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Abstract— The paper presents a computational model-based
optimization framework for function and attention allocation
in collaborative control and decision-making between a human
and artificial intelligence (AI). Effective human-AI collabo-
ration (HAC) may depend on structured adaptive function
allocation among team members to enhance performance while
managing human cognitive limitations, especially attention.
Integrating attention allocation is vital for maintaining sit-
uation awareness and managing human workload. Various
allocation methods rely on heuristics and experimental studies
that demand significant resources and domain expertise. To
address the function and attention allocation problem in HAC
in a systematic way, we propose a computational cognition-
work model (CCWM)-based framework. The framework can
integrate a qualitative work model and cognitive models to
simulate complex team dynamics in temporal semantics. An
optimization technique can then improve any task-oriented
metrics by exploring the team structure and simulated episodes
without requiring exhaustive experimental studies. We present
numerical evaluations to demonstrate the proposed framework
using a disaster relief drone fleet operation scenario, which
provides valuable insights into the early stages of HAC design
and the broader domain of HAC.

I. INTRODUCTION

Teaming represents a work strategy to tackle complex
and time-critical challenges as a group of agents. Human
organizations have exploited the power of teams to address
real-world problems. Effective teamwork relies on proactive
collaboration among team members. Recently, advanced
artificial intelligence (AI) technologies have introduced a
paradigm shift that enables humans to view autonomous
agents as teammates, not as mere tools [1]. They have
ushered in a new era of human-AI collaboration (HAC).

HAC presents a unique set of challenges due to the dis-
tinct capabilities and limitations of humans and autonomous
agents [2]. It is not merely a matter of replacing humans with
autonomous agents, but HAC creates entirely new cognitive
systems through the infusion of AI technologies into a team
[3]. Consequently, efficient allocation of roles and resources
is a key success factor in HAC while accounting for the char-
acteristics of each agent, interactions, and interdependencies.

Function allocation is a classic problem in the HAC
context that aims to determine who does what. The Fitts
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list laid the foundation for addressing the function allocation
in human-machine systems [4]. To address criticism on the
Fitts list due to its static allocation approach, numerous
approaches have been explored to promote situation-based
decision-making such as level of automation [5] and adaptive
function allocation approaches [6]. While theories and empir-
ical findings support dynamic function allocation approaches,
quantitative studies remain rare [3]. Modern manufacturing
technology has facilitated collaborative workplaces where
humans and robots operate together in the same physical
space [7], but further considerations may be needed to
address remote operation and effective information flow
management.

Attention allocation is another critical issue in HAC to
manage humans’ limited cognitive resources by adjusting
information flow. It is crucial for obtaining situation aware-
ness (SA) while maintaining an appropriate level of workload
(WL) [8]. The optimal adaptive attention allocation problem
can be likened to an information queuing problem, where
autonomous agents request human supervision only when
necessary. The optimal attention sequences have been studied
but limited to simplified situations [9].

Recent advances in computational models for work and
human cognition processes have opened up new opportuni-
ties for exploring optimal HAC designs. A computational
work model has been developed to simulate and validate
the operational concepts of human-AI teams [10]. However,
it is limited to testing fixed function allocation policies. In
our previous study, we utilized a quantitative work model to
optimize adaptive function allocation policies, but it could
not address human cognition models and attention allocation
[11]. Computational cognition models have been developed
independently to predict human cognitive states in dynamic
environments [12], [13], [14]. Even though their experimen-
tal evidence demonstrates the accuracy of the models, they
have not yet been integrated into HAC designs.

We propose a computational cognition-work model
(CCWM)-based approach. The CCWM integrates work mod-
els and human cognition models to build a digital twin of
the complex interactions between the environment, humans,
and autonomous agents. The CCWM can simulate complex
work and human cognitive processes in temporal semantics
to explore various function and attention allocation policies
through a trial-and-error approach. Thus, HAC designs can
be tested and validated for different adaptive allocation poli-
cies in simulated environments. The results can be utilized
to provide a solid foundation for the followed human-in-the-
loop experiments and the CCWM can be refined iteratively
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Fig. 1. The proposed framework for optimal adaptive function and attention
allocation for HAC.

with observations from the experiments [15]. The proposed
framework uses a three-phase approach as shown in Fig. 1.

