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Abstract— This paper studies efficient algorithms for dy-
namic curing policies and the corresponding network design
problems to guarantee fast extinction of epidemic spread in
a Markov process-based susceptible-infected-susceptible (SIS)
model. We provide a computationally efficient curing algorithm
based on the curing policy proposed by Drakopoulos, Ozdaglar,
and Tsitsiklis (2014). Since the corresponding optimization
problem is NP-hard, finding optimal policies is intractable for
large graphs. We provide approximation guarantees on the
curing budget of the proposed dynamic curing algorithm. To
avoid the waiting period included in the original curing policy,
we study network design problems to reduce the total infection
rate by deleting edges or reducing the weight of edges. To
this end, we provide algorithms with provable guarantees. In
summary, the proposed curing and network design algorithms
together provide an effective and computationally efficient
approach that mitigates SIS epidemic spread in networks.

I. INTRODUCTION

The modeling and control of contagious processes have re-
ceived significant research interest due to the overwhelming
societal cost of widespread epidemics. Extensive mathemat-
ical models have been proposed. The susceptible-infected-
susceptible (SIS) model [1] and the susceptible-infected-
recovered (SIR) model [2] are the simplest and most popular
models. In an SIS model, individuals can be infected multi-
ple times. Network-based compartmental models have been
studied for SIS processes, including stochastic models [3],
[4] and their mean-field approximations [5], [6].

In a wave of the epidemic, the demand for medical
services could outrun local resources. Under such circum-
stances, policymakers sometimes need to coordinate regional
resource allocation to improve medical services [7], [8].
Therefore, optimal resource allocation problems have been
studied for various epidemic models. In practice, medical
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resource allocation strategies are complemented by non-
pharmaceutical strategies [9] to reduce the number of in-
fections and therefore the demand for medical resources. For
example, travel restrictions, school closure, and stay-at-home
policies. Simulation studies have shown the advantages of
combined medical and non-pharmaceutical countermeasures
in effectively mitigating epidemic spread [9]. However, the
problem of allocating curing resources and designing the
contact network optimally in an SIS model remains to be
investigated from a theoretical viewpoint to attain better
understanding of their interaction.

In this paper, we study a Markov process-based SIS
model [4] on a weighted undirected graph. Each edge rep-
resents the contact between two individuals, and the weight
of the edges is proportional to its infection rate. We provide
algorithms for various interventions, including curing poli-
cies and contact restrictions. For curing policies, the resource
constraint is the curing budget. To achieve fast extinction,
an ordering of curing must be computed such that the total
infection rate is maintained relatively small [10]. Thus, we
aim to calculate a near-optimal ordering with an efficient
algorithm. We also consider contact restrictions to mitigate
the spread concurrently with curing policies. The contact
restriction problems can be formulated as network design
problems. The restriction of contact between two individuals
is modeled as the reduction of the edge weight. The cost
of contact restriction is the sum of edge weight reductions.
For network design problems with the cost constraint, we
present approximation algorithms to the optimal solutions.
In the end, the algorithms for curing policies and network
designs can be integrated to guarantee the fast extinction of
the epidemic spread.

Both curing and network design algorithms for epidemic
interventions have been proposed for various models. While
the problems have been studied from various perspectives,
most of the proposed policies are static, which means that
the policy is fixed given the initial configuration.

For the curing policy, [11] studied a static resource allo-
cation problem to minimize the cost to bound the spectral
radius of a matrix in a mean-field approximation of an SIS
model. The cost was defined as a convex function of the
infection rate reductions. The authors formulated the problem
as a semi-definite program that can be solved in polyno-
mial time. Recently, the paper [12] presented an algorithm
with lower time and space complexity than the SDP-based
algorithm in [11]. The authors of the paper [13] proposed
the optimal strategy to stabilize SIS processes by allocating
curing resources to a single node. Spread minimization
problems are also studied in SIS models without using mean-
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field approximation. Borgs et al. [14] proposed to allocate
curing rates according to the degree of each node. Using this
policy, logarithmic extinction time is achieved by allocating
total curing rate proportional to the number of edges in the
network. The authors of [15] improved the algorithm by
using the personalized PageRank vectors, which exploit the
local structure of networks.

