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Abstract— In this work, multi-agent systems which consist of
a finite set of agents featuring linear dynamics and influencing
each other in a linear way are considered. On the assumption
that the topology of the communication network that connects
the various agents is known, while the gains of the communica-
tion channels, which can assume any real value, are unknown,
the multi-agent system is modeled as a structured system whose
dynamics is defined by a set of mutually independent real
parameters. In this context, structural properties are defined
as properties which hold for all the values that the parameters
can take and, in particular, this work is focused on the study
of the structural stability of the overall multi-agent system.
In the case of interest, where all the agents are assumed
to have asymptotically stable dynamics, it is shown that a
necessary condition for the structural asymptotic stability of
the multi-agent system is that the graph describing the relations
between the state variables of the agents does not contain cycles
of a special kind, defined herein as simple outer cycles. Namely,
if the graph contains simple outer cycles, then the overall
multi-agent system is not structurally asymptotically stable.

I. INTRODUCTION

Multi-agent systems are complex dynamical structures
which consist of a finite number of autonomous entities
performing specific tasks and mutually interacting through
a communication network where the information can be
exchanged [1]. The multi-agent paradigm is employed in a
wide variety of fields with different aims: e.g., to model and
control multi-robot systems [2], [3] and swarms of mobile
robots [4], [5]; to optimize the management of resources
like physical equipment in decentralized production plants
and supply chains [6]–[8], like power plants, transportation
& distribution infrastructures, consumers & co-providers in
power grids [9], [10], or even like sets of appliances in home
automation [11]–[13]; to underpin AI-based decision support
systems [14]–[16]; to model and simulate the behavior of
cell, animal and human populations [17]–[20].

In this paper, we consider multi-agent systems in which the
agents have a linear dynamics and interact with each other
in a linear way. In general, both the dynamics of the single
agents and the characteristics of the communication network
(that is, its topology and the gains of the communication
channels) may be only partially known with different levels
of uncertainty. In the situation we consider, the topology of
the communication network is assumed to be known, while
the gain of the active communication channels are unknown
and, in principle, they may take any real value. It is assumed
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that also the entries of the matrices that define the dynamics
of the single agents are not necessarily known, although their
qualitative properties, like, in particular, asymptotic stability,
are known. Multi-agent system models with fixed and known
subsystem dynamics, but unknown independent gain values
for the interactions among the subsystems were previously
considered, e.g., in [21], [22], with special emphasis on the
analysis of their structural controllability properties.

These assumptions apply, for instance, to the case of a
multi-agent system which consists in a swarm of mobile
robots that can exchange information to coordinate their
behavior. In practical situations, the multi-agent system can
be designed by suitably choosing the individual agents and
by specifying the pairs that are nominally linked by commu-
nication channels (e.g., letting each agent to take into account
only the information broadcasted by neighbouring agents in a
formation). On the other hand, the communication capability
is influenced and may even be disrupted by environmental
conditions, like noise and disturbances, which make the
communication gains to be generally unknown.

In order to take into account the uncertainty, we model the
multi-agent system as a structured system, that is a system
whose dynamic matrix contains entries which are either
known to be equal to zero, called fixed zeros, or are described
by parameters that can vary in a subset of the set of real
numbers, possibly depending on the parameter itself [23].
Then, since stability is a key property of dynamical systems,
a natural problem concerns the possibility to assure the
asymptotic stability of the multi-agent system, provided that
the single agents are themselves stable, regardless of the
values that the parameters which represent the gains of the
communication network can take. In this regard, we will
speak of structural asymptotic stability of the multi-agent
system.

In the case where there are no cycles in the graph
that describes the relations between the agents, asymptotic
stability follows from [24, Theorem 5.1]. In a more complex,
nonlinear framework, sufficient conditions for asymptotic
stability of the equilibrium point were given in [25]. Further
results about stability and stabilizability of multi-agent sys-
tems can be found in [26], where discrete-time systems are
considered, and in [27], although in those cases the overall
system’s parameters are assumed to be known. Further results
on stability and stabilizability of discrete-time multi-agent
systems modelled as structured systems were derived in [28].

With regard to the problem illustrated above, the contri-
bution of this paper consists in proving that the presence
of cycles of a special kind in the graph that describes the
relations between the state variables of the agents prevents
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the multi-agent systems to be structurally asymptotically
stable, i.e. to be asymptotically stable for all the values
that the parameters which represent the gains of the com-
munication network can take. This result provides a simple
graph theoretical condition that is necessary for structural
asymptotic stability and that, as such, should be satisfied
in designing the communication network of a multi-agent
system which is expected to be asymptotically stable when
the communication gains may be arbitrarily altered.

The paper is organized as follows. In Section II, we
introduce the class of multi-agent systems we consider and
we describe the associated graph, whose vertices represent
the state variables of the agents and whose edges represent
the relationships between them. Cycles in the graph are
called outer if they contain edges between vertices that
represent state variables of different agents, while they are
called simple if they do not have vertices in common
with any other cycle, except auto-loops. In Section III,
we introduce the notion of structural asymptotic stability
and we prove the main result of the paper (Theorem 1).
Namely, we show that the presence of a simple outer cycle
in the associated graph prevents the multi-agent system to
be structurally asymptotically stable. Section IV presents a
couple of illustrative examples and Section V contains some
concluding remarks.