Our contributions can be categorized into two main as-
pects. First, we propose a systematic approach to model
the interactions between work, human cognitive processes,
and physical states (e.g., vehicle dynamics) as a discrete-
time stochastic control process. Second, we introduce an
optimization technique to address optimal function and at-
tention allocation in complex HAC designs, considering
any performance metrics while accounting for constraints,
interactions, and information flow among team members.
The results can enhance our understanding of how model
parameters and metrics influence the HAC systems.

The paper is organized as follows. In Section II, the pro-
posed framework is formally presented. The computational
model can be found in Section III. Section IV provides the
illustrative simulation results. Section V concludes the paper.

II. PROPOSED APPROACH

A. Application Scenario

To contextualize the problem, we present an application
scenario of HAC. We examine a drone fleet operation de-
signed for package delivery within disaster relief scenarios
[16], [11]. Fig. 2 depicts a simulated environment with ter-
rain, a start point, target points, obstacles, and environmental
anomalies. Within this simulated environment, three entities
collaborate as a team: a human operator, three autonomous
drones, and a command center. The team’s objective is to
efficiently and safely visit and stay three seconds to drop
packages for each target point using the drones while avoid-
ing obstacles. The team must also address both internal and
external anomalies such as actuator faults, adverse weather
conditions (e.g., wind gusts), and mission updates (e.g.,
updated targets). The drones can perform essential tasks such
as navigation, guidance, and control. The human monitors
the drones under nominal conditions and intervenes under
off-nominal situations.

The team needs to obtain, maintain, and share SA. SA
can be described as a collection of situation elements (SEs)
denoted as SE [12]:

SE = {N,G,F,A,M} (1)

Fig. 2. The simulated environment for package delivery in disaster relief
operations using a drone fleet.

where N denotes the navigation information such as drone
position, G denotes the guidance information such as mission
sequence and waypoints, and F denotes the internal anomaly
information encompassing actuator faults that cause degra-
dation of the drone performance (e.g., decreased speed). A is
the environmental anomaly information such as wind gusts.
M is the mission information shared with the command
center such as target points.

We make the assumption that allocation is guided by
autonomous drones, and the human always follows the
decisions within a fully connected network. While this as-
sumption may be conservative [17], it enables us to focus
on the computational decision-making problem related to
function and attention allocation with a reasonable level of
complexity. Regarding attention allocation, we assume that
the autonomous drones convey SEs to the human through a
visual interface. Drones possess the capability to adjust the
portion and size of the visual interface for each SE to direct
the human’s attention effectively. This concept is a simplified
version of the existing attention allocation model in cognitive
science [13].

B. Pre-Simulation Analysis

The pre-simulation analysis aims to identify the con-
straints, interdependencies, and all possible function alloca-
tion cases. To achieve this, we use cognitive work analysis
(CWA), a well-established technique for analyzing socio-
technical systems [18]. CWA utilizes a visual representa-
tion to describe the work domain hierarchy as shown in
Fig. 3 (modified from [11]). This hierarchy delineates the
why-what-how structure, where each node represents what
need to be done, the higher-level node elucidates why it
is necessary, and the lower-level node details how it can
be accomplished. Within the middle of the hierarchy, the
generalized function encompasses actions related to all SEs.
At the physical function, functions are specified along with
information about which agents can perform each function.
The function allocation problem involves assigning functions
that can be performed by both agents. The attention alloca-
tion determines which area of the generalized function to be
prioritized by the human. Since CWA only identifies a static
work domain, we need a simulation platform to analyze team
interactions in a temporal context.
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Fig. 3. The abstraction hierarchy of the scenario.

C. Simulation Platform

The simulation platform models the temporal conse-
quences of work based on the pre-simulation analysis. The
computational model can simulate three key elements: dis-
crete and continuous decisions made by each agent, the
continuous dynamics of the system, and the interactions
among team members [10]. Each agent has the capability
to get information from the environment or their teammates,
such as obtaining the velocity of drones or detecting envi-
ronmental anomalies. Agents can take actions that set the en-
vironment, such as controlling drone positions or recovering
drone faults. These actions can be categorized according to
the generalized function. The simulation platform computes
the consequences of both get and set actions to propagate
the team’s states within the environment. Note that control
is not considered as an SE in (1) since we assume that the
control functions are only managed by the drones as shown
in Fig. 3 [19].