All the approaches mentioned above use a static policy. In
contrast, a dynamic curing policy can adapt to the observed
history of epidemic spread. Bang-bang control and feedback
control policies were studied in [16]. A feedback control pol-
icy [17] was proposed to suppress the SIS process. However,
optimal curing resource allocation remains to be investigated
rigorously. In this paper, we consider the same setting as
in [10], where the curing budget is limited at any given
moment, and a controller optimally distributes resources
among all nodes. Drakopoulos et al. proposed a dynamic
curing policy for the stochastic SIS model with budget
constraint, namely the CURE policy [10]. The approach
seeks to cure individuals in an optimal order. Following
this order, the total infection rate is always bounded by the
impedance of the initial infected set in the network. The
impedance is the largest infection rate among any remaining
subset of the initial infected set following the optimal order.
Thus, the curing budget required by the policy depends on
the cutwidth of the network, which is the impedance of the
whole network.

For the network design, algorithms have been proposed
for various epidemic models. For SI models, a O(log2 n)-
approximation algorithm is proposed by [18] to find the
minimum weight of edges such that a given number of
vertices are separated from the initially infected nodes by
removing these edges. Constant factor bi-criteria algorithms
for this problem are later given by [19], [20]. Two modified
problems considering demographic and individual fairness
are investigated recently in [21]. For the independent cascade
susceptible-infected-removed (IC-SIR) model, recent studies
by [22], [23] show approximations to minimize the expected
number of infections by deleting edges, under various as-
sumptions about the underlying graph. For the SIS model,
[24] provides approximation algorithms for spectral radius
reduction problems by edge or node deletion.

Our paper is developed based on the dynamic curing policy
in [10]. The CURE policy provides insights into curing rate
allocation. However, it can be improved in various aspects.
First of all, as mentioned by [10], computing the impedance
is NP-hard. Therefore, efficient approximation algorithms
are needed. Moreover, the impedance of an infected set can
be greater than the curing capability. When the impedance
is large, the policy sets a waiting period. We address the
first issue by designing a computationally efficient curing
algorithm under resources constraints, and the second issue
by allowing a controller to modify network connections.

The main contribution of this paper is on providing effi-
cient algorithms for curing policies and network design. We
extend the O(log2 n) approximation algorithm for cutwidth
in [25] to the calculation of impedance, which was mentioned

in [10] as an open problem. In addition, we study the
problem of dynamically modifying the graph structure to
ensure that the given curing budget is adequate to achieve
fast extinction and avoid the waiting period. We propose
algorithms with performance guarantees the SIS model with
and without targeted curing rate allocation. By combining the
proposed curing and network design algorithms, we provide a
comprehensive solution to control SIS processes in networks.

Due to space constraints, proofs and simulation details are
not included in the conference paper. For the full version of
the papers, please see [26].

II. PRELIMINARIES

In this section we first introduce some frequently used
notations and definitions. Then we describe the considered
SIS model.

A. Concepts and Notations
We consider an SIS epidemic process in an undirected

weighted graph G = (V,E,w), in which V is the set of
nodes and E is the set of edges with a weight function w :
E 7→ [0, 1]. The degree du of a node u is defined as the
sum of weights of all its incident edges. We denote by dmax

the maximum degree of nodes in the graph. We adopt some
of the terms used in [10], [27]. We refer to a subset of V

as a bag. For any subset A of V , we use Ac def
= V \A to

denote the complement of A. For any subset A and any node
u ∈ Ac, let A + u

def
= A ∪ {u} and A − u

def
= A\{u}. We

then define the cut of the graph G with respect to a bag. We
denote by G[A] the subgraph of G supported on the bag A,
i.e. G[A] = (A,E′, w′) where E′ = {(u, v) | u, v ∈ A} and
w′(e) = w(e) for e ∈ E′.

Definition 1: A cut of the graph G is defined for a bag A
as the vertex partition (A,Ac). The size of the cut is defined
as c(A)

def
=

∑
(u,v) wuv , where (u, v) ∈ E, u ∈ A, v ∈ Ac,

and wuv is the weight of the edge (u, v).
We also use the standard definition for the balanced cut in

[28], where a cut is α-balanced if min{|A| , |Ac|} ≥ α |V |.
We introduce the following definition of maximum restricted
cut (MRC).

