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Abstract— Credit-based congestion pricing (CBCP) has
emerged as a mechanism to alleviate the social inequity
concerns of road congestion pricing — a promising strategy for
traffic congestion mitigation — by providing low-income users
with travel credits to offset some of their toll payments. While
CBCP offers immense potential for addressing inequity issues
that hamper the practical viability of congestion pricing, the
deployment of CBCP in practice is nascent, and the potential
efficacy and optimal design of CBCP schemes have yet to
be formalized. In this work, we study the design of CBCP
schemes to achieve particular societal objectives and investigate
their influence on traffic patterns when routing heterogeneous
users with different values of time (VoTs) on a multi-lane
highway with an express lane (EL). To this end, we introduce
a new non-atomic congestion game model of a mixed-economy,
wherein eligible users receive travel credits while the remaining
ineligible users pay out-of-pocket to use the EL. In this setting,
we investigate the effect of CBCP schemes on traffic patterns
by characterizing the properties (i.e., existence, comparative
statics) of the corresponding Nash equilibria and, in the setting
when eligible users have time-invariant VoTs, develop a convex
program to compute these equilibria. We further present a bi-
level optimization framework to design optimal CBCP schemes
to achieve a central planner’s societal objectives. Finally, we
conduct numerical experiments based on a case study of the
San Mateo 101 Express Lanes Project, one of the first CBCP
pilots. Our results demonstrate the potential of CBCP to enable
low-income users to avail of the travel time savings provided
by congestion pricing on ELs while having comparatively low
impacts on the travel costs of other road users.

I. INTRODUCTION

With the ever-worsening traffic congestion in urban
metropolises, congestion pricing has emerged as one of the
most promising traffic management policies to reduce system
inefficiencies caused by selfish travel behavior [1]. While
network-wide deployments of congestion pricing, wherein
tolls are placed on all or some cordoned portion of roads
in the network, are less common at present, there has
been a growing interest in introducing congestion fees on
certain lanes on highways, known as express lanes (ELs), to
provide users with a faster and more reliable travel option
during peak traffic periods. In the Bay Area alone, there
are more than 155 miles of ELs at the time of writing this
manuscript [2], and in many cases, existing high-occupancy
vehicle (HOV) lanes, which only grant access to vehicles
with more than two or three passengers, have been converted
to high-occupancy toll (HOT) lanes that enable single-
occupant vehicles (SOVs) to pay for access.

Despite the proliferation of ELs to better manage highway
traffic, congestion fees on ELs, as with network-wide
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congestion pricing, have come under scrutiny due to social
inequity concerns. In particular, ELs have been termed as
elitist “Lexus lanes”, as they offer only those with the
highest willingness to pay (i.e., the most wealthy) a higher
quality of service through reduced travel times [3] while
lower-income users bear the brunt of longer travel times
on more congested general purpose lanes (GPLs). Thus,
there has been a growing interest in designing equitable
congestion pricing schemes, with a focus on credit-based
congestion pricing (CBCP) [4], under which road users,
particularly those with lower incomes, are given travel
credits to use priced roads. Although numerous variations of
CBCP have been explored, demonstrating their potential to
provide positive equity benefits, their deployment in practice
is nascent, with one of the first pilots launching in San
Mateo County, California, in 2022. The San Mateo 101
Express Lanes Project recently launched the “Community
Transportation Benefits Program” [5], which provides low-
income residents with travel credits for using the EL. While
CBCP programs, such as the one in San Mateo County,
offer great potential to improve equity outcomes, a principled
design of CBCP schemes is necessary to realize the benefits
of its implementation, which is the focus of this work.

Contributions: We study CBCP schemes to route
heterogeneous users with different values of time (VoTs) on
a multi-lane highway with a tolled EL. In alignment with
practically deployed CBCP schemes, such as in San Mateo
County, we introduce a new model of a mixed-economy
wherein eligible users receive travel credits while ineligible
users pay out-of-pocket to use the EL (see Section III). Our
mixed-economy model is unlike traditional single-economy
settings in traffic routing, wherein either all users have quasi-
linear costs [6] or budget constraints [7] as in markets
with artificial currencies. Given the different optimization
objectives of eligible and ineligible users, we initiate the
study of mixed-economy traffic routing settings through
an introduction of CBCP equilibria, an investigation of its
properties to study the influence of CBCP schemes on traffic
patterns, and a framework for designing optimal schemes.