The simulation platform represents the team dynamics as
a stochastic discrete-time control process:

sk+1 = h(sk,ak) (2)

where sk ∈ Rn denotes the state of the team including all
physical states and cognitive states at time step k ∈ Z≥0.
The human state includes remaining action time for each
function, functions in the waiting queue, WL, and SA. The
drone state includes readiness for each generalized function,
SA, position, distance to target, and anomaly information
[11]. We use discretized variables (i.e., integers) for each
state. ak ∈ A(sk) are the possible allocations on function and
attention, i.e., decision variables in the proposed framework.
h : Rn × A(sk) → Rn denotes the team dynamics, which
could be stochastic. The possible allocation is:

A(sk) = {f1, · · · , fm, aN , aG, aF , aA, aM} (3)

where fi ∈ {∅, human, drones}, ∀i ∈ {1, · · · ,m}, denotes
the function allocation decision for m assignable functions.
Attention allocation decisions for each SE in (1) can be made
only for the functions that require the human’s attention:

ai ∈ {1, 2, 3}, ∀i ∈ SEh (4a)
ai = 0, otherwise (4b)

where SEh = {i ∈ SE | SE(fj),∀fj = human}. SE
denotes the mapping from the physical function to the
relevant SE in Fig. 3. ai = 0 implies that the i-th function is
not attended by the human. ai = {1, 2, 3} denote low, mid,
and high attention to the i-th function, respectively. Section
III provides a detailed approach to incorporate the cognitive
states and shaping the team dynamics (2).

D. Optimization

To optimize function and attention allocation using the
proposed framework, we define the reward function as:

rk = µT g(sk,ak) (5)

where µ = [µ1, · · · , µl]
T ∈ Rl with

∑l
i=1 µi = 1, µi ≥

0 denotes the weight vector of the reward function. g :
Rn × A(sk) → Rl is the feature function that can include
any action-state variables. The team dynamics (2) and the
cumulative reward using (5) enable us to formulate an
optimization problem for function and attention allocation as
a Markov decision process (MDP). The action space includes
decisions on function allocation fi and attention allocation
aj in (3). We utilize a specific optimization technique, called
the episodic semi-gradient Sarsa method in reinforcement
learning [11], [20], to demonstrate the proposed framework.

III. COMPUTATIONAL COGNITION-WORK MODEL

We incorporate cognition models to address human cogni-
tive states, WL and SA, within the team dynamics (2). These
states are critical in HAC applications [8]. Our goal is to an-
alyze trade-offs, such as minimizing WL while maximizing
SA. Cognition models closely interact with the work model,
as cognitive processes can affect human execution time.
We use the widely recognized adaptive control of thought-
rational (ACT-R) architecture [21], though the framework is
flexible enough to accommodate alternative architectures.

A. Situation Awareness Model

A well-known model categorizes SA into three levels:
perception (Level 1), which involves perceiving individual
SEs; comprehension (Level 2), which entails interpreting
SEs; and prediction (Level 3), which represents the ability
to project the future based on the current understanding of
SEs [22]. For consistency, we define SE Level 0 when no
information is available.

The SA model provides a detailed depiction of the
progress on the SA levels as shown in Fig. 4 [12], [13].
At the beginning, the human lacks access to SE and it is
represented as Level 0, denoted by sei = 0 for i ∈ SE . When
the human pays attention to the SE using the visual module
and processes it with the declarative memory module, Level
1 is achieved with sei = 0.5. Levels 2 and 3 are reached
with sei = 1, as the human completes processing using the
procedural memory module to match patterns between the SE
and their memory. The human can then execute actions, such
as pressing buttons using the motor module, after reaching
Levels 2 and 3.
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Fig. 4. The sequence of the cognition process including acquisition of
levels of SA and action engagement with WL.

A quantitative SA model called attention allocation model
has been developed [13], [12] to compute human SA as a
weighted sum of SEs:

SA =
∑
i∈SE

eisei (6)

where
∑

i∈SE ei = 1 with ei ≥ 0 represents the importance
factor and sei ∈ {0, 0.5, 1} based on the levels of SA for
each SE. To formulate SEs, we need:

pi = ai/
∑
j∈SE

aj , if
∑
j∈SE

aj > 0 (7)

where pi denotes the attention proportion that represents the
occurrence probability of paying attention to sei. Note that
pi = 0 if

∑
j∈SE aj = 0. SEs compete with each other to

receive more attention since the total attention affects the
attention proportion for each SE.

