separately bound the eigenvalues for the sub-

spaces spanned by
[
In
K

]
and

[
−K⊤

Id

]
. In the sub-space

spanned by
[
In
K

]
, the eigenvalues of both Γ̄ and Γ

are Θ(T ). In the sub-space spanned by
[
−K⊤

Id

]
, the

eigenvalues of Γ are Θ(
√
T ), but the eigenvalues of

Γ̄ have a complicated expression of unclear order. See
Lemma 3 for the detailed expression and formal result.

2) The second step is to establish a self-bounding argu-
ment in Theorem 6 which, combined with Lemma 4,
proves the exact order of the complicated expression
is Θ(

√
T ). Our self-bounding argument, which es-

tablishes a connection between high-probability tail
bounds and expectations, is potentially applicable to
proofs in other contexts.

These two steps establish that the eigenvalues in all directions
of Γ̄ and Γ match, thereby bounding

∥∥Γ̄Γ−1
∥∥.

C. Related works

Many works have studied optimal rates of regret in online
and reinforcement learning problems. In bandits, matching
upper- and lower-bounds have been found as Θp(log (T ))
for the distribution-dependent regret [4]–[6] and Θp(

√
T )

for the distribution-free regret [6]–[8] .
For Markov decision processes (MDPs), most work has

considered finite state and action spaces. In this setting, a
matching upper- and lower-bound of Θp(log (T )) is known
for the distribution-dependent regret [9]–[11], while the
best-known upper-bound of Op(

√
T polylog(T )) for the

distribution-free regret [12]–[16] has a polylogarithmic gap
with the best-known lower-bound of Ωp(

√
T ) [12], [13].

The LQR system is an MDP with continuous state and
action spaces, and has received increasing interest recently.

For the LQR system with unknown dynamics, [17] proved
a Ωp(

√
T ) lower-bound for the regret along with an upper-

bound of Op(
√

T log( 1δ )) with probability 1 − δ under the
condition δ < 1/T , so that the upper-bound contains an im-
plicit additional log1/2(T ) term. Other Op(

√
T polylog(T ))

regret upper-bounds for LQR with unknown dynamics have
been established elsewhere [18]–[24] and some work has
tightened these bounds when the dynamics are partially
known [25]–[27], but to the best of our knowledge, no
existing work has matched the Ωp(

√
T ) lower-bound in the

case of unknown dynamics until the present paper. Our proof
borrows many insightful results and ideas from a number of
these prior works, especially [17], [24], [28], [30].

D. Algorithm and assumptions

Throughout the paper, we make only one assumption on
the true system parameters:

Assumption 1 (Stability). Assume the system is stabilizable,
i.e., there exists K0 such that the spectral radius (maximum
absolute eigenvalue) of A+BK0 is strictly less than 1.

Under Assumption 1, it is well known that there is a unique
optimal controller ut = Kxt [31] which can be computed
from A and B, where

K = −(R+B⊤PB)−1B⊤PA (3)

and P is the unique positive definite solution to the discrete
algebraic Riccati equation (DARE):

P = A⊤PA−A⊤PB(R+B⊤PB)−1B⊤PA+Q. (4)

In this paper we will consider the same algorithm as in
[24], reproduced here as Algorithm 1, which is a noisy
certainty equivalent control algorithm [17], [18].

In particular, at every round t, we generate an estimate
K̂t for K, and then apply control ut = K̂txt + ηt as a
substitute of the optimal unknown control ut = Kxt, where
ηt ∼ N (0, t−1/2Id) is a noise term whose variance shrinks
at a carefully chosen rate in t so as to rate-optimally trade
off exploration and exploitation. Note that Algorithm 1 is
step-wise and online, i.e., it does not rely on independent
restarts or episodes of any kind and does not depend on the
time horizon T . The two things it does rely on, which are
standard in the literature (see, e.g., [32]), are the knowledge
of a stabilizing controller K0 and an upper-bound CK on
the spectral norm of the optimal controller K; Cx and ση

are also inputs but can take any positive numbers.

