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Abstract— A cooperative, multi-agent global optimization
problem is considered, where the global cost function is the
sum of the agents’ private, non-convex costs. In contrast to
all previously considered setups, evaluating the private costs
involves a global experiment, using a common instance of
the decision vector. This is relevant when each agent can
only control a part (“subvariable”) of the decision vector, but
its private cost is also affected by the other subvariables. A
novel cooperative optimization method using Set Membership
identification and consensus-based techniques is proposed, to
make all agents agree on the next global decision vector to
be tested. A trade-off between exploitation close to the best
point found and exploration around the search set is achieved,
even without explicitly sharing the private costs’ information.
Statistical tests show that the proposed distributed method is
competitive with respect to a centralized one.

I. INTRODUCTION

Due to technical demands brought by the rise of sensor
network systems, multi-area power control, and multi-agent
systems, distributed optimization is subject of strong interest
by academia and industry. Different problem setups and
techniques have been considered in the literature [1], [2],
which can be grouped in two problem setups. The first, with
a survey in [2], is where all agents Ai evaluate their own
(not necessarily identical) copies of the decision vector, in a
setup which we refer to as parallel evaluation. The second
one involves agents controlling their respective subvariables
xi of x, i.e., x = (xi)

NA
i=1 with NA being the number of

agents. Furthermore, each agent has its own cost function,
decoupled from the others, i.e. fi(xi). The cost functions are
thus evaluated separately, either sequentially, or in parallel.
For problems where xi are coupled by linear equalities, aug-
mented Lagrangian methods (ALM) and alternating direction
method of multipliers (ADMM) are highly popular. ADMM-
based methods are proposed for many problem variations, for
which reviews [3] and [4] provide more details.

In some important cases, however, the private cost of an
agent depends also on the decisions of other agents, and the
cost functions can be evaluated only altogether by means of a
(often expensive and/or time-consuming) global experiment
or process as illustrated in Fig. 1. This can be in cases
where each agent has control of only a subset xi of the
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Fig. 1. Problem context considered in this paper.

global decision variable x, but the entire x affects the agent’s
respective fi. For instance, in wind farms, the positioning
combination of all turbines can affect the performance of
each turbine, and consequently the overall farm power out-
put. Furthermore, in complex factories, the respective perfor-
mance of all machines are affected by a commonly adopted
setting, in an a priori unknown and non-trivial fashion. In
such cases, all agents have to agree on the global decision
variable x, before performing the experiment. In addition, the
prohibitive evaluation costs limits the calculation/estimation
of gradients using additional experiments. This problem is
related to continuous distributed constraint optimization (C-
DCOP)1 in the multi-agent systems literature [5], [6], in the
sense that agents must agree on a global decision variable
(DCOP literature assumes that each Ai controls a distinct
subvariable xi); however, C-DCOP involves the explicit
sharing of cost evaluations among agents. Federated learning
(FL)-based techniques have also recently attracted interest,
as shown in the reviews [7] and [8]. At the heart of FL is
a central server (CS) which coordinates the optimization of
the mean of the individual functions of the agents (or as
called in the FL literature, “clients”, which tend to be in the
order of thousands). The central server sets the test variable
x to a subset of its clients, and collects the resulting function
values. An obvious drawback to this approach is the CS being
a single point of failure, for which a temporary malfunction
can lead to failure of the optimization process. Furthermore,
FL allows that the clients can set their own x independently,
and perform local experiments/evaluations.

The setup we consider in this paper is different from
the literature in three main aspects. First, only a single
vector x is evaluated in a global experiment (in contrast to
problem setups for parallel evaluation or FL, where agents
can evaluate the global objective using differently-valued

1The term “constraint” in DCOP literature refers to the cost functions
that ‘constrain’ the selection of the decision variable values among agents,
and should not be confused with constraints as used in the optimization
literature.
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copies/instances of x). Second, the entire x can affect the
agent’s fi, and not just the agent’s respective subset of vari-
ables. This is in contrast to ALM/ADMM-associated setups
where each agent can evaluate fi independently based on its
subvariable xi. Third, our work differs from current C-DCOP
literature because agents need to agree on the next decision
variable x without sharing their respective evaluations; i.e.,
we consider what is called in DCOP literature as internal
constraint privacy [9]. Furthermore, this consensus needs to
be performed before the global experiment execution, while
DCOP can allow agents to independently evaluate their costs
depending on their couplings.

