
  

  

Abstract— This paper proposes a novel control theorem called 

multiple output response decoupling (MORD) and applies it to 

optical-table vibration control. Optical tables need to isolate 

environmental vibrations by limited suspension travels. Soft 

suspensions can significantly isolate ground disturbances but 

need large strut displacements, while stiff suspensions can 

reduce suspension displacements but allow significant table 

vibrations. Passive suspensions are usually trade-offs between 

these conflicting requirements. Though active suspensions could 

relieve the compromises, the coupling system dynamics might 

cause difficulties in control designs. Therefore, this paper 

proposes the MORD theorem, which allows simultaneous 

performance improvement by independent control design. First, 

we review the disturbance response decoupling (DRD) theorem 

and simplify it as the output response decoupling (ORD) lemma. 

We then develop the MORD theorem, which can integrate 

independent ORD control designs without affecting each other. 

Finally, we apply the MORD theorem to the optical table systems. 

We design optimal controllers to suppress ground disturbances 

and other optimal controllers to minimize strut travels. We then 

integrate these controllers to achieve optimal performance 

simultaneously as the individual designs with the MORD control 

design.  

I. INTRODUCTION 

Control design for multivariable systems is challenging 
because the controllers that improve particular performance 
specifications might degrade others. Therefore, multivariable 
control design is usually a compromise between various 
performance requirements. For example, vehicle suspensions 
must be soft to improve ride comfort or stiff to enhance 
handling maneuvers. Optical tables must suppress 
environmental vibrations for precision systems using limited 
suspension spaces. For instance, TMCTM applied passive 
springs and dampers to isolate ground disturbances [1], where 
the parameter settings are trade-offs between multiple system 
performances. For example, soft suspensions could repress 
ground disturbances but need significant strut travels, while 
stiff suspensions could reduce suspension strokes but 
introduce noteworthy table vibrations. Many studies [2-4] 
applied active optical tables to improve system performance. 
Nevertheless, the coupling system dynamics might increase 
the difficulties in active control designs. 

Researchers have proposed decoupling techniques for 
multivariable control systems. For example, Hayakawa [5] 
applied decoupled control to improve automobile responses to 
road disturbances. Bronowicki [6] applied eigenvalue 
decomposition to decouple a multivariable control system into 
six single-input single-output systems. Wang [7] decoupled 

 
C.H. Lee and F.C. Wang* are with the Department of Mechanical 

Engineering, National Taiwan University, (*corresponding author to provide 

phone: +886-2-33662680; E-mail: fcw@ntu.edu.tw).  

active front steering and suspensions using inverse dynamics 
and neural networks. Jamshidifar [8] decoupled the motion 
equations of a robot to minimize its disturbance responses. 

Inspired by the coupling dynamics and multiple 
performance requirements for multivariable systems, Smith 
and Wang [9] proposed the disturbance response decoupling 
(DRD) theorem, which could keep specific transmission paths 
unchanged while improving others by feedback control. For 
example, they applied soft suspensions for vehicles to enhance 
ride comfort and optimized dynamic tire loads by active 
elements without changing the satisfied ride comfort [9, 10]. 
Wang et al. [11] implemented DRD control to optical tables, 
using soft parts to isolate ground disturbances while 
suppressing machine vibrations by voice coil motors (VCMs). 
Considering the transient responses, Wang et al. [12] proposed 
the inverse DRD control, restraining machine vibrations by 
stiff passive suspensions and suppressing ground disturbances 
by piezoelectric transducers (PZTs). 

The DRD theorem provides a control structure to 
parameterize all stabilizing controllers, which can keep 
particular transmission paths unchanged while improving 
others. However, adjusting all system outputs independently 
and concurrently remains unsolved. This paper answers this 
problem by proposing the multiple output response decoupling 
(MORD) theorem, which allows us to conduct independent 
control designs for different system outputs and integrate them 
to improve all system performance as the individual designs.  

This paper is organized as follows: Section 2 develops the 
MORD theorem. We review the DRD theorem and simplify it 
as the output responses decoupling (ORD) lemma, which 
allows us to shape particular system outputs without affecting 
others. We then propose the MORD theorem, which could 
integrate multiple ORD designs to improve system 
performance simultaneously as the individual ORD designs. 
Section 3 applies the MORD theorem to an optical table 
system. We design ORD controllers to improve individual 
output responses and integrate these controllers to improve all 
concerned outputs independently and simultaneously. Finally, 
we conclude in Section 4. 