Definition 2: Given a graph G and a bag A, the MRC of
the bag A is defined by

ϕ(A)
def
= max

Q⊆A
c(Q) . (1)

We further recall some concepts defined in [10], [27].
Definition 3: For any two bags A and B satisfying B ⊆

A, a monotone crusade from A to B is a sequence of
bags p(A,B)

def
= (p0, p1, . . . , pk) where p0 = A, pk = B;

pi ⊆ pi−1 and |pi−1\pi| = 1 for any i ∈ [k]. We denote by
C(A,B) the set of all crusades from A to B.

Definition 4: The width of a crusade p = (p0, p1, . . . , pk)

is defined by z(p)
def
= max0≤i≤k{c(pi)}.

Definition 5: Given a bag A, its impedance δ(A) is de-
fined as δ(A)

def
= minp∈C(A,∅) z(p), namely the minimum

width of a crusade from A to ∅.
The impedance δ(V ) is referred to as the cutwidth of a

graph, denoted by W .
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B. Epidemic Model
We consider a networked SIS model in which each node

can be in one of two states: Susceptible or Infected. The
infection spreads according to a continuous time Markov
process {I(t)}t≥0 on the state space {0, 1}V where Iu(t) =
0 if node u is susceptible and Iu(t) = 1 if it is infected.
Without ambiguity, we also use I(t) to denote the set of all
infected nodes at time t.

The process starts with a given initial state I(0). Let wuv

be the infection rate for each edge (u, v) ∈ E. At any time
t ≥ 0, the transition rate of a susceptible node v to the
infected state is defined by

∑
(u,v)∈E wuvIu(t), which is the

sum of infection rates wuv over all infected neighbors of v.
On the other hand, the curing rate of an infected node u

is denoted by ρu(t) ≥ 0. We consider two typical scenarios:
(a) ρu(t) is decided by a network controller with the budget
constraint

∑
u∈V ρu(t) ≤ r where r is the curing budget;

(b) the allocation of ρu(t) for each u is decided by the
environment and can be adversarial. We define the total
curing capacity be r(t)

def
=

∑
u∈V ρu(t).

III. PROBLEM FORMULATIONS

In this section we present formal definitions for the opti-
mization problems that arise in curing ordering computation
and targeted contact restrictions.

A. Curing Policies
The CURE policy proposed in [10] seeks to find paths

along which the cuts are maintained as small as possible such
that the spread stops in sublinear time with high probability.
We briefly recall the CURE policy as follows:

• Wait until c(I(t)) ≤ r/8. Let A be the set of infected
nodes right after the waiting period.

• Start a segment. Calculate the optimal crusade and
obtain an ordering {v1, . . . , v|A|} in the beginning of

a segment. Let C
def
= {v2, . . . , v|A|}. At any t before

the segment ends, allocate the entire curing budget to
cure an arbitrary node in the set D(t)

def
= I(t)\C. A

segment ends when I(t) = C or |D(t)| ≥ r/(8dmax).
If I(t) = C, a new segment will be started. If |D(t)| ≥
r/(8dmax), a waiting period will be started.

The paper [10] does not specify the algorithm to calculate
the optimal crusade. A dynamic programming algorithm
with exponential time and space complexity is obtained by
directly applying the Bellman equation given in the paper.
In [10], improving the computational complexity of the
algorithm was listed as an open problem. In this paper we
study the following optimization problem.

Problem 1: Given a network G and a bag A, find a
crusade p from A to ∅ such that

minimize
p∈C(A,∅)

z(p) . (2)

It has been shown that the problem of calculating the
cutwidth (and hence the impedance) of a graph is NP-
hard [29]. Therefore, we resort to approximation algorithms
which compute a crusade whose width is bounded within a
certain factor compared to the minimum width.

B. Network Design

A drawback of the CURE policy is that when c(I(t)) >
r/8, the policy starts a waiting period. This is clearly
undesired since the epidemic spreads to more nodes while
no measures are taken. For similar reasons, the CURE policy
only works when the budget is Ω(W), where W is the
cutwidth of the network. Moreover, the authors have shown
in subsequent work [30], [27] that there exists a phase
transition such that when r = o(W), the extinction time
is exponential regardless of the curing policy.