Responding to our currently-considered problem, we resort
to using a zeroth-order technique; specifically, we propose a
new multi-agent-based method based on our previous work
on Set Membership Global Optimization (SMGO) [10], [11].
In this paper, we formulate a multi-agent version, dubbed
MA-SMGO, to address the challenge of deciding the global
decision vector, while not having to divulge the private
functions, nor the evaluation values of the agents. MA-
SMGO is built on the structure of SMGO, which trades
off between exploitation and exploration, with the addition
of consensus-based steps to ensure that such trade-off is
related to the global objective, and not just any agent’s private
objective. We derive the theoretical convergence properties
of the distributed approach, and subject it to statistical tests,
showing that it is in fact very competitive when compared
to the centralized version.

This paper is organized in seven sections. We discuss
nomenclature, the problem setup and formulation, and the
Set Membership approach in Section II. Our proposed multi-
agent method is discussed with its subroutines in Section III,
and its theoretical properties are discussed in Section IV. We
show an illustrative test in Section V, and present benchmark
tests and comparative analysis in Section VI. Finally, we
provide concluding remarks in Section VII.

II. PRELIMINARIES

A. Problem Formulation

We consider a set of agents A = {Ai, i = 1, ..., NA}
aiming to minimize a global black-box function f which
is the sum of their respective private functions fi:

f(x) =

NA∑
i=1

fi(x), ∀x ∈ X . (1)

where x ∈ X is the decision vector, and X ⊂ RD is
a compact, convex search set. We suppose that the search
set X is known to all agents in A. In most cases, X is
a hyperrectangle composed of the respective ranges of the
individual tuning variables, i.e. xd ∈ [xd, xd], d = 1, . . . , D.

We assume that each Ai has no a priori knowledge
regarding the functional form of fi, or even its convexity
nor its unimodality (presence of a unique global minimum).
Instead, we take an assumption regarding the regularity of
each fi:

Assumption 1: All functions fi are locally Lipschitz con-
tinuous in the search set X , with their respective finite (but

unknown) constants γi, i.e. fi ∈ F(γi), i = 1, . . . , NA

where F(η)
.
=

{
h : |h(x)−h(y)| ≤ η∥x−y∥, ∀x,y ∈ X

}
.

In addition to the assumptions regarding the black-box
functions, we take two assumptions on the communication
topology of the agents:

Assumption 2: The network of A is fully connected.
Assumption 3: The evaluation time of all private black-

box functions fi(x), and consequently, the global f(x),
is long enough so that the time devoted to inter-agent
communication is negligible.
Assumptions 2 and 3 are highly reasonable for real-world
problems where the evaluation-related experiments and/or
simulations run on a time-scale much larger than the time
required by the agents to successfully complete their commu-
nications, even with packet delays/losses and their appropri-
ate recovery mechanisms. Given the currently (and cheaply)
available communication technologies, this situation is often
found in practice.

We consider an iterative optimization procedure to approx-
imately find a global minimizer of f(x), and denote with
n the iteration number. A crucial assumption of this paper,
different from the literature, follows:

Assumption 4: At any iteration n all private functions fi
are evaluated using the same decision variable x(n), which
is known to all agents, that is,

z
(n)
i = fi(x

(n)) + ϵ
⟨n⟩
i , i = 1, · · · , NA,

with ϵ⟨n⟩i Unknown But Bounded (UBB) additive noise with
finite but unknown bounds ϵi such that |ϵ⟨n⟩i | ≤ ϵi.

This assumption means that while all functions values are
revealed independently (and privately) to each agent, the
evaluated variable x(n) is global, and hence is the main
coupling mechanism among all agents.