II. MULTIPLE OUTPUT RESPONSE DECOUPLING  

This section develops the MORD theorem. We first review 
the DRD theorem. Consider the linear fractional 
transformation (LFT) model, as shown in Figure 1, where 
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in which w is the system input, z is the system output, y is the 
feedback measurement, and u is the control. Suppose 

 1 2

T
w w w=  and  1 2

T
z z z= . The generalized plant P 

can be conformally partitioned such that 
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1 1
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ˆ ˆ ˆ
ˆˆ
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ˆ ˆˆ ˆ ˆ

P P Pz w

P P Pz w

y uP P P
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where 1

1 ,
m

w   2

2 ,mw   3 ,
m

u   1

1 ,pz   2

2

p
z   

and 3p
y  . The superscript  ̂  denotes the Laplace 

transform of the signal.  

 

Figure 1. The generalized LFT form 
 

Suppose 22P  can be coprime factorised as 
1 1

22P NM M N− −= = , where , , ,M N M N  , all 

stabilizing controllers can be parameterized as [13]: 
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−
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for 3 3m p
Q


 . , , ,X Y X Y   and satisfy the following 

Bezout identity: 

M YX Y
I

N XN M

 −  
=   

−   
 

Without loss of generality, we can set a stabilizing 

controller 1 1

0K YX X Y− −= =  with 0Q = . Furthermore, 

when P is stable, we can set 
22N N P= =  and let 0Y =  and 

0Y =  in the Bezout identity and let 0 0K = . Suppose 

2 1 2 3min( + ,  )r p p m  and 3 1 2 3min( + ,  )r m m p , the DRD 

theorem when P is stable is described as follows:

Theorem 1 (Disturbance responses decoupling) [9, 10]:  

When P is stable, all stabilizing controllers which let 

1 1ˆ ˆ 11,11
ˆ

w zT P→ =  are given by Eq.(3) with  
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2 ,
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Q
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 3 3 3( )
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2 3

1
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2

m r m
V
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 , where 1 2

T TV V    is 

unimodular.  

(proof) See [9]. 

We can simplify the DRD theorem as the following ORD 
lemma, which could modify specific output responses without 
changing others. 

Lemma 1 (Output response decoupling):  

Suppose P is stable, the stabilizing controller in (3) with 
1 1

2 2

z z
Q V Q=  can modify 

1ˆ ˆw zT →
 and keep 

2ˆ ˆ 11,21 11,22
ˆ ˆ

w zT P P→
 =
  , as shown in Figure 2, where 

3 2 31 ( )

2

m r pz
Q RH

− 

 , 3 3 21 ( )

2

m m rz
V RH

 −

  is a right annihilator of 

12,2P̂ , and  
2 2 3min( ,  )r p m . 

  

Figure 2. The ORD control structure. 

We now introduce the MORD theorem, where multiple 
ORD controllers can be integrated to modify all system 
outputs simultaneously as the individual ORD designs. 

Theorem 2 (Multiple output response decoupling):  

Let P be stable with 
1 2

T

pz z z z =    and 
3 3r p= . 

Then 
ˆ ˆ jw zT →

 can be shaped independently and simultaneously 

by the control structure of Figure 3, where 
2 2 and j jz z

K V

represent the ORD design for jz .  
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Figure 3. The MORD control structure. 

Example: 

 Considered the following system:  

11 12

21 22

1 1 1 1

1 5 9 13

1 1 1 1ˆ ˆ,  ,
2 6 10 14

1 1 1 1

3 7 11 15

1 1 1 1ˆ ˆ,  .
4 8 12 16

s s s s

P P
s s s s
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P P
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   
   + + + +
   
   = =
   + + + +
   
   
   + + + +   

   
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First, we derived the ORD filters as follows: 

1

2

3

2

1

2

2

2

3
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( 6)( 7)
1

2( 10)( 11) ,  
( )

( 14)( 15)
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1
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( )
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( 5)( 6)
1

2( 9)( 10) .
( )

( 13)( 14)

z

z

z

s s

V s s
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s s

s s
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s s

s s

V s s
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s s

+ + 
 

= − + +
 
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+ + 
 

= − + +
 
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+ + 
 
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 
 + + 

 

where 1 2 3( ),  ( ) and ( )H s H s H s  are Hurwitz polynomials 

such that 31 2

2 2 2,  , .
zz z

V V V RH Second, we applied the 

MATLAB command h2syn to derive the optimal controllers 

2
jz

K by the weighted plants 2  1,  2,  3j
T

z
P I V i  =

  . Third, 

we implemented the ORD structure with the weighted 

controllers 
2 2

j jz z
K V K=  to the original plant P . The results 

are shown in Figure 4. 