E. Notation

Throughout our proofs, we use X ≲ Y (resp. X ≳ Y )
as shorthand for the inequality X ≤ CY (resp. X ≥ CY )
for some constant C. X ≂ Y means both X ≲ Y and X ≳
Y . We will almost always establish such relations between
quantities that (at least may) depend on T and show that
they hold with at least some stated probability 1−δ; in such
cases, we will always make all dependence on both T and δ
explicit, i.e., the hidden constant(s) C will never depend on
T or δ, though they may depend on any other parameters of
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Algorithm 1 Stepwise Noisy Certainty Equivalent Control
INPUT: Initial state x0, stabilizing control matrix K0,

scalars Cx > 0, CK > ∥K∥, ση > 0.
1: Let u0 = K0x0+η0 and u1 = K0x1+η1, with η0, η1

iid∼
N (0, σ2

ηId).
2: for t = 2, 3, . . . do
3: Compute

(Ât−1, B̂t−1) ∈ argmin
(A′,B′)

t−2∑
k=0

∥xk+1 −A′xk −B′uk∥
2

(5)
and if stabilizable, plug them into the DARE (Eqs. (3)
and (4)) to compute K̂t, otherwise set K̂t = K0.

4: If ∥xt∥ ≳ Cx log(t) or
∥∥∥K̂t

∥∥∥ ≳ CK , reset K̂t = K0.
5: Let

ut = K̂txt + ηt, ηt
iid∼ N (0, σ2

ηt
−1/2In) (6)

6: end

the system or algorithm, including A, B, Q, R, σ2
ϵ , σ2

η , K0,
Cx, CK .

F. Outline

For the remainder of this paper, we will primarily focus
on establishing a new Op

(
T−1/4

)
bound on the estimation

error of Ât, B̂t, and K̂t from Algorithm 1, with an emphasis
on our two main technical contributions Lemma 3 and The-
orem 6. After that, we will leverage this tighter estimation
error bound to establish our rate-matching Op

(√
T
)

bound
on the regret of Algorithm 1.

II. MAIN RESULTS

Our Op

(
T−1/4

)
bound on the estimation error starts with

a key result from [28], which relates the estimation error to
the system Gram matrix via a lower- and upper-bound for
it. The rest of the proof is primarily comprised of two parts.
In the first part, we prove a more precise upper- and lower-
bound on the system Gram matrix so that the two bounds
are almost of the same order, which is crucial in removing
the polylog(T ) in the estimation error bound. In the second
part, we take the estimation error bound from plugging in
the Gram matrix bounds from the first part and transform
it into a self-bounding argument for the expected estimation
error of the estimated dynamics that yields the Op(T

−1/4)
final rate for the estimation error.

To streamline notation, define zt =

[
xt

ut

]
and Θ = [A,B],

and correspondingly define Θ̂t = [Ât, B̂t]. Then by Theorem
2.4 of [28], given a fixed δ ∈ (0, 1), T ∈ N and 0 ⪯ Γ ⪯
Γ̄ ∈ R(n+d)×(n+d) such that P

[∑T−1
t=0 ztz

⊤
t ⪰ TΓ

]
≥ 1− δ

and P[
∑T−1

t=0 ztz
⊤
t ⪯ T Γ̄] ≥ 1− δ, when T ≳ log

(
1
δ

)
+1+

log det(Γ̄Γ−1), Θ̂T satisfies:

P

∥∥∥Θ̂T −Θ
∥∥∥ ≳

√
1 + log det Γ̄Γ−1 + log

(
1
δ

)
Tλmin(Γ)

 ≤ δ.