Each Ai maintains a data set of samples up to iteration n,

X
⟨n⟩
i

.
=

{
x̊

(1)
i , . . . , x̊

(n)
i

}
, (2)

with each sample x̊
(k)
i being a tuple of the evaluated point

and its corresponding fi measurement

x̊
(k)
i

.
=

(
x(k), z

(k)
i

)
. (3)

We now define the best sampled point

x∗⟨n⟩ .
= arg min

k={1,...,n}

NA∑
i=1

z
(k)
i , (4)

which is the sampled point that produced the best global
objective f (which is a sum of components, see (1)). The
best sampled value w.r.t. each Ai is chosen as

z
∗⟨n⟩
i = z

(k)
i , s.t.

(
x∗⟨n⟩, z

(k)
i

)
∈ X

⟨n⟩
i , (5)

which we note is not necessarily the best sampled value
for the individual cost of Ai, but is rather associated with
x∗⟨n⟩ in the same tuple (see (4)). Accordingly, we define the
absolute optimum value as z∗ = min

x∈X
f(x). We are now in

a position to state the problem considered in this paper.
Problem 1: Given Assumptions 1-4, build a distributed

method to generate a sequence of the global decision variable
x(1),x(2),x(3), . . ., such that for any desired finite precision
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Fig. 2. Set Membership-based model and quantities from a data set.

ε > 0, there exists a finite number of (synchronous and
global) evaluations nε <∞ such that

z∗⟨nε⟩ − f(x∗) < ε.
The problem is particularly challenging because no agent

has complete information regarding f , due to the privacy
assumption. This means that even after sampling, Ai can
only infer information on its own fi, but cannot do so on
the other component functions fj , which is an added compli-
cation to the one in centralized (“conventional”) black-box
optimization. Hence, some coordination is required among
agents to ensure that the exploitation and exploration of the
global objective f is done and not just of any private fi.

B. Set Membership (SM) approach overview

For self-consistency, we briefly recall the Set Membership
(SM) function estimation approach [12], recently generalized
in the kinky inference framework [13], to build approximate
models of the hidden functions fi given X

⟨n⟩
i (see (2)-(3))

and Assumption 1. From the data set X⟨n⟩
i , a noise bound

estimate ϵ̃⟨n⟩i , and a Lipschitz constant estimate γ̃⟨n⟩i , we can
build the following upper and lower bounds to fi:

f
⟨n⟩
i (x) = min

x̊(k)∈X
⟨n⟩
i

(
z
(k)
i + ϵ̃

⟨n⟩
i + γ̃

⟨n⟩
i

∥∥∥x− x(k)
∥∥∥) , (6)

f ⟨n⟩
i

(x) = max
x̊(k)∈X

⟨n⟩
i

(
z
(k)
i − ϵ̃

⟨n⟩
i − γ̃

⟨n⟩
i

∥∥∥x− x(k)
∥∥∥) . (7)

If ϵ̃⟨n⟩i and/or γ̃⟨n⟩i are not a priori known, these can be
estimated from X

⟨n⟩
i itself, with the method proposed in

[14]. Aside from the bounds (6)-(7), we can also quantify an
estimate for fi at iteration n as

f̃
⟨n⟩
i (x) =

1

2

(
f
⟨n⟩
i (x) + f ⟨n⟩

i
(x)

)
. (8)

Lastly, the uncertainty at any x is given as
λ
⟨n⟩
i (x) = f

⟨n⟩
i (x)− f ⟨n⟩

i
(x). (9)

A simple illustration of the SM-based quantities can be
found in Fig. 2.

III. PROPOSED CONSENSUS-BASED
MULTI-AGENT OPTIMIZATION METHOD

To address Problem 1, we propose additional routines
to the Set Membership Global Optimization (SMGO) al-
gorithm [11], to accommodate the special setup described
in Section II. Agents in A perform consensus operations

to agree on the main operation modes of SMGO, and
consequently, also on the next sampled point x(n+1). The
following discussion is in the viewpoint of an ego agent Ai.