In particular, we first establish the existence of CBCP
equilibria and, in the setting when eligible users have time-
invariant VoTs, develop a convex program to compute CBCP
equilibria (see Section IV).

We then develop a bi-level optimization framework for
designing optimal CBCP schemes to achieve specific societal
objectives of a central planner in the setting when eligible
users have time-invariant VoTs (see Section V). To solve the
corresponding bi-level optimization problem, we present a
dense sampling approach for computing an approximation
to the optimal CBCP scheme that involves discretizing the
set of feasible CBCP schemes and choosing the scheme that
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induces an equilibrium with the minimum societal cost.
Finally, we present numerical experiments based on a

case study of the San Mateo 101 Express Lanes Project.
Our results indicate that the optimal CBCP scheme can
vary widely based on the central planner’s objective,
thereby highlighting that a principled approach using bi-level
optimization is key to realizing the benefits of CBCP.

In the extended version of our paper [8], we present
omitted proofs, our comparative statics analysis, policy
implications of our study, implementation details of our
experiments, and additional experimental results.

II. RELATED LITERATURE

There has been a growing interest in designing equitable
congestion pricing schemes, with a focus on revenue
redistribution, wherein the collected toll revenues are
refunded as lump-sum transfers to users. As with the study of
revenue refunding schemes [9], we also consider refunding
a proportion of the collected revenues to users. However,
compared to these works, we consider CBCP, wherein the
credits function solely as a travel allowance for using an EL
rather than additional money in the pocket of users.

CBCP schemes have been explored extensively with a
focus on tradable credit schemes wherein additional credits
may be purchased [10] or earned by exhibiting desirable
travel behavior [11]. Moreover, these credits typically have
monetary value beyond paying for access to priced facilities
(e.g., for using public transit) [4]. However, the equity
improvements from tradable CBCP typically result from
lower-income users that reduce travel to sell their allocated
credits or use them on driving alternatives [4], [11]. In
contrast, we consider non-tradable CBCP wherein credits
cannot be traded nor provide value for anything other than for
paying EL tolls, as with the San Mateo 101 Express Lanes
Project. Thus, as opposed to tradable CBCP, wherein low-
income users generally use less convenient modes of travel
to obtain monetary gains from selling excess credits, under
non-tradable CBCP, eligible users will avail of a fast and
reliable mode of travel, i.e., the EL.

Since travel credits provide no value to users beyond
paying for EL tolls, our work is also closely related to
artificial currency mechanisms [7]. However, in contrast to
traditional artificial currency applications, we consider a
mixed-economy wherein only a fraction of the users receive
travel credits (artificial currencies).

From a methodological viewpoint, as in prior studies that
characterize user equilibria in congestion games [6], [12], we
also investigate the properties of equilibria induced by CBCP
schemes. However, CBCP equilibria differ markedly from
prior equilibrium notions in the congestion pricing literature
(see Section III-C). Beyond studying equilibrium properties,
we also develop a bi-level framework to optimize over CBCP
schemes. While bi-level optimization [13] has been studied in
many traffic routing contexts, e.g., second-best tolling [14],
our bi-level framework involves optimizing over both tolls
and budgets rather than only road tolls.

III. MODEL

In this section, we introduce the basic definitions of traffic
flow (Section III-A), the operation of CBCP schemes and

corresponding user costs (Section III-B), and the notion of
CBCP equilibria (Section III-C).