(7)

Here, λmin(Γ) is the minimum eigenvalue of Γ. Similar
upper-bounds to those that already exist in the literature
(which contain extra polylog(T ) terms compared to the
best know lower-bound) can be achieved by taking Γ ≂
T−1/2In+d and Γ̄ ≂ log2(T )In+d, and we restate this result
here (due to the space limit, we defer the proof of Lemma 2
to our online report [29]).

Lemma 2 (Estimation error bound with polylog(T ) term).
Algorithm 1 applied to a system described by Eq. (1) under
Assumption 1 satisfies, when 0 < δ < 1/2, for any T ≳
log(1/δ),

P

[∥∥∥Θ̂T −Θ
∥∥∥ ≳ T−1/4

√(
log T + log

(
1

δ

))]
≤ δ. (8)

Improving this Op

(
T−1/4 log1/2(T )

)
bound to the de-

sired Op

(
T−1/4

)
requires tighter lower- and upper-bounds

Γ and Γ̄ for
∑T−1

t=0 ztz
⊤
t , which will be facilitated by the

following key lemma.

Lemma 3. Algorithm 1 applied to a system described by
Eq. (1) under Assumption 1 satisfies, for any 0 < δ < 1/2
and T ≳ log3(1/δ), with probability at least 1− δ:

TΓ :=

[
In
K

]
T

[
In
K

]⊤
+

[
−K⊤

Id

]
T 1/2

[
−K⊤

Id

]⊤
≾

T−1∑
t=0

ztz
⊤
t

≾

(
1

δ

[
In
K

]
T

[
In
K

]⊤
+

[
−K⊤

Id

]
λmax

(
T−1∑
t=0

∆t∆
⊤
t

)[
−K⊤

Id

]⊤)
:= T Γ̄,

(9)

where ∆t := (K̂t −K)xt + ηt.

Lemma 3 contains our first main technical contribution.
Aside from λmax

(∑T−1
t=0 ∆t∆

⊤
t

)
, we established an almost

exact eigendecomposition of the Gram matrix
∑T−1

t=0 ztz
⊤
t

into different sub-spaces
[
In
K

]
and

[
−K⊤

Id

]
with explicit

eigenvalue bounds of Θ(T ) and Θ(
√
T ), respectively.

Proof. (sketch) Due to space limitations, we defer the
detailed proof of Lemma 3 to our online report [29] and
only introduce the proof outline here. GT :=

∑T−1
t=0 ztz

⊤
t
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can be represented as a summation of two parts:

GT =

T−1∑
t=0

ztz
⊤
t =

[
I
K

] T−1∑
t=0

xtx
⊤
t

[
I
K

]⊤
+

T−1∑
t=0

[
0n xt∆

⊤
t

∆tx
⊤
t ∆t∆

⊤
t +Kxt∆

⊤
t +∆tx

⊤
t K

⊤

]
.

(10)

Consider the dominating part
[
I
K

]∑T−1
t=0 xtx

⊤
t

[
I
K

]⊤
(whose smallest eigenvalue scales with T ) and the remainder

part
∑T−1

t=0

[
0n xt∆

⊤
t

∆tx
⊤
t ∆t∆

⊤
t +Kxt∆

⊤
t +∆tx

⊤
t K

⊤

]
sepa-

rately. In our online report [29], we show that with
probability at least 1− δ:[
I
K

]
T

[
I
K

]⊤
⪯
[
I
K

] T−1∑
t=0

xtx
⊤
t

[
I
K

]⊤
⪯ 1/δ

[
I
K

]
T

[
I
K

]⊤
(11)

These bounds reflect the intuition that xt should converge
to a stationary distribution, making each of the summands
xtx

⊤
t of constant order.

a) Lower bound: Eq. (11) provides a partial lower
bound for GT : with probability at least 1− δ,

GT ⪰
[
I
K

] T−1∑
t=0

xtx
⊤
t

[
I
K

]⊤
≿

[
I
K

]
T

[
I
K

]⊤
. (12)