A. Data set update and identification of best point

Consider the arrival of a new sample x̊
(n)
i , given by the

relevant entries of the (globally) evaluated point x(n), and the
(private) function value z(n)i (see (3)). The updated X

⟨n⟩
i is

iteratively built as X
⟨n⟩
i = X

⟨n−1⟩
i ∪ x̊

(n)
i . We now proceed

to identify the best sampled point x∗⟨n⟩. As x∗⟨n⟩ relates
with the global objective f , a consensus is done with other
agents Aj to decide whether to update x∗⟨n⟩, while hiding
information on fi. Agent Ai determines the improvement of
the new local value w.r.t. the existing best sampled one z∗⟨n⟩i ,
δ
⟨n⟩
i = z

∗⟨n−1⟩
i − z

(n)
i . The calculated improvement δ⟨n⟩i is

then broadcasted to all Aj via anonymous2 packets, and in
turn, Ai collects all δ⟨n⟩j . The net (global) improvement is
then computed as

δ⟨n⟩ =

improvement

w.r.t. fi︷︸︸︷
δ
⟨n⟩
i +

improvement values

collected from all Aj︷ ︸︸ ︷∑
j

δ
⟨n⟩
j .

If the net improvement is positive, Ai independently updates
its stored best point x∗⟨n⟩ = x(n), along with the respective
z
∗⟨n⟩
i = z

(n)
i .

B. Generation of candidate points and SM-based estimates

We iteratively generate discrete candidate points within
X which, together with their SM-based estimates, will be
used by the algorithm’s exploitation and exploration routines
to choose the next sampling point x(n+1). For each new
sample x(n) ∈ X

⟨n⟩
i , we generate candidate points along the

coordinate directions up to the bounds of X , and additional
ones along the segments that connect x(n) to any other
sample x(m) ∈ X⟨n⟩ \ x(n). Such new candidate points are
then appended to the existing ones to build the candidate
points set E⟨n⟩. More details on candidate points generation
are given in [11].

Remark 1: Because the sampled points x(1), . . . ,x(n) are
known to all agents (see Assumption 4), a deterministic
candidate points generation as proposed in [11], instead of
a randomized one, results in synchronization of E⟨n⟩ across
A, without need for communications.

C. Coordination-based sampling point selection

Similar to our previous work in [11], the selection of
x(n+1) is based on a sequence of exploitation- and (if
necessary,) exploration-related routines, described in the next
subsections. Additionally, to address the multi-agent problem
setup treated in this paper, we propose a new inter-agent
coordination approach, which is used for both routines and
discussed here.

2Without the assumption of anonymous packets, any agent can in fact
infer the shape of another local objective fj , differing only by a simple
offset.
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1) Selection of proposed candidate points: Agent Ai

selects Nc ≥ 1 candidate points from E⟨n⟩, making a
proposal set Θi which is broadcasted to the other agents
Aj . The proposed candidate points are chosen according to
a merit function δi(·), defined differently for the exploitation
and exploration modes, which will be detailed in Sections
III-D and III-E. The first candidate point θi[1] is selected as

θi[1] = arg max
θ∈T

⟨n⟩
i[1]

δi(θ). (10)

where Ti[1] = E⟨n⟩ ∩ S, with S ⊆ X being a finite-
volume, contiguous set (defined differently for each sampling
mode). To choose the next proposal points θi[2], . . . ,θi[Nc],
we define exclusion balls B(θ, rθ)

.
= {x : ∥x − θ∥ ≤ rθ},

around the previously-chosen points (rθ = µd(S) where µ >
0 and d(·) is the diameter of a set), to avoid selecting point
clusters for Θ⟨n⟩

i , which might have very similar merits. The
following sets Ti[k] are then iteratively built as

Ti[k] = Ti[k−1] \
k−1⋃
k′=1

B(θi[k′], rθ), (11)

from which the next proposed points are selected as θi[k] =
arg max

θ∈Ti[k]

δi(θ), k = 2, . . . , Nc. Finally, we build the

proposal set

Θi =
{
θi[k], k = 1, . . . , Nc

}
. (12)

2) Coordination step: In this subroutine, Ai sends Θi to
all Aj , and receives all Θj , resulting in all agents having a
copy of the aggregate set Θ = ∪NA

i=1Θi, with |Θ| ≤ NcNA.
Afterwards, Ai tests each θ ∈ Θ for its local merit, and the
results are collected in the augmented set