A. Preliminaries
We study the problem of designing CBCP schemes to

route heterogeneous users with different VoTs in a multi-
lane highway section. The highway consists of one EL that
can be tolled while the remaining GPLs remain untolled. We
focus on studying CBCP schemes for a multi-lane highway
segment, as opposed to general road networks, in alignment
with practically deployed congestion pricing schemes and,
in particular, the San Mateo 101 Express Lanes Project.
Without loss of generality, we model the freeway section
as a two-edge Pigou network consisting of a source vertex
s, a destination vertex d, and two directed edges e ∈ {1, 2}
between the source and destination vertices, where the first
edge (e = 1) denotes the EL while the second edge (e = 2)
corresponds to the GPLs. We note that modeling all GPLs
as a single edge is without loss of generality, as we focus
on equilibrium formation in this work; hence, these lanes
are indistinguishable for users as none of these lanes are
tolled. Furthermore, to model the travel times on each edge e,
we consider a flow-dependent travel-time (latency) function
le : R≥0 → R≥0, which maps xe, the traffic flow rate on edge
e, to the travel time le(xe). As in prior literature on traffic
routing, we assume that the function le, for both edges e, is
differentiable, convex, and monotonically increasing.

Users make trips over T periods (e.g., days) over which
the CBCP scheme is run (see Section III-B) and belong to
a finite set of discrete groups characterized by their (i) level
of income and (ii) VoT. Let G denote the set of all user
groups, wherein users, based on their income, are subdivided
into two categories, eligible and ineligible, depending on
their eligibility to receive travel credits (i.e., a budget) to
use the EL as determined by a central planner. We let GE

and GI denote the sets of eligible and ineligible user groups,
respectively. Further, a user in a group g ∈ G at each period
t ∈ [T ] has a VoT vt,g , which captures users’ willingness to
pay for travel time savings. The total travel demand of a user
group g is given by dg , which represents the flow of users
in group g to be routed at each period. We assume that the
travel demand for each user group stays fixed across time,
as is consistent with weekday rush hour traffic wherein users
commute to and from work. For the simplicity of exposition,
we normalize dg to one for all groups g and note that our
results naturally extend to the general travel demands setting.

A flow pattern y = {yge,t : e ∈ {1, 2}, t ∈ [T ], g ∈
G} specifies for each user group g the amount of flow
yge,t ≥ 0 routed on edge e at period t. The resulting
flows must satisfy the user demand at each period t, i.e.,∑2

e=1 y
g
e,t = 1, for all g ∈ G, t ∈ [T ]. Furthermore, we

represent the edge flows corresponding to the flow pattern
y by the vector x = {xe,t : e ∈ {1, 2}, t ∈ [T ]}, where
xe,t =

∑
g∈G yge,t, for all e ∈ {1, 2}, t ∈ [T ].

B. CBCP Schemes and User Optimization
A CBCP scheme is characterized by a tuple (τ , B), where

τ ∈ RT
≥0 is the vector of tolls on the EL over T periods, and

B is the travel credit (budget) given to eligible users to use
the EL over the T periods. Both eligible and ineligible users
pay the toll when using the EL; however, ineligible users pay
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out-of-pocket while eligible users pay using their available
budget. For simplicity, we assume that eligible users never
spend out-of-pocket to use the EL. Such an assumption is
consistent with real-world traffic networks, wherein lower-
income users, i.e., those in the eligible group, are less likely
to spend out-of-pocket to use tolled roads and thus generally
bear the burden of longer travel times [15]. However, this
assumption can readily be relaxed to the setting where
eligible users also spend out-of-pocket, and we defer a
thorough treatment of this setting to future research. Further,
the finiteness of the time horizon T is crucial to successfully
deploying a CBCP scheme to improve EL access for eligible
users as the ratio B

T represents the per-period budget for
these users to use the EL. Finally, as in the traffic routing
literature [4], [9], we focus on SOVs in this work and defer
the consideration of HOVs (e.g., carpools) to future work.

We now present the individual optimization problems for
both ineligible and eligible users who seek to minimize their
total travel cost given a CBCP scheme (τ , B).

Ineligible Users: Since ineligible users spend out-of-
pocket to use the EL, their cumulative travel cost is assumed
to be a linear function of their travel time and tolls, a
commonly used modeling assumption [6]. Given a CBCP
scheme (τ , B) and a vector of edge flows x, the individual
optimization of an ineligible user in a group g ∈ GI is
µg∗(x,τ ,B)= min

zg∈R2×T
≥0

∑
t∈[T ]

∑
e∈[2]