This part only covers the subspace spanned by
[
I
K

]
; we still

need to consider a general bound for the whole matrix GT =∑T−1
t=0 ztz

⊤
t . Noting that the magnitude of zt = (xt, ut)

⊤ is
lower-bounded by that of the innovation term (εt−1, ηt)

⊤

with standard error at least Ω(t−1/2) (in all directions),
Lemma 34 of [24] gives a high probability lower-bound
GT ≿ T 1/2In+d. Combining this and Eq. (12), with high
probability we have:

GT +GT ≿

[
In
K

]
T

[
In
K

]⊤
+ T 1/2In+d

≿

[
In
K

]
T

[
In
K

]⊤
+

[
−K⊤

Id

]
T 1/2

[
−K⊤

Id

]⊤
.

b) Upper bound: The argument for our upper-bound
divides Rn+d into two orthogonal subspaces spanned by

the columns of
[
In
K

]
and

[
−K⊤

Id

]
, and essentially bounds

ξ⊤GT ξ separately by order T and λmax

(∑T−1
t=0 ∆t∆

⊤
t

)
for

the two subspaces, respectively. In particular, for any ξ1 in

the span of
[
In
K

]
and ξ2 in the span of

[
−K⊤

Id

]
,

(ξ1 + ξ2)
⊤GT (ξ1 + ξ2)

≤ 2ξ⊤1 GT ξ1 + 2ξ⊤2 GT ξ2

≲ 2ξ⊤1 GT ξ1 + 2 ∥ξ2∥2 λmax

(
T−1∑
t=0

∆t∆
⊤
t

)

≲
1

δ
T ∥ξ1∥2 + ∥ξ2∥2 λmax

(
T−1∑
t=0

∆t∆
⊤
t

)
,

where the second inequality follows from Eq. (10) because

ξ2 is orthogonal to
[
I
K

]∑T−1
t=0 xtx

⊤
t

[
I
K

]⊤
, and the third

inequality follows from P
[
GT ≾ 1

δTIn+d

]
≥ 1 − δ. This

last expression can in turn be bounded by

(ξ1 + ξ2)
⊤

(
1

δ

[
In
K

]
T

[
In
K

]⊤
+

[
−K⊤

Id

]
λmax

(
T−1∑
t=0

∆t∆
⊤
t

)[
−K⊤

Id

]⊤)
(ξ1 + ξ2),

establishing the upper-bound from Eq. (9).

In Lemma 3, the upper bound Γ̄ and lower bound Γ have
similar forms. Plugging them into Eq. (7) gives that when
T ≳ log3(1/δ),

P

[∥∥∥Θ̂T −Θ
∥∥∥ ≳√√√√1 + log

(
λmax

(∑T−1
t=0 ∆t∆⊤

t

)
T−1/2

)
+ log

(
1
δ

)
T 1/2

]
≤ δ.

(13)

The following Lemmas 4 and 5 will connect the key
term λmax

(∑T−1
t=0 ∆t∆

⊤
t

)
in the estimation error bound of

Eq. (13) with the estimation error itself, setting up the self-
bounding argument that is key to our main estimation error
bound in Theorem 6.

Lemma 4. Algorithm 1 applied to a system described by
Eq. (1) under Assumption 1 satisfies, for any 0 < δ < 1/2,
T ≳ log2(1/δ),

P

{
λmax

(
T−1∑
t=0

∆t∆
⊤
t

)
≳ 1/δ

(
T−1∑
t=1

E
(
t1/2

∥∥∥K̂t −K
∥∥∥4)

+ log2(1/δ) + T 1/2

)}
≤ 2δ.

Here, E (·) denotes the expected value function. Due to
the space limit, we defer the detailed proof of Lemma 4 to
our online report [29]. Lemma 5 below can be obtained by
substituting Lemma 4 into Eq. (13).