Θ̊i
.
=

{(
θ, δi(θ)

)
: θ ∈ Θ

}
. (13)

All agents exchange their respective Θ̊i and store their
received copies in the set Θ̊ =

⋃NA
i=1 Θ̊i. The aggregate

(global) merit for each θ ∈ Θ̊ is then calculated,

δ(θ) =

NA∑
j=1

δj(θ). (14)

Lastly, the candidate point for the (exploitation or explo-
ration) sampling mode is selected as

xθ = argmax
θ∈Θ̊

δ(θ). (15)

Note that due to the aforementioned exchanges, the set Θ̊
and point xθ are synchronized among all agents in A.

D. Exploitation

For this mode, each Ai selects candidate points in a small
region around the current best point x∗⟨n⟩, with the best
estimated improvement from z

∗⟨n⟩
i . Accordingly, we use the

coordination method in Section III-C with the following
parameters:

• selection area S is set to the trust region T ⟨n⟩, which
expands or contracts according to the a posteriori im-
provement of the current sample w.r.t. the existing best
sample, see [11] for more details on this mechanism.

• the merit function is defined as

δi(θ)
.
= z

∗⟨n⟩
i − f̃

⟨n⟩
i (θ) + β

[
λ
⟨n⟩
i (θ)− 2ϵ̃

⟨n⟩
i

]
+
, (16)

which is the estimated local improvement of θ w.r.t.
the local best value (see (5)), compensated from the
estimated noise. This is based on the estimated fi value
at θ, a linear sum of the lower bound and central
estimate (with the weighting factor β = 0.1 as in [11]).

After the coordination step (15) with cost as in (16),
all agents have agreed on a common testing point xθ. An
expected improvement test eventually decides if the agents
will proceed with evaluating xθ, using the condition

δ(xθ) ≥ η. (17)

with δ(·) being understood as the global estimated improve-
ment (14) (given the local improvement merit (16)), and η
being a (previously agreed or specified) constant threshold.
If (17) is satisfied, the next experiment will be done with
the agreed point xθ, i.e., x(n+1) = xθ. Otherwise, we select
x(n+1) via exploration instead, as discussed next.

Remark 2: The expected improvement test in MA-SMGO
uses the global merit δ, in contrast to SMGO which uses the
lower bound f ⟨n⟩, see e.g. [10]. This is to avoid another
coordination step just to exchange f ⟨n⟩

i
among agents.

E. Exploration

The exploration routine proceeds in a similar consensus-
based fashion using the coordination in Section III-C, but
now using S = X , and the merit function

δi(θ)
.
= λ

⟨n⟩
i (θ) + κ(τ ⟨n⟩(θ)). (18)

The first term λ
⟨n⟩
i (θ) is the SM-based uncertainty measure

at θ (see (9)). The second term, on the other hand, depends
on the candidate point age τ ⟨n⟩(θ), calculated as the number
of iterations elapsed from the creation of θ (see Section III-
B), up to the present iteration n. The operation κ(·) can
be any strictly increasing function, and for most cases, it
can simply be a small positive factor multiplied by τ ⟨n⟩(θ).
This second term is added to ensure theoretical convergence,
based on the arguments of [11]. In contrast to exploitation,
where an expected improvement test is performed, the best
candidate point selected from the exploration routine is
directly assigned as the next sampling point, x(n+1) = xθ.

IV. THEORETICAL CONVERGENCE

We prove here the theoretical convergence of the proposed
MA-SMGO to the absolute minimum value z∗ up to any
finite precision ε, without the need to expose any individual
agent evaluations. In this section, we use similar arguments
as in [11]. The first lemma proves that MA-SMGO will
eventually terminate any sequence of successive exploitation
moves.

Lemma 1: Successive MA-SMGO exploitation samplings
will terminate in finite iterations.

Proof: See the Appendix.
Lemma 2: MA-SMGO will generate a dense samples dis-

tribution, as n→ ∞.
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Fig. 3. Illustrative test: contour plots of the (private) agent functions (a)
f1 and (b) f2, (c)-(d) the contour and surface plots of the overall function
f .