Real-world epidemic response is often a composition of
medical resource allocation and contact restrictions. Previous
work has shown that, by applying along with preferentially
vaccinating urban locations, travel restrictions can postpone
the arrival of peak in the spread of influenza [31]. School
closure and social distancing are combined with antiviral
treatment or vaccination to reduce the cost of an influenza
pandemic [32]. A simulation of smallpox shows the effec-
tiveness of combining vaccination with school closure [33].
Motivated by these simulation studies, we investigate the
problem of reducing network connections to achieve fast
extinction with insufficient medical resources.

Given a graph G and a budget r, if r is insufficient for any
policy to suppress the spread, we ask the question of how to
modify the network to effectively reduce its impedance and
cutwidth. Since modifying the network results in the change
of optimal curing order, and changing the curing order affects
the optimal weight reduction of the network, optimizing the
two policies simultaneously is challenging. We consider a
simplified problem with any fixed curing order1.

Given the CURE policy, we study an alternative problem,
in which we modify the graph to effectively reduce the width
of a fixed crusade computed in the beginning of each curing
segment. Specifically, we modify the graph by reducing the
weight of each edge (u, v) ∈ E to w′

uv = wuv −∆uv . Our
goal is to minimize the total weight reduction such that the
width of the current crusade is no more than a threshold b.

Problem 2: Given a graph G with the edge weight func-
tion w, a bag A, a crusade p from A to ∅, and a threshold
b ∈ R+, find the weight reduction ∆uv of each edge
(u, v) ∈ E for the following optimization program:

minimize
∆

∑
(u,v)∈E

∆uv, (3)

subject to 0 ≤ ∆uv ≤ wuv,∀(u, v) ∈ E ,

zG′(p) ≤ b ,

where G′ = (V,E,w′) is the modified graph with weight
w′

uv = wuv −∆uv for (u, v) ∈ E.
We also consider this problem under the constraint that

weight reductions ∆uv ∈ {0, wuv} for all edges, which
means each edge is either left intact or removed completely.

Problem 3: Given a graph G with the edge weight func-
tion w, a bag A and a crusade p from A to ∅, a threshold

1In practice we use the ordering attained by applying curing policies to
the original contact network.
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b ∈ R+, find the weight reduction ∆uv of each edge
(u, v) ∈ E for the following optimization program:

minimize
∆

∑
(u,v)∈E

∆uv, (4)

subject to ∆uv ∈ {0, wuv},∀(u, v) ∈ E ,

zG′(p) ≤ b ,

where G′ = (V,E,w′) is the modified graph with weight
w′

uv = wuv −∆uv for (u, v) ∈ E.
When the curing policy is decided by the environment,

the ordering of curing is arbitrary. Therefore, a variant of
the maximum cut of the network decides the extinction
time of the SIS process. We also investigate the problem
of minimizing the maximum cut of a given bag.

Problem 4: Given a graph G with the edge weight func-
tion w, a bag A, and a threshold b ∈ R+, find the weight
reduction ∆uv of each edge (u, v) ∈ E for the following
optimization program:

minimize
∆

∑
(u,v)∈E

∆uv, (5)

subject to 0 ≤ ∆uv ≤ wuv,∀(u, v) ∈ E ,

ϕG′(A) ≤ b .

where G′ = (V,E,w′) is the modified graph with weight
w′

uv = wuv −∆uv for (u, v) ∈ E.

IV. CURING ALGORITHMS

In this section we provide algorithms for approximating
impedance of a bag. The definition of these problems are
given in Section III-A.

A. Algorithm for CURE Policy

In this section, we provide a polynomial-time curing algo-
rithm for the networked SIS model. Specifically, we combine
a polynomial-time approximation algorithm for computing
the crusade with the CURE policy proposed in [10]. We
present the following theorem.

Theorem 1: Given a graph G, suppose the curing bud-
get r ≥ max{αW log2 n, 8dmax log n}, where W is the
cutwidth of graph G and α is a fixed constant. Then, there
exists a polynomial-time curing algorithm such that the
expected extinction time is at most O(n log2 n/r).