Using the attention proportion pi, we can compute the
expected execution time by the human te,i for each function:

te,i = tv,i + td,i + tp,i + tm,i (8)

where tv,i = ∆tv/pi is the expected time to pay attention
using the visual module. ∆tv = 250ms is the fixed dwell
time [23]. td,i = e2(τ−

∑
j∈SE pjS) is the expected time to

achieve Level 1 using the declarative memory module. τ is
the threshold and S = 2−ln 3 is the relationship between the
number of SEs related to sei, respectively. S is assumed to
be constant for simplicity [13]. tp,i = (eUi/θ/

∑
eUi/θ)−1

is the expected time to reach Levels 2 and 3. Ui is the
maximum utility and θ is the noise constant [24]. Then, the
SA cognition process is modeled in time windows:

sei(t) =


0 if t ≤ tv,i + td,i

0.5 if tv,i + td,i < t ≤ tv,i + td,i + tp,i

1 if tv,i + td,i + tp,i < t

(9)

where t = k∆t is the continuous elapsed time with the
discrete-time interval ∆t, and it can be omitted for simplicity
when representing sei(t). We use ∆t = 0.1s.

B. Workload Model

A WL model based on ACT-R offers an integrated per-
spective along with the SA model [14]. The WL model
formulates the instantaneous WL for each module. When
the human engages with the visual and motor modules, the
WL is relatively low, quantified with WL weighting factors:
wv = wm = 1. When the human accesses the declarative
memory module, the WL reaches its maximum value with a

Fig. 5. The flowchart of the work incorporating function allocation
(‘Human?’ conditions) and attention allocation (AA). The functions in the
dotted boxes can be allocated independently to both humans and drones
with attention allocation determined if allocated to the human.

weighting factor of wd = 4. The procedural memory module
has a weighting factor of wp = 2 for selecting actions.
The instantaneous WL is computed as a weighted sum of
activated modules:

WL =
∑

j∈SEh

∑
i∈M

wiAi,j (10)

where M = {v, d, p,m} denotes the set of all modules (i.e.,
visual, declarative, procedural, and motor), with associated
weighting factors {wv, wd, wp, wm} = {1, 4, 2, 1}. Ai,j ∈
{0, 1} serves as the activation indicator for the corresponding
function and module, where Ai,j = 0 when the module is
inactive and Ai,j = 1 when the module is active, respectively.

C. Integration of Cognition and Work

Human cognition processes influence the given work by
affecting the expected time required to perform functions,
which is computed based on the allocated attention. There-
fore, the CCWM introduces an additional dimension to the
state sk (i.e., cognitive states) and the control space ak
(i.e., attention allocation), respectively. Fig. 5 illustrates the
progression of the work over time. The generalized functions
are executed sequentially. When a function is allocated to
the human, attention allocation needs to be determined. The
cognitive state models in (6) and (10) are employed to
propagate SA and WL, respectively. The physical states are
propagated by the drone dynamics once the set drone control
function is engaged in each time step. Subsequently, the team
dynamics in (2) can be fully simulated.

Table I provides parameters associated with the physical
functions. To simulate differences in capabilities between
humans and drones, we utilize the skill-rule-knowledge tax-
onomy [19]. Autonomous agents typically excel in skill and
rule-based functions, such as optimizing solutions for guid-
ance and control in nominal conditions. Conversely, humans
can leverage their knowledge to address the complexities of
off-nominal scenarios.

The drone dynamics is modeled in the three-dimensional
space using a double integrator, with the maximum speed
and acceleration set at 20m/s and 5m/s2, respectively. In the
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TABLE I
THE PHYSICAL FUNCTION PARAMETERS FOR DRONES (DURATION) AND

HUMAN ({τ, tp,i, tm,i}).

Physical Function Duration (s) τ tp,i(s) tm,i(s)

Get drone state ∆t - - -
Monitor drone state - 1.5 2 1

Set requirement 1 1.0 4 1
Set mission sequence 1 1.0 8 1

Set waypoint 1 1.0 8 1
Confirm guidance - 1.0 - -

Set trajectory 1 - - -
Set drone control ∆t - - -
Get drone fault 1 - - -
Pull drone fault - 1.0 4 1

Recover drone fault 60 2.0 8 1
Confirm recovery - 2.0 - -

Get anomaly 1 1.5 1 1
Set anomaly 1 1.5 2 1

Confirm anomaly - 1.5 - -
Get mission 1 2.0 2 1

Confirm mission - 1.0 - -
Push mission - 1.0 2 1

event of a fault, the speed is limited to 2m/s. Target point se-
quences are computed through brute-force optimization, and
trajectories are determined by connecting waypoints while
avoiding obstacles and terrain using a potential field method
[25]. Trajectory tracking is performed using a proportional-
derivative controller. The drones can detect obstacles within a
50m range, while humans have a broader anomaly detection
range of 500m.