Lemma 5. Algorithm 1 applied to a system described by
Eq. (1) under Assumption 1 satisfies, for any 0 < δ < 1/2
and T ≳ log3(1/δ),

P

[
T 1/2

∥∥∥Θ̂T −Θ
∥∥∥2 ≳

log

(
T−1/2

(
T−1∑
t=1

E
(
t1/2

∥∥∥K̂t −K
∥∥∥4))+ 1

)
+

log

(
1

δ

)]
≤ 3δ.

(14)
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Due to the space limit, we defer the detailed proof of
Lemma 5 to our online report [29]. We are now ready to
state the main result of this paper:

Theorem 6. Algorithm 1 applied to a system described by
Eq. (1) under Assumption 1 satisfies∥∥∥Θ̂T −Θ

∥∥∥ = Op(T
−1/4) and

∥∥∥K̂T −K
∥∥∥ = Op(T

−1/4).

(15)

Theorem 6 contains our second main technical contribu-
tion: we establish a self-bounding argument that connects
between high-probability tail bounds and expectations. In

particular, we bound E
(
T
∥∥∥Θ̂T −Θ

∥∥∥4) with an integral

of the high probability bound in Eq. (14).

Proof. (sketch) Due to space limitations, we defer the
detailed proof of Theorem 6 to our online report [29] and
only introduce the proof outline here. Intuitively speaking,
we aim to prove∥∥∥K̂T −K

∥∥∥ ≲
∥∥∥Θ̂T −Θ

∥∥∥ , (16)

and

E
(
T
∥∥∥Θ̂T −Θ

∥∥∥4) ≲ log

(
E
(
T
∥∥∥K̂T −K

∥∥∥4)) .

The previous two equations imply that E
(
T
∥∥∥K̂T −K

∥∥∥4)
is at most of constant order, otherwise, it cannot be bounded
by the log of itself. By Proposition 4 of [17], Eq. (16)
holds as long as

∥∥∥Θ̂T −Θ
∥∥∥ ≤ ϵ0, where ϵ0 is some fixed

constant determined by the system parameters. We want to

focus on the event 1∥Θ̂T−Θ∥≤ϵ0
to transfer T 1/2

∥∥∥Θ̂T −Θ
∥∥∥2

to T 1/2
∥∥∥K̂T −K

∥∥∥2.

We can estimate E
(
T
∥∥∥Θ̂T −Θ

∥∥∥4 1∥Θ̂T−Θ∥≤ϵ0

)
by cal-

culating the integral using the tail bound from Lemma 5,
which gives us, when T ≥ T0 (T0 is a large enough constant)

E
(
T
∥∥∥Θ̂T −Θ

∥∥∥4 1∥Θ̂T−Θ∥≤ϵ0

)
≲(

log

(
T−1/2

(
T−1∑
t=1

t−1/2E
(
t
∥∥∥K̂t −K

∥∥∥4)))+ 1

)2

+ 1.

On the right-hand side, consider the maximum of

E
(
t
∥∥∥K̂t −K

∥∥∥4) from T0 to Tmax ≥ T , and bound other

terms from 1 to T0−1 by constant (remind that Algorithm 1
ensures

∥∥∥K̂t

∥∥∥ ≤ CK). We have

E
(
T
∥∥∥Θ̂T −Θ

∥∥∥4 1∥Θ̂T−Θ∥≤ϵ0

)
≲

(
log

(
1 + max

T0≤s≤Tmax

E
(
s
∥∥∥K̂s −K

∥∥∥4))+ 1

)2

+ 1

By Eq. (16), we can transfer
∥∥∥Θ̂T −Θ

∥∥∥ on the left hand

side to
∥∥∥K̂T −K

∥∥∥
E
(
T
∥∥∥Θ̂T −Θ

∥∥∥4 1∥Θ̂T−Θ∥≤ϵ0

)
≳ E

(
T
∥∥∥K̂T −K

∥∥∥4 1∥Θ̂T−Θ∥≤ϵ0

)
≥ E

(
T
∥∥∥K̂T −K

∥∥∥4)− 1.