(vt,gle(xe,t)+Ie=1τt)z
g
e,t, (1a)

s.t. zg1,t + zg2,t = 1, ∀t ∈ [T ] (1b)
where (1a) is the travel cost objective of the ineligible users
and (1b) are user allocation constraints at each period t ∈ [T ].
Observe that Problem (1a)-(1b) is a linear program where
zg = {zge,t : e ∈ {1, 2}, t ∈ [T ]} corresponds to the actions
of an infinitesimal user and thus does not influence the edge
flow x. Here, we denote the decision variables for any user in
group g ∈ GI as zg to distinguish it from the cumulative flow
yg = {yge,t : e ∈ {1, 2}, t ∈ [T ]} of all users in g ∈ GI and
note that the decision variables zge,t ∈ [0, 1] can be interpreted
as the fraction of flow or probability that a user in group g
uses edge e at period t. Further, for succinctness, we denote
the travel cost for users in a group g ∈ GI as µzg (x, τ , B) =∑T

t=1

∑2
e=1 (vt,gle(xe,t) + Ie=1τt) z

g
e,t, the travel cost on

edge e at period t for as µg
e,t(x, τ , B) = vt,gle(xe,t)+Ie=1τt,

and let µg∗(x, τ , B) denote the minimum travel cost.

Optimal Solution of Problem (1a)-(1b): By the separability
of the travel cost function and the constraints across periods,
the optimal solution of Problem (1a)-(1b) corresponds to
users choosing routes with the minimum travel cost at
each period, which is akin to the well-studied model of
heterogeneous users in non-atomic congestion games [6].

Eligible Users: On the other hand, since eligible users
only utilize travel credit to use the EL, their cumulative travel
cost only consists of the travel time component of the cost
of the ineligible users. Thus, given a CBCP scheme (τ , B)
and a vector of edge flows x, the individual optimization of
an eligible user in a group g ∈ GE is

µg∗(x, τ , B)= min
zg∈R2×T

≥0

∑
t∈[T ]

∑
e∈[2]

vt,gle(xe,t)z
g
e,t, (2a)

s.t. zg1,t + zg2,t = 1,∀t ∈ [T ] (2b)∑
t∈[T ]

zg1,tτt ≤ B, (2c)

where (2b) are allocation constraints, and (2c) is the
budget constraint that ensures no user spends more credits
than the provided allowance. Problem (2a)-(2c) is a linear
program and each user’s travel cost in a group g ∈ GE

is denoted as µzg (x, τ , B) =
∑T

t=1

∑2
e=1 vt,gle(xe,t)z

g
e,t.

Unlike ineligible users, the travel decisions of eligible users
are coupled across periods due to the budget Constraint (2c).
C. CBCP Equilibria

We evaluate the efficacy of a CBCP scheme in achieving
particular societal scale goals of a central planner based on
the induced Nash equilibria (see Section V). To this end, we
present the Nash equilibrium notion, which we term a CBCP
equilibrium, studied in this work. In particular, given a CBCP
scheme (τ , B), a flow pattern y is a CBCP equilibrium
if no user can reduce their travel cost through a unilateral
deviation, as is formalized by the following definition.

Definition 1 (CBCP Equilibrium). For a CBCP scheme
(τ , B), the flow y, with corresponding edge flows x, is a
CBCP (τ , B)-equilibrium if for each ineligible group g ∈ GI

with yge,t > 0, µg
e,t(x, τ , B) ≤ µg

e′,t(x, τ , B), for all e′ ∈
{1, 2}, t ∈ [T ], and for each eligible group g ∈ GE

with yge,t > 0, it holds that zg∗e,t > 0 for some optimal
solution z∗ to Problem (2a)-(2c), i.e., µg

z∗(x, τ , B) ≤
µg
z(x, τ , B), for all z ≥ 0 satisfying Constraints (2b)-(2c).

A few comments about this equilibrium notion are in
order. First, if all users are ineligible, CBCP equilibria reduce
to standard non-atomic Nash equilibria with heterogeneous
users [6]. Next, since Definition 1 accounts for the
preferences of eligible users whose travel decisions are
coupled across the periods through their budget constraints,
it differs from prior works on the single-economy setting
wherein all users have quasi-linear costs [6]. Finally, the
cumulative flow y of all users represents the sum of their
individual probabilities (or fraction of flow on each edge) and
we note that without loss of generality it suffices to focus on
CBCP equilibrium flows y such that for eligible (ineligible)
user group g ∈ GE (g ∈ GI ), yge,t = zg∗e,t for some optimal
solution z∗ to Problem (2a)-(2c) (Problem (1a)-(1b)), as all
users in a given group incur the same travel cost at any CBCP
equilibrium. For a further discussion on CBCP equilibria, see
the extended version of our paper [8].