To prove this theorem, we use a polynomial-time algo-
rithm that, given any bag A, finds a crusade of A with
width at most O(log2 k) times the impedance of A. This
algorithm is shown in Algorithm 1. Our algorithm follows
the approaches of approximation algorithms for multiway
cut [34] and cutwidth [25]. The crux of the algorithm is an
approximation algorithm for the balanced cut problem [25].

V. NETWORK DESIGN

In this section we present algorithms for the network
design problems posed in Section III-B.

Algorithm 1: ApprImpe(G,A)

Input : a graph G = (V,E,w), a bag A with |A| = k;
Output: a crusade p ∈ C(A,∅);
if |A| = 1 then

return p← ({u},∅);
else

(V1, V2)← BalancedCut(G[A], A);
(q0, . . . , q|V1|)← ApprImpe(G[V1], V1);
(p|V1|, . . . , p|A|)← ApprImpe(G[V2], V2);
for i← 0 to |V1| − 1 do

pi ← qi ∪ V2;
end
return p← (p0, . . . , p|A|);

end

Algorithm 2: WidthOpt(G, A, p)
Input : a graph G = (V,E,w), a bag A with |A| = k, a

crusade p from A to ∅
Output: ∆uv ∈ {0, wuv} for (u, v) ∈ E
Let {((u, v),∆∗

uv) : (u, v) ∈ E} be an optimal solution for
the LP in Problem 2;

vi ← pi−1 \ pi for i ∈ [k];
Set an arbitrary ordering {vk+1, vk+2, · · · , vn} for nodes

in Ac;
for i← 1 to k do

Let E⃗i be the sorted list of {(vi, vj) : j > i} in
non-increasing order of j;

x← 0;
while x <

∑
(u,v)∈E⃗i

∆∗
uv do

Let the edge (u, v) be the first edge in E⃗i;
x← x+ wuv;
∆uv ← wuv and remove (u, v) from E⃗i;

end
∆uv ← 0 for the remaining edges (u, v) in E⃗i;

end

A. Network Design for Curing Policies

In this section we consider the problems of designing the
structure of the network to minimize the width of a fixed
crusade, namely Problems 2 and 3.

For a fixed crusade, Problem 2 is a linear program with a
cost function that is linear in the edge weights and k linear
constraints for each cut to be no more than the curing budget.
Therefore we obtain the optimal solution in polynomial time.

Theorem 2: There exists a polynomial-time algorithm
which finds the optimal solution for Problem 2.

Next we consider Problem 3, in which ∆uv takes the
value of either wuv or 0. We provide an algorithm with the
following guarantee:

Theorem 3: Given a graph G, a bag A with |A| = k, and
a crusade p from A to ∅, Algorithm 2 provides a solution of
Problem 3 with the total weight reduction OPT(G,A, p)+k,
where OPT(G,A, p) is the optimal solution of Problem 3.

We then consider an unweighted version of Problem 3
where wuv = 1 and ∆uv ∈ {0, 1} for all (u, v) ∈ E,
which we refer to as the Unweighted Crusade Width Cost
Minimization Problem (UWCMP). We show an algorithm
which finds the optimal solution of UWCMP in polynomial
time. Details are shown in the techincal report [26].
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Remark 1: By applying the proposed network design al-
gorithms, we can discard the waiting period in the CURE
policy. Instead we modify the network such that zG′(p) ≤
r/4 and start a segment. The target path is given by p. Then
we start a new segment. When |D(t)| ≥ r/(4dmax), we
calculate a new nearly optimal crusade p and a modified
graph G′ with zG′(p) ≤ r/4 and start a new segment.

B. Network Design for Minimizing the MRC

In this section, we consider the problem of designing the
structure of the network to minimize the MRC of a given bag,
namely Problem 4. Given an algorithm for Problem 4, we
propose a policy to guarantee sublinear expected extinction
time, with arbitrary ordering of curing. Let r(t) be the sum
of curing rates of all nodes in I(t). Suppose r(t) is always
greater than a fixed constant r′ for all t, the policy is:

• Network design: modify the graph such that
ϕG′(I(t)) ≤ r′/4 and start a segment. Let A be
the set of infected nodes.

• Segment: Define D(t) = I(t) \ A. If |D(t)| ≥
r′/(4dmax)− 1 then start a new network design period.

Theorem 4: If r′ ≥ 2 log n always holds, by modifying
G′ such that ϕG′(I(t)) ≤ r′/4, the policy achieves sublinear
expected extinction time.