 

(a) ORD design with 1 1

2 2

z zK V K=  

 

(b) ORD design with 2 2

2 2

z zK V K=  

 

(c) ORD design with 3 3

2 2

z z
K V K=  

 

(d) MORD design 

Figure 4. The ORD and MORD control design for the example.  

 

As shown in Figure 4, the ORD control with 
2 2

i iz z
K V K=  

changed ˆ îw zT →
but left ˆ ˆ jw zT →

 the same as the open-loop for 

1,  2,  3 and .i j i=   Finally, we implemented the MORD 

control. The results are shown in Figure 4(d), where 
1ˆ ˆw zT →
, 

2ˆ ˆw zT →
, and 

3ˆ ˆw zT →
 were the same as the individual ORD 

designs. The multiple output responses could be 

independently designed and integrated without cross-

influence. 

III. MORD CONTROL DESIGN FOR AN OPTICAL TABLE 

We apply the MORD theorem to an optical-table model, as 
shown in Figure 5. The system dynamics can be described as 
follows: 

 

1 2 3 4

1 2 3 4

1 1 2 2

1 2 3 4

1 1 2 2

1 1 1 1 1 2 2 2 2 2

3 3 3 3 3 3 4 4 4 4

,

+ ,

,

,   ,

,    ,

s s

u u A r u u A r

u u A r u u A r

m z f f f f

I z l f l f l f l f

I z t f t f t f t f

m z F f f m z F f f

m z F f f m z F f f

 

 

= − − − −

= − + −

= − − + +

= + − = + −

= + − = + −

 (5) 

where the tire forces are 1( )i i i i

r u rf z z=  −  and the suspension 

forces are 3 2( ) ( )i i i i i i i

a u s uf z z z z=  − +  − and for i =1, 2, 3, 4. 
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i

sz  represents the table displacements at the i-th corners: 

 

1 2

1 1 1 1

3 4

2 2 2 2

,  ,

,  .

s s s s

s s s s

z z l z t z z z l z t z

z z l z t z z z l z t z

   

   

= + + = − +

= + − = − −
 (6) 

Suppose the concerned system outputs are the table 

movements ( , , and sz z z  ) and the strut travels 

( for ,  =1, 2, 3, 4i i i

s u iD z z= − ). Four PZTs control the 

suspension displacements at the four corners as 

1 for , =1, 2, 3, 4i i i

a s iz z u− =  according to the PZT control 

commands 1

iu , where   represents the PZT dynamics. Four 

VCMs apply forces 2

i i

AF u=  on i

um  according to the VCM 

control commands 2

iu , where   is the VCM dynamics.  

Taking the Laplace transform of equations (5-6). The 

system LFT form is as Eq.(1) with 1 2 3 4,  , , 
T

r r r rw z z z z =   , 

1 2 3 4,  ,  ,  ,  ,  ,  
T

sz z z z D D D D 
 =   , ,  ,  

T

sy z z z 
 =   , and 

1 1 2 2 3 3 4 4

1 2 1 2 1 2 1 2,  ,  ,  ,  ,  ,  ,  
T

u u u u u u u u u =   .  

We could further transfer the road disturbances ( i

rz ) and 

suspension strokes ( iD ) to the bounce, roll, and pitch 
components as follows: 

1 1

2 2

2 23 3

4 4

 and ,

b br

r

r

r

r

r

r

z D
z D

z D
z T D T

z D
z D

z D

 

 

   
      
      = =      
         

     

 

where 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 1 1

1 2 1 2 1 2 1 2

1 1 2 2
2 2 2 2 2 2 2 2 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

2 2 2 2

.
2 2 2 2

1 1 1 1

2 2 2 2

t t t t

t t t t t t t t

l l l l
T

l l l l l l l l

t t t t t t t t

 
 

+ + + + 
 
 = − −
 + + + +
 
 

− − 
+ + + + 

 

The LFT form of the model can be modified in Figure 6. 

Suppose the four legs are identical, i.e., 1 1 ,i =   

2 2 ,i =   3 3 , and i i

u um m =  =  for i =1, 2, 3, 4. We can 

derive the ORD filters 
2

jz
V


 for  ˆ ˆ ˆˆ ˆ ˆ,  ,  ,  ,  ,  b

j sz z z z D D D 

 
  , 

which could modify 
ˆ ˆ' jw zT →

, without changing other system 

output responses.   