IV. PROPERTIES OF CBCP EQUILIBRIA

We initiate our study of CBCP schemes in a mixed-
economy setting by studying the properties of CBCP
equilibria. In particular, we establish the existence of CBCP
equilibria (Section IV-A) and present a convex program to
compute CBCP equilibria in the setting when eligible users’
VoTs are time-invariant (Section IV-B).
A. Equilibrium Existence and Edge Flow Uniqueness

We show that CBCP equilibria exist in the general setting
when all users have time-varying VoTs.

4126



Theorem 1 (Existence of CBCP Equilibria). For any CBCP
scheme (τ , B), where τ ≥ 0 and B ≥ 0, there exists a
CBCP (τ , B)-equilibrium.

Theorem 1 establishes that introducing eligible user
budgets does not preclude the existence of an equilibrium
and augments the literature on investigating equilibrium
existence under congestion pricing alternatives [16], [17].
Further, Theorem 1 extends equilibrium existence results in
traffic routing focusing on single-economies [6] to mixed-
economies. To prove Theorem 1, we develop the following
variational inequality characterization of CBCP equilibria.

Lemma 1 (Variational Inequality Characterization of CBCP
Equilibria). For a CBCP scheme (τ , B), a flow y∗ = (yg∗e,t),
with edge flows x∗, is a CBCP (τ , B)-equilibrium if and only
if it solves the following variational inequality problem:∑
t∈[T ]

∑
e∈[2]

[ ∑
g∈GI

(vt,gle(x
∗
e,t)+Ie=1τt)(y

g
e,t−yg∗e,t) (3)

+
∑
g∈GE

vt,gle(x
∗
e,t)(y

g
e,t−yg∗e,t)

]
≥0,∀ feasible y∈Ω,

where the set Ω is described by y ≥ 0, yg1,t + yg2,t = 1 for
all t ∈ [T ] and g ∈ G, and all eligible users satisfy their
budget Constraint (2c).

The proof of Lemma 1 involves arguments similar to that
in [18], as the variational Inequality (3) is reminiscent of
the variational inequalities used to study heterogeneous user
equilibria in classical traffic routing settings [6], [17], [18].
However, in contrast to these approaches that consider a
single-economy setting, Equation (3) has two separate terms
to capture the differing travel costs for the eligible and
ineligible users in a mixed-economy setting.

We now complete the proof of Theorem 1 by showing that
the variational Inequality (3) admits a feasible solution.

Lemma 2 (Feasibility of Variational Inequality). There exists
a solution y∗ to the variational Inequality (3).

Proof. First, note that the variational Inequality (3) can be
expressed in standard form F (y∗)T (y−y∗) for all feasible y,
where F = (F g

e,t)e∈{1,2},t∈[T ],g∈G , F g
e,t(y

∗) = vt,gte(x
∗
e,t)

for g ∈ GE and F g
e,t(y

∗) = vt,gte(x
∗
e,t)+ Ie=1τt for g ∈ GI .

Then, following standard variational inequality theory [19],
[20], a feasible solution y∗ to Equation (3) exists as the
feasible set Ω, defined in Lemma 1, is compact and the travel
time functions are continuous.

Lemmas 1 and 2 jointly imply Theorem 1.

B. Convex Program to Compute Equilibria

While Theorem 1 established the existence of CBCP
equilibria, determining a feasible solution to the variational
Inequality (3) may, in general, be challenging. Given the
difficulty in solving variational inequalities, we now present
a convex program to compute CBCP equilibria in the setting
when eligible users have time-invariant VoTs, i.e., for all
g ∈ GE , vt,g = vt′,g > 0 for all t, t′ ∈ [T ], while
ineligible users can, in general, have time-varying VoTs.
While eligible users’ VoTs can, in practice, vary over time,
we defer the question of computing CBCP equilibria when
eligible users’ VoTs vary with time to future research and

note that the time-invariance of eligible users’ VoTs has
important practical significance. First, since the EL is likely
to be tolled during morning and evening rush hour periods on
weekdays, the VoTs of users commuting to and from work
are unlikely to differ much between one period and the next,
e.g., between subsequent days. Furthermore, the individual
optimization Problem (2a)-(2c) for the eligible users can
involve quite sophisticated decision-making as eligible users’
travel decisions are coupled across periods. Since users may
not have complete information on their VoT over the T
periods, eligible users may prefer to minimize their total
travel time rather than the more complex Objective (2a).