Now we present the algorithm for Problem 4. We consider
the following minimax program for the modified graph G′ =
(V,E,w′) where w′

uv = wuv −∆uv:

minimize
G′

ϕG′(A) , (6)

subject to 0 ≤ ∆uv ≤ wuv,∀(u, v) ∈ E ,∑
(u,v)∈E

∆uv ≤ b′ ,

where b′ is a given edge reduction budget. We note that by
running a binary search on b′ we solve Problem 4.

Theorem 5: There exists a polynomial time algorithm
which computes a graph G′ with weight reductions ∆uv ,
in which ϕG′(A) ≤ 1.14 · ϕG̃(A) where G̃ is any modified
graph with the same reduction budget b.

To prove Theorem 5, we transform the problem into a
Semidefinite Programming (SDP) relaxation [35] solvable in
polynomial time. For details, refer to techincal report [26].

VI. NUMERICAL SIMULATIONS

In this section, we examine the effectiveness of the
proposed curing policies as well as the network design
algorithms through numerical simulations. The model for the
SIS process is described in Section II-B. We only present
an overview of the experiment. For detailed parameters and
configurations, please refer to technical report [26].

A. Simulations for Curing Policies

We compare Algorithm 1 against the following four base-
line curing policies, including two static policies and their
dynamic variations.

1) Uniform (static): the curing budget is uniformly allo-
cated to all nodes, ρu(t) = 1/n,∀u ∈ V .

2) Degree (static) [14]: the curing rate of a node u ∈ V
is set to r · du/(

∑
u∈V du),∀u ∈ V .

3) Uniform (dynamic): the curing budget is uniformly
allocated to all currently infected nodes, i.e. ρu(t) =
1/ |I(t)| ,∀u ∈ I(t), and otherwise set to 0.

4) Degree (dynamic): the curing rate of a node u ∈ I(t)
is set to ρu(t) = r · duIu(t)/(

∑
u∈V duIu(t)), and

otherwise set to 0.
To test the effectiveness of the CURE policy using Al-

gorithm 1, we simulate the SIS process on two typical
networks: the locally connected network and the binary
tree network. For information on how to build these two
networks, please refer to technical report [26].
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Fig. 1. Comparison of CURE (using Algorithm 1) with baseline policies

Figure 1 shows the performance of the CURE policy and
the baselines. In both networks, the CURE policy is the only
one that succeeds in curing all nodes in all 10 runs.

B. Simulations for Network Design Algorithms

For the network design algorithms, we simulate the pro-
cess on a human contact network and an email network.
The human contact network is constructed by collecting data
using mobile technologies [36], [37]. The email network was
generated using email data from a research institute [38].

For both networks, we compare the CURE policy with
the CURE policy augmented by linear programming-based
network design, as well as random curing budget allocation
complemented by semi-definite programming-based network
design. Figure 2 shows the average trajectories of 10 runs
for each method for both networks. Simulations on both
networks show consistent results.

For the human contact network, the trajectory of the CURE
policy clearly shows a waiting period at the beginning of
the process. After the curing rates are dynamically allocated,
the number of infections plateaus subsequent to a transient
declination. With network design, the curing processes are
continued and quickly stop the SIS processes. We note that
the SDP approach considers the worst curing rate allocation
strategy and hence is more conservative. The SDP network
algorithm achieves shorter extinction time with random cur-
ing targets at any given time but with more edge weight
reduction cost. Details are shown in the technical report [22].

VII. CONCLUSION

In this paper, we have studied efficient algorithms for dy-
namic curing policies of SIS epidemic models. We have pro-
posed a computationally efficient approximation algorithm
to the impedance of an infected set in a given graph. We
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Fig. 2. Comparison of network design algorithms: 1) CURE without
network design; 2) CURE with linear programming network design; 3)
Random curing rate allocation with SDP.

have also proposed algorithms for network design problems
to help cure the network. Provable guarantees have been
provided. Additionally, We have shown the effectiveness
of the policy and network co-design approach by running
simulations on real contact networks.
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[13] D. Wang, J. Liu, P. E. Paré, W. Chen, L. Qiu, C. L. Beck, and T. Başar,
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