IV. NUMERICAL SIMULATION EVALUATION

We present simulation results demonstrating that different
reward functions lead to distinct allocation policies. In a
physical space of dimensions 1600m×1600m×200m, nine
target points are randomly generated with a fixed start point,
as shown in Fig. 2. Three extra target points are randomly
generated with varying update times. Three obstacles and
three anomalies are also randomly positioned. Three distinct
drone faults can occur, each with a probability of 0.5.
Throughout all trade-off studies, we utilize a consistent set
of 3000 episodes for training and another set of 100 episodes
for testing.

A. Trade-off Analysis

A reward function is structured as:

rk = µ1(−1) + µ2(−WL2
k) + µ3(−(SAk − 1)2) (11)

where µi is the weighting factor. WLk and SAk denote
the WL and SA at time step k, respectively. We choose the
importance factors ei = 0.2 for all i ∈ SE in (6). The study
cases are as follows:

• Rhuman: all functions that the human can perform are
assigned to the human. Attention is equally allocated to
each generalized function.

• Rdrone: all functions that the drones can perform are
assigned to the drones. Attention is equally allocated to
each generalized function.

Fig. 6. The function allocation for an exemplar episode with Rtime.

• Rtime: {µ1, µ2, µ3} = {1, 0, 0}.
• RWL: {µ1, µ2, µ3} = {0, 1, 0}.
• RSA: {µ1, µ2, µ3} = {0, 0, 1}.
• RWL-SA: {µ1, µ2, µ3} = {0, 0.5, 0.5}.

Rtime, RWL, and RSA are chosen to illustrate the different
cases, i.e., minimizing mission completion time, minimizing
WL, and maximizing SA, respectively. RWL-SA is designed to
test a trade-off between WL and SA. An exemplary function
allocation over time for Rtime is presented in Fig. 6.

Fig. 7 shows that Rtime can improve mission completion
time by leveraging the adaptive function allocation. RWL
presents the lowest range of WL, even when compared to
Rdrone. In Rdrone, the human needs to interact with the drones
to confirm the team state. This finding provides an interesting
insight that the proposed framework can computationally
improve a target performance metric in a complex HAC
designs. Rhuman and RSA demonstrate the highest range of
WL and SA. This fact indicates that the human needs to
perform more functions to obtain a higher level of SA. RWL
and RSA exhibit a trade-off relationship between WL and
SA, where higher WL is required to achieve a higher level
of SA. The proposed framework can successfully find the
optimal allocation policy for RRW-SA that balances WL and
SA.

B. Robustness to Model Parameter Uncertainties

We conduct a robustness study to examine how errors in
human parameters in Table I impact the proposed framework.
Suppose that the expected time parameters for reaching each
SA in (9) are susceptible to multiplicative errors:

t̃i,j = (1 + ẽ)ti,j (12)

where ti,j is the nominal expected time for i ∈ M and j ∈
SE . ẽ is the scale factor error, with ẽ ∼ N (ē, 0.12), where ē
denotes the mean of the scale factor error. In the robustness
study, we use the nominal expected time for training and the
randomized expected time in (12) for testing. An identical set
of 100 randomized episodes is utilized for all testing cases.

The mission completion time gaps between different study
cases are presented in Fig. 8. The results reveal that the allo-
cation policy trained in Rtime outperforms the fixed allocation
policy in Rhuman, regardless of the size of the error. The
result means that even if it is difficult to find accurate human
parameters, we can find sufficiently reasonable allocation
policies using the proposed framework.
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V. CONCLUSIONS

We proposed a computational model-based optimization
framework for investigating role and resource allocation
in complex human-AI collaboration (HAC) scenarios. The
proposed framework provides the flexibility to optimize any
metrics using any parameters to explore the team’s trade-
space. It can serve as a valuable tool for gaining insights
into HAC design during the early phases. Our ongoing
work involves validating the proposed model through human
user studies, focusing on inferring cognitive states using
physiological sensors. Since internal human states are not
directly observable, non-invasive sensors, such as heart rate
sensor and camera, are used to assess cognitive states.
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