We compute CBCP (τ , B)-equilibria when eligible users
have time-invariant VoTs with the following convex program

min
y∈R2×T×|G|

≥0

∑
t∈[T ]

∑
e∈[2]

∫ xe,t

0

le(ω)dω+
∑
g∈GI

yg1,tτt

vt,g

 , (4a)

s.t. yg1,t + yg2,t = 1, ∀t ∈ [T ], g ∈ G (4b)∑
t∈[T ]

τty
g
1,t ≤ B, ∀g ∈ GE , (4c)

∑
g∈G

yge,t = xe,t, ∀e ∈ E, t ∈ [T ], (4d)

where (4b) are allocation constraints, (4c) are eligible user
budget constraints, and (4d) are edge flow constraints.
Problem (4a)-(4d) is akin to the convex program to compute
heterogeneous user equilibria given road tolls [6]. However,
as opposed to the convex program in [6] that considers a
single-economy setting, Problem (4a)-(4d), which applies to
a mixed-economy setting, only has a toll component in the
Objective (4a) for ineligible users and instead has a budget
Constraint (4c) for eligible users. We now show that any
solution of Problem (4a)-(4d) is a CBCP (τ , B)-equilibrium.

Theorem 2 (Convex Program for CBCP Equilibrium
Computation). Consider a CBCP scheme (τ , B) and the
setting when the VoTs of all eligible users do not vary
with time. Then, the optimal solution y∗ of the convex
Program (4a)-(4d) is a CBCP (τ , B)-equilibrium.

From Theorem 2, note that Problem (4a)-(4d) provides
an efficient method to compute CBCP equilibria as it can
be solved using computationally tractable approaches, e.g.,
Frank-Wolfe [21], used for traffic assignment problems.

V. OPTIMAL CBCP SCHEME DESIGN

While an analysis of the properties of CBCP equilibria, as
in the previous section, aids in understanding the influence
of CBCP schemes on traffic patterns, a central planner
is typically interested in deploying an optimal policy to
achieve particular societal goals. To this end, in this section,
we present a bi-level optimization framework to design
optimal CBCP schemes (Section V-A) and develop an
algorithmic approach based on dense sampling to compute
an approximation to the optimal scheme (Section V-B).

A. Bi-Level Optimization Framework
We now present a bi-level optimization framework for

optimal CBCP design to achieve particular societal objectives
of a central planner. We focus on the setting when eligible

4127



users have time-invariant VoTs, in which case CBCP
equilibria can be computed using Problem (4a)-(4d).

To present the bi-level optimization problem, we model the
central planner’s societal objective through a cost function
f : R2×T×|G| → R, where f(y) denotes the societal cost
of the flow y ≥ 0 that lies in a feasible set Ω defined
by Constraints (4b)-(4d). Further, we denote FU ⊆ RT+1

≥0

as the set of feasible CBCP schemes (τ , B). Then, the
goal of the central planner is to find a feasible CBCP
scheme (τ ∗, B∗) ∈ FU such that the resulting equilibria
y(τ ∗, B∗) has the lowest societal cost among all feasible
CBCP schemes, i.e., f(y(τ ∗, B∗)) ≤ f(y(τ , B)) for all
(τ , B) ∈ FU , where y(τ , B) is an equilibrium flow given by
the solution of Problem (4a)-(4d) for the scheme (τ , B). In
particular, the objective of the central planner can be captured
through the following bi-level optimization problem

min
y∈Ω,

(τ ,B)∈FU

f(y(τ , B)), (5a)

s.t. y(τ , B) = Solution of Problem (4a)-(4d), (5b)
where Constraint (5b) represents the lower-level problem of
computing the equilibrium flow given a scheme (τ , B).