Proof: Given the presence of a monotonically increas-
ing age-based merit κ, and the fact that upon exchange of
exploration-related merits, MA-SMGO agents will synchro-
nize the exploration point, the proof of this lemma follows
the same argument as that given in Lemma 2 of [11].

Lemma 3: Given any finite desired precision ε > 0, there
exists a finite number of iterations nε <∞ such that

z∗⟨nε⟩ < z∗ + ε.
Proof: The proof is given in Theorem 1 of [11], which

can be consulted for further details.

V. ILLUSTRATIVE TEST

We demonstrate the effectiveness of the proposed ap-
proach, by testing it in an illustrative two-dimensional
problem, and by putting in a comparative test on several
benchmark problems of different characteristics.

In this example, we use MA-SMGO to solve a simple
problem of minimizing a black-box f with D = 2 and NA =
2, such that each (private) fi is a four-peak function

fi(x) = −
4∑

j=1

ψ(x, ci[j]) (19)

where an individual peak is defined as

ψ(x, ci[j])
.
=

10

1 + 100(x− ci[j])2
. (20)

Each peak center ci[j] has been randomly generated within
the search set. Fig. 3 shows the contour plots of the respective
agent functions, and of the global (sum) one. Furthermore, it
shows a 3D surface of the example f , showing several local
minima, and a deeper global one. More detailed specifica-
tions for this illustrative test are summarized in Table I.

Fig. 4 shows the distribution of sampled points throughout
the search set. The spread of the samples shows an increased

0 20 40 60 80 100 120 140 160 180 200
10 -4

10 -3

10 -2

10 -1

10 0

10 1

10 2

Fig. 4. Illustrative test: (a) spread of sampled points, (b) history of sampled
values with iteration history of best (overall) sampled value

TABLE I
ILLUSTRATIVE TEST: OPTIMIZATION PARAMETERS

Description Value
Dimensionality D 2
Number of agents NA 2
Number of iterations N 200
Search set X [0, 1]2

Exploitation improvement
threshold η

0.05

Number of candidate point
proposals Nc for each agent

4

concentration around a local and the global minima, implying
exploitation around these regions. Fig. 4 also shows the his-
tory of the optimality gap (defined as the difference between
the current best sampled value z∗⟨n⟩ and the optimum value
f(x∗)) in log scale. We observe that the samples started to
exploit in the region around x∗ from n = 40 to n = 60,
reflected by the optimality gap going less than 0.1 in these
iterations. After around n = 70, MA-SMGO agents tended
to explore around X , shown by the higher optimality gaps
of the sampled values. However, the best global value has
continued to improve, pushing down the optimality gap close
to 1× 10−4 at the end of the example run.

VI. BENCHMARK COMPARISON TESTS

We evaluated MA-SMGO in different benchmark tests,
comparing its iteration-based optimization performance with
that of the centralized (“classical”) SMGO.

A. Benchmark problems

We consider 5 benchmark optimization problems summa-
rized in Table V based on the fundamental peaks function
(20), where each peak center ci[j] has been randomly gener-
ated within X . We test the proposed MA-SMGO in different
problem setups:

1) f(x) is composed of decoupled functions, i.e., f(x) =∑NA
i=1 fi(xi). This means that each function fi is

only dependent on xi, and agent Ai can, in theory,
independently optimize it. For example, for P1, we
have the general form

f(x) = f1(x
[1:2]) + f2(x

[3:4]) + f3(x
[5:6]),

where x[p:q] is the subvariable of x composed of the
p-th up to its q-th elements. Problem P3 takes the same
form, but with D = 8.
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TABLE II
OVERVIEW OF THE BENCHMARK PROBLEMS CONSIDERED IN THE STATISTICAL TESTS

Problem D NA f1 f2 f3 f4 f5
P1 6 3

∑6
i=1 ψ(x

[1:2], c1i)
∑6

i=1 ψ(x
[3:4], c2i)

∑6
i=1 ψ(x

[5:6], c3i) – –
P2

∑12
i=1 ψ(x, c1i)

∑12
i=1 ψ(x, c2i)