Set the system parameters as follows [11]: ,280. kg32sm =

15.15 kg,um = 29.92kgm ,I =
217.27kgm ,I =

4

1
ˆ 2250 1.65 10 ,s = +  4

2
ˆ 96 2.12 10 ,s = + 

4

3
ˆ 5.73 10 , =  1 2 0.45m,l l= =  1 2 0.6m,t t= =

6ˆ 4.14 10 −=  , and  ˆ 1.6, = we designed six ORD 

controllers 
2

jz
K


 for the weighted plant 2

j
T

z
P I V

 
   and 

implemented the weighted ORD controllers 
2 2

j jz z
V K

 
 to the 

original plant P .  

(1) The first ORD controller ˆ

2
sz

K  minimized 
ˆ ˆb
r sz z

T
→


.  

(2) The second ORD controller 
ˆ

2

z
K   minimized 

ˆ ˆrz z
T 

→


.  

(3) The third ORD controller ˆ

2

z
K   minimized 

ˆ ˆrz z
T 

→


. 

 
Figure 5. The full-optical-table model. 
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(4) The fourth ORD controller 
ˆ

2

bDK  minimized ˆˆ
2

b b
rz D

T
→

. 

(5) The fifth ORD controller 
ˆ

2

DK


 minimized ˆˆ
2rz D

T  →
. 

(6) The sixth ORD controller 
ˆ

2

DK


 minimized ˆˆ
2rz D

T  →
. 

Finally, we implemented the MORD control structure with 
these ORD controllers. The results are shown in Table 1, 

where 
ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ

, , , ,b b b b
r r r rz z z z z z z D

T T T T 
 → → → →

 ˆ ˆˆ ˆ
,  and 

r rz D z D
T T   → →

 are 

the same as the individual ORD designs. We could design 
separate controllers to enhance the system responses of 
particular outputs and integrate them to improve all output 
responses simultaneously. 

IV. CONCLUSION 

This paper has introduced the MORD theorem and applied 

it to optical table systems. We first simplified the DRD 

theorem as the ORD lemma and developed the MORD 

theorem. Then, we implemented the MORD structure into a 

full-table system. We conducted six ORD controls and 

integrated them to improve all concerned outputs as the 

individual ORD designs.  

In the future, we will investigate on the combination of 

MIDD[14] and MORD theorems, where the controllers for 

each transmission path could be independently designed and 

integrated without cross-influences. Furthermore, we are 

approaching to build up an experimental model of the quarter-

table system for demonstrating the feasibility and 

effectiveness of MORD control. 

 

Figure 6. The MORD control for the full-table model. 

 

Table 1. Performance of the full-table employing the ORD and MORD designs. 

 Passive 
ˆ

2
sz

K  
ˆ

2

z
K   

ˆ

2

z
K   

ˆ

2

bDK  
ˆ

2

DK


 
ˆ

2

DK


 MORD 

  (imp%) (imp%) (imp%) (imp%) (imp%) (imp%) (imp%) 

ˆ ˆb
r sz z

T
→


 

1.3634 41.64 10−  1.3634 1.3634 1.3634 1.3634 1.3634 41.64 10−  

– (99.99%) – – – – – (99.99%) 

ˆ ˆrz z
T 

→


 
1.5777 1.5777 0.2148 1.5777 1.5777 1.5777 1.5777 0.2148 

– – (86.38%) – – – – (86.38%) 

ˆ ˆrz z
T 

→


 
1.8778 1.8778 1.8778 0.0779 1.8778 1.8778 1.8778 0.0779 

– – – (95.85%) – – – (95.85%) 

ˆˆ
2

b b
rz D

T
→

 
2.7258 2.7258 2.7258 2.7258 1.4736 2.7258 2.7258 1.4736 

– – – – (45.94%) – – (45.94%) 

ˆˆ
2rz D

T  →
 

2.8648 2.8648 2.8648 2.8648 2.8648 0.7476 2.8648 0.7476 

– – – – – (73.90%) – (73.90%) 

ˆˆ
2rz D

T  →
 

3.4213 3.4213 3.4213 3.4213 3.4213 3.4213 1.0914 1.0914 

– – – – – – (68.10%) (68.10%) 
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 
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z D
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
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 
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 +jz
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

2
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z
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z
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D
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
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 
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 
 
 
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