B. Algorithmic Approach for Bi-level Problem

Since solving bi-level programs is, in general,
challenging [22], we use dense sampling to compute
an approximate solution to Problem (5a)-(5b). While our
approach is applicable for a broad range of feasibility sets,
for simplicity, we suppose that the set FU is given by
interval constraints, i.e., τt ∈ [τ , τ̄ ] at each period t for
some τ , τ̄ ≥ 0 and B ∈ [B, B̄] for some B, B̄ ≥ 0.

Dense Sampling: To solve the bi-level Problem (5a)-(5b),
we discretize the feasible set FU given by interval constraints
as a grid with a step size of s in each component (in
general, the step size can vary across each component).
That is, the EL toll at any period t lies in the set As =
{τ , τ + s, . . . , τ̄} and the eligible user budget lies in the set
Bs = {B,B+ s, . . . , B̄}. Further, we let Cs be the set of all
toll and budget combinations (τ , B) in this discretized grid.
Then, to compute a good solution to Problem (5a)-(5b) with
a low societal cost, we evaluate the optimal solution of the
convex Program (4a)-(4d) for each CBCP scheme (τ , B) in
the set Cs and return the CBCP scheme with an equilibrium
flow with the least societal cost. That is, we return a CBCP
scheme (τ ∗

s , B
∗
s ) ∈ Cs with a corresponding equilibrium flow

y(τ ∗
s , B

∗
s ), such that f(y(τ ∗

s , B
∗
s )) ≤ f(y(τ , B)) for all

(τ , B) ∈ Cs with equilibrium flows y(τ , B).
We note that while dense sampling involves solving

Problem (4a)-(4d) in a discretized grid over a T + 1
dimensional space, in practical settings tolls tend to remain
static over time, i.e., τt = τt′ for all t ̸= t′. Thus, the
dense sampling approach can be reduced from T +1 to two
dimensions, thereby providing a computationally tractable
method to compute an optimal CBCP scheme in Cs in
practical settings. For a more detailed discussion on the
computational tractability and practical viability of dense
sampling, see the extended version of our paper [8].

VI. NUMERICAL EXPERIMENTS

We now investigate the influence of CBCP schemes on
traffic patterns and study their optimal design through a

case study of the San Mateo 101 Express Lanes Project.
We present the implementation details and our calibration
method of the model parameters of a four-lane highway in
San Mateo (with one EL and three GPLs) in the extended
version of our paper [8]. Here, we present sensitivity results
on EL usage and travel times with changes in tolls and
budgets (Section VI-A) and apply dense sampling to solve
Problem (5a)-(5b) (Section VI-B).

A. Express Lane Usage and User Travel Times

In this section, we present the variation in the travel time
and proportion of users on the EL as the EL tolls and
eligible user budgets are varied. We focus on the setting
when eligible users have time-invariant VoTs, and the tolls
are fixed across five periods over which the CBCP scheme is
run. Further, we discretize the tolls to lie between $0 to $20,
with $1 increments, and budgets to lie between $0 to $90,
with $5 increments, and compute the solution to the convex
Program (4a)-(4d) at each of the discretized toll and budget
combinations. The resulting distributions of equilibrium lane
choices and travel times are presented in Figure 1.

Express Lane Usage: As seen in Figure 1e, users are
split evenly across lanes for $0 tolls, with one-quarter of
all users on the EL and the remaining three-quarters on
the three GPLs. This observation aligns with equilibria in
congestion games without tolls, wherein all users traveling
between the same origin and destination incur the same travel
time. Further, the proportion of eligible users using the EL
ranges from 0% when the budget is $0 to 100% when the
budget exceeds the total cost of tolls over the five periods
(i.e., for a toll τ and budget B where 5τ ≤ B), as reflected
by the yellow portion in Figure 1a. On the other hand, the
share of ineligible users on the EL is at a maximum of
29% at the smallest non-zero toll of $1 and $0 budget and
decreases with either increasing toll or budget (see Figure
1c). From Figure 1e, we also observe that the overall share of
users on the EL monotonically decreases (increases) with toll
(budget) values. Further, the proportion of all users using the
EL smoothly varies with the change in the tolls and budgets.