∑12
i=1 ψ(x, c3i) – –

P3
8 4

∑8
i=1 ψ(x

[1:2], c1i)
∑8

i=1 ψ(x
[3:4], c2i)

∑8
i=1 ψ(x

[5:6], c3i)
∑8

i=1 ψ(x
[7:8], c4i) –

P4
∑16

i=1 ψ(x, c1i)
∑16

i=1 ψ(x, c2i)
∑16

i=1 ψ(x, c3i)
∑16

i=1 ψ(x, c4i) –
P5 5

∑8
i=1 ψ(x

[1:2], c1i)
∑8

i=1 ψ(x
[3:4], c2i)

∑16
i=1 ψ(x, c3i)

∑12
i=1 ψ(x

[1:4], c4i)
∑12

i=1 ψ(x
[5:8], c5i)

TABLE III
STATISTICAL BENCHMARK TEST: OPTIMIZATION PARAMETERS

Description Value
Number of iterations N 100D
Search set X [0, 1]D

Exclusion radius constant µ 0.1
Exploitation improvement threshold η 0.05
Number of candidate point proposals
Nc for each agent

2D

2) The global function f is composed of globally-coupled
component functions. This setup is considered in Prob-
lems P2 and P4.

3) f has decoupled component functions, and the rest of
the component functions are globally coupled. Problem
P5 has this setup, with A1 and A2 having decoupled
functions, and A4 and A5 having a larger set of
decision variables. Lastly, A3 has to optimize its own
f3 with the entire x.

B. Comparative test parameters

We compare three different optimization approaches:

1) Random: a baseline naı̈ve approach, in which all
agents will simply decide on a random global test
variable x(n) at each iteration.

2) MA-SMGO: our proposed technique that involves
consensus-based data exchange among agents, while
keeping their own local functions private. The opti-
mization parameters are given in Table III.

3) SMGO: our previous work from [11] will serve as
a centralized approach. This is with the assumption
that all the agent functions are instead public, and the
global f can be sampled/modelled by a centralized
entity. For SMGO, we set the expected improvement
threshold to a constant η = 0.05, instead of adapt-
ing with the global Lipschitz constant estimate (as
in [11]). This way, we keep the difference between
SMGO and MA-SMGO only in the aspect of being
centralized/decentralized.

We do not have a competitor decentralized method for
comparison, because existing ones do not fit the problem
description and assumptions described in Section II. In
running the above three methods, we resort to a statistical
test comprising of 25 independent trials, each of which is run
with N iterations depending on the problem dimensionality
(see Tables V and III). Each run starts with randomly
generated sampling points, and all tested methods (Random,

MA-SMGO, SMGO) have the same set of initial points for
all of their respective trials, to maintain fairness.

C. Statistical results

Table IV summarizes the best found global objective value
at the end of the 25 independent runs, with the respective
means and standard deviations for each problem. It was
unsurprising that random sampling resulted in the worst
mean values across all the problems considered. Further-
more, the centralized SMGO has resulted in the best mean
result in all problems except P2 (with comparable standard
deviations), which is also expected because we removed
the privacy assumption of all agents. Access to all agent
functions enables SMGO to model the global function f ,
instead of each agent making a model of their respective fi.
Furthermore, SMGO has access to all the candidate points
for calculating the merits, instead of only the proposed ones
exchanged among agents.

Even with the limitations brought by agent function pri-
vacy, MA-SMGO resulted in a highly competitive result with
SMGO, with even a best result with P2, a six-dimensional
function with non-separable objectives. The difference of
MA-SMGO and SMGO mean results for P1 and P2 (both
with D = 6) is within less than 1, while for P3-P5 (D = 8)
it is around 3. In fact, for all the tested problems except P4,
the MA-SMGO and SMGO average results were within each
other’s standard deviations, and far from that of Random.
These results demonstrate the effectiveness of the proposed
MA-SMGO consensus-based subroutines to address the need
to optimize a global objective, without having to expose the
individual agents’ respective evaluation results.

TABLE IV
BENCHMARK COMPARISON: MEANS AND STANDARD DEVIATIONS

OF RESULTING BEST VALUES ACROSS 25 INDEPENDENT TRIALS.