The final inequality holds because by Lemma 2, the prob-

abilty that
∥∥∥Θ̂T −Θ

∥∥∥2 > ϵ0 decays exponentially with T .
Thus,

E
(
T
∥∥∥K̂T −K

∥∥∥4)
≲

(
log

(
1 + max

T0≤s≤Tmax

E
(
s
∥∥∥K̂s −K

∥∥∥4))+ 1.

)2

+ 1

The right hand side is constant. Taking the maximum over
T from T0 to Tmax on the left hand side:

max
T0≤s≤Tmax

E
(
s
∥∥∥K̂s −K

∥∥∥4)
≲

(
log

(
1 + max

T0≤s≤Tmax

E
(
s
∥∥∥K̂s −K

∥∥∥4))+ 1

)2

+ 1

Thus

max
T0≤s≤Tmax

E
(
s
∥∥∥K̂s −K

∥∥∥4) ≲ 1.

The hidden constant only depends on T0, and hence the same
inequality holds for any Tmax:

max
s≥T0

E
(
s
∥∥∥K̂s −K

∥∥∥4) ≲ 1.

Plugging this back to Eq. (14) gives that when T ≳
log3(1/δ),

P
[
T 1/2

∥∥∥Θ̂T −Θ
∥∥∥2 ≳ log

(
1

δ

)]
≤ 3δ.

Thus, ∥∥∥Θ̂T −Θ
∥∥∥ = Op(T

−1/4),

and
∥∥∥K̂T −K

∥∥∥ = Op(T
−1/4) is a direct corollary from

Eq. (16).

Section 2.2 of [18] conjectures that the average regret of
the LQR problem R(U, T )/T is determined by the sum-

mation of quadratic terms of estimation error
∥∥∥K̂T −K

∥∥∥2
and exploration noise ∥ηT ∥2. By the design of Algorithm 1,

∥ηT ∥2 = Op

(
T−1/2

)
. By Theorem 6,

∥∥∥K̂T −K
∥∥∥2 =

Op

(
T−1/2

)
. This leads to the second main result of this

paper: a regret upper-bound that exactly rate-matches the
regret lower-bound of Ω

(√
T
)

established in [17].
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Theorem 7. Algorithm 1 applied to a system described by
Eq. (1) under Assumption 1 satisfies

R(U, T ) = Op

(√
T
)
. (17)

Due to space limitations, we defer the detailed proof of
Theorem 7 to our online report [29]. The key of our proof
is to demonstrate R(U, T ) is determined by the larger one of∑T

t=1 η
⊤
t Rηt and

∑T
t=1 x

⊤
t (K̂t −K)⊤(R+B⊤PB)(K̂t −

K)xt. Intuitively speaking, when the exploration (first term)
gets larger, the second term gets smaller. Indeed, the order
of these two terms strikes a delicate balance at Op

(√
T
)

with ηt
iid∼ N (0, σ2

ηt
−1/2In).

Since our algorithm (see Algorithm 1) is identical to the
one analyzed in [24], readers are encouraged to consult
Section 4 of [24] for comprehensive experimental outcomes.
In particular, Figures 1b and I.1b in [24] empirically demon-
strate that the regret follows an order of

√
T .

III. DISCUSSION

This paper provides progress in understanding the practical
performance of adaptive learning-based control by, for the
LQR problem with unknown dynamics, proving a regret
upper-bound of Op(

√
T ), which is the first to have a bounded

ratio with the best-known lower-bound of Ωp(
√
T ) estab-

lished in [17]. There are related settings such as non-linear
LQR [33] and non-stationary LQR [34] whose best-known
regret upper-bounds are Op(

√
T polylog(T )), and we hope

our work can shed light on removing the polylog(T ) terms
in these settings as well.
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