User Travel Times: From Figures 1b and 1d, we observe
that the travel times on the EL and GPLs decrease and
increase, respectively, with the overall share of users on the
EL. Further, the travel time savings on the EL increases
monotonically with tolls, with a maximum of about 14.8
minutes (a 43% difference) with a $20 toll and $0 budget.

We also note that the overall EL usage and travel time
savings depicted in Figure 1 are comparable to and of the
same order of magnitude as the data obtained from Caltrans’
PeMS database [23] for US 101 ELs in September 2022.

B. Optimal CBCP Schemes

We now design optimal CBCP schemes for a well-studied
societal objective (i.e., the Pareto weighted combination of
different cost (or welfare) measures) [24], given by

fλ(y(τ,B)) = λE

∑
g∈GE

vg
∑
t∈[T ]

∑
e∈[2]

le(xe,t)y
g
e,t − λR

∑
g∈GI

∑
t∈[T ]

τty
g
1,t

+ λI

∑
g∈GI

∑
t∈[T ]

∑
e∈[2]

(vt,gle(xe,t) + Ie=1τt)y
g
e,t,

which is parameterized by a Pareto weight vector λ =
(λE , λI , λR) applied to the i) eligible user travel costs, ii)
ineligible user travel costs, and iii) negative toll revenue,
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(a) EL Fraction Eligible Users (b) Average EL TT

(c) EL Fraction Ineligible Users (d) Average GPL TT

(e) EL Fraction of all Users (f) Average TT for All Users

Fig. 1: Percentage of users on the EL (left) and average travel times
(right), abbreviated TT, corresponding to the optimal solution of the convex
Program (4a)-(4d) for different toll and budget combinations.

TABLE I: Optimal CBCP schemes for various Pareto weights with the
associated travel times (TTs) and fraction of users on the EL

Weights Optimal CBCP % using express lane Average TT
(λE ,λI ,λR) τ B Overall Eligible Ineligible Express GPL

(1, 0, 0) 19 90 19 95 3 22.1 30.3
(0, 1, 0) 0 0 25 60 18 28.2 28.2
(0, 0, 1) 15 0 16 0 19 19.4 31.4
(1, 1, 1) 13 0 17 0 21 20.3 30.9
(5, 1, 1) 11 0 18 0 22 21.5 30.5

(10, 1, 1) 10 0 19 0 23 22.1 30.3
(11, 1, 1) 10 15 19 30 17 22.3 30.2
(12, 1, 1) 11 45 19 82 7 22.6 30.1
(15, 1, 1) 13 55 19 85 6 22.2 30.3

respectively. For our experiments, we solve Problem (5a)-
(5b) using dense sampling for the Pareto weights in Table I.

Table I presents the optimal CBCP schemes for each
Pareto weight λ and lists the proportion of users on the EL
and corresponding average travel times under the optimal
scheme. From Table I, we observe that the optimal CBCP
scheme can vary widely based on the central planner’s
objective, thus demonstrating that a principled approach
using bi-level optimization is key to realizing the benefits
of CBCP schemes. For instance, if the central planner solely
optimizes for eligible users’ travel costs, i.e., λ = (1, 0, 0),
then the optimal CBCP scheme involves providing high
budgets and setting high tolls (to push most ineligible
users out of the express lane), while the optimal revenue-
maximizing CBCP scheme, i.e., λ = (0, 0, 1), involves
providing no budgets and setting a lower toll of $15 (to
incentivize enough eligible users to use the EL).

VII. CONCLUSION AND FUTURE WORK

In this paper, we studied CBCP schemes, akin to those
implemented in the San Mateo 101 Express Lanes Project,
to route heterogeneous users in a multi-lane highway.

There are several directions for future research. First,
it would be worthwhile to investigate whether equilibria

can be computed efficiently in the general setting when
eligible users’ VoTs are time-varying. Further, several model
extensions, e.g., considering time-varying travel demand, are
of interest to further mirror the real-world operation of ELs.
Moreover, including HOVs and incorporating mode choices
would further improve understanding of the role of modal
shift incentives in optimal CBCP. Lastly, investigating more
general budget allocation structures is a promising direction.
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