Problem Random MA-SMGO SMGO
P1 -36.58 (±2.53) -42.67 (±4.39) -43.54 (±2.03)
P2 -9.68 (±1.07) -13.12 (±2.83) -12.98 (±3.67)
P3 -58.04 (±4.28) -65.27 (±4.75) -68.22 (±7.74)
P4 -10.14 (±0.25) -11.32 (±0.63) -14.80 (±1.05)
P5 -39.09 (±1.90) -44.56 (±2.63) -47.41 (±3.22)

VII. CONCLUSION

This paper proposes a new optimization method to address
problem setups where a global objective is expressed as a
sum of agent private functions, but for which the global deci-
sion variable affects all the private functions. The discussed
method introduces consensus-based subroutines to the Set
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Membership Global Optimization (SMGO) method, enabling
agents to coordinate with each other the next global sampling
point, without having to share their respective private data
sets and models. The resulting method, referred to as MA-
SMGO, is demonstrated in an illustrative test and statistically
compared with the centralized SMGO, showing its com-
petitive iteration-based optimization results, even with the
limitations brought by multi-agent setup and agent privacy.

Current ongoing work deals with the case where agent
functions are not fully coupled with the entire decision
variable but only its subset. Furthermore, investigations are
underway on two aspects: learning the couplings (or decou-
plings) of the agent private functions with respect to the
decision subvariable/s, to further minimize the required inter-
agent communication; and techniques to make the technique
scalable w.r.t. dimensionality and number of participating
agents.

APPENDIX

Proof of Lemma 1 Consider that all Ai ∈ A have the
same set of candidate points E⟨n⟩ (see Remark 1). Further-
more, taking the expected improvement condition (17) and
expanding δ(x) =

∑
i δi(x) in the context of exploitation

(see Sections III-C and III-D), we use (16) and have∑
i

z
∗⟨n⟩
i −

∑
i

f̃
⟨n⟩
i (x) + β

∑
i

[
λ
⟨n⟩
i (x)− 2ϵ̃

⟨n⟩
i

]
+
≥ η. (21)

Exploitation samplings are still possible as long as there are
points which can pass (17), that is

P⟨n⟩ .
=

{
x ∈ T ⟨n⟩ : (21) applies

}
̸= ∅.

Now, for the sake of contradiction, assume that exploita-
tion samplings are performed in infinite succession.

Because
∑

i z
∗⟨n⟩
i = z∗⟨n⟩ and the (global) sum of the

central estimates will not be lower than the lowest sampled
value (see for instance Fig. 2), the sum of the first two terms
in (21) is non-positive. Hence, (17) is always violated if
β
∑

i

[
λ
⟨n⟩
i (x)− 2ϵ̃

⟨n⟩
i

]
+
< η. Since λ

⟨n⟩
i (x) ≤ 2ϵ̃

⟨n⟩
i +

2γ̃
⟨n⟩
i ∥x−m∥ with m ∈ X⟨n⟩ being the closest sample to

x, we have
a︷ ︸︸ ︷

β
∑
i

[
λ
⟨n⟩
i (x)− 2ϵ̃

⟨n⟩
i

]
+
≤

b︷ ︸︸ ︷
2β

∑
i

γ̃
⟨n⟩
i ∥x−m∥ < η.

In the above inequality, if b < η, then the improvement test
violation a < η holds. Now we proceed with b < η, and
rearranging terms, we arrive at

2β ∥x−m∥
∑
i

γ̃
⟨n⟩
i < η. (22)

The above inequality means that for every sample x(i)

(not just from exploitation but also exploration), there is a

finite-radius ball B
(
x(i), η

2β
∑

i γ̃
⟨n⟩
i

)
that is removed from

P⟨n⟩, given that ∀n, γ̃
⟨n⟩
i ∈ [γ

i
, γi]. Therefore, ∃n′ <

∞ : P⟨n′⟩ = ∅, forcing MA-SMGO to perform exploration
sampling. Hence, the contradictory assumption is invalidated,
and the lemma is proven. ■
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