II. STRUCTURED MULTI-AGENT SYSTEMS

Let S = {Si}i∈I , with I = {1, . . . , q}, denote a set of
agents which interact with each other, where each agent,
Si, with i∈I, is assumed to have a continuous-time linear
dynamics described by equations of the form

Si ≡
⎧⎨
⎩ẋi(t) = Aiixi(t) +

∑
j ∈I,j �= i

Aijxj(t), (1)

where t∈R
+ denotes the continuous time variable;

xi = [xi
1 . . . xi

ni
]� ∈R

ni is the state of Si and Aij are real
matrices of suitable dimensions for all i, j ∈I.

The term Aiixi(t) in the state equation (1) describes the
autonomous component of the state dynamics of Si, which
will be referred to as the internal state dynamics of Si. The
term

∑
j ∈I,j �= i A

ijxj(t) describes the interaction between
the agents. More precisely, it describes the effects on the
dynamics of the state xi of Si that are due to the states
xj of the other agents Sj with j �= i, or, from a different
point of view, the way in which the information is transferred
from the agents Sj , with j �= i, to the agent Si. The entries
of Aij can be seen as the gains that characterize each
communication channel of the network that connects the
agents. By removing the term

∑
j ∈I,j �= i A

ijxj(t) from the
state equation (1), one obtains the dynamics of the agent Si

in a stand-alone configuration, in which it is not influenced
by any other agent.

With the notation previously introduced, the dynamics of
the linear, multi-agent system Σ that groups S1, . . . , Sq is
described by equations of the form

Σ ≡
{
ẋ(t) = Ax(t), (2)

where

x(t) =
[
(x1(t))� (x2(t))� . . . (xq(t))�

]� ∈ R
n,

with n = n1 + . . .+ nq , and

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

A11 A12 . . . A1q

A21 A22 . . . A2q

...
...

. . .
...

Aq1 Aq2 . . . Aqq

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Remark 1: Agents in Σ may have different dynamics
of different dimensions. Multi-agent systems of the above
kind can be used to model a variety of physical systems
with interconnected components, provided that the individual
components have a linear dynamics and that they mutually
influence each other in a linear way. For instance, they can
be used to describe the autonomous behavior of swarms of
mobile robots, interconnected sets of production units in a
plant, networks of sensors and measuring devices, sets of
control units in a power distribution network, populations or
groups of biological, social or economics entities.

In our setting, we assume that not all the entries of Aij

are known. More precisely, we assume that some of them are
known to be equal to 0, while the others are described by
mutually independent parameters that can assume any value
in R. In displaying the matrix Aij , entries which are known
to be equal to 0 are called fixed zeros and they are indicated
by 0 or, e.g., for the entry ars, this feature is specified by
writing ars ≡ 0. In the opposite situation, we will write
ars �≡ 0. If ars ≡ 0 in Aij , the component xj

s of the state
xj of the agent Sj does not influence the dynamics of the
component xi

r of the state xi of the agent Si. In the opposite
situation, i.e. if ars �≡ 0, its value (which may also be 0) is
the gain with which such influence occurs.

Entries of Aij which are not fixed zeros correspond to
active communication channels between the agents and, from
this point of view, our assumption means that the topology of
the communication networks between the agents is known,
but the gain of each communication channel is not and, in
principle, it may be equal to any real value. This agrees
with many real situations in which the topology of the
communication network can be designed by establishing
specific communication channels, but the actual gain on
each active channel is subject to external unknown and
unpredictable factors.

We make similar assumptions also for the entries of Aii.
More precisely, we assume that some of them are known
to be fixed zeros, while the others may be known or be
described by real parameters which are not necessarily
mutually independent, but which satisfy known dependency
relations (e.g., it may be known that two entries whose
values are unknown are equal to each other) or which are
constrained to assume their value in a specific subset Ω ⊆ R

that may vary with the entry itself. This makes it possible
to include in our framework also situations in which it is
known that some component of the internal dynamics of
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each agent satisfies physical or structural constraints or that
the dynamics itself has specific qualitative properties, like,
for instance, asymptotic stability.

By assuming that the entries of A are either described
by parameters or by fixed zeros, the multi-agent system Σ is
viewed as a structured system in the sense of [23]. Indeed, the
fact that, in the systems considered in [23], all the parameters
are generally assumed to be mutually independent does not
represent, for our purposes, a significant difference. We can
therefore qualify Σ as a structured multi-agent system and
treat it as such.

Relevant information on the dynamics of Σ can be conve-
niently displayed by means of the associated directed graph
(G, E). The pair (G, E) consists of the set of vertices G and
of the set of edges E , whose definitions are given below.

� The set of vertices G is given by

G =
⋃
i∈I

Gi,

where, for any i∈I, Gi is a set of vertices whose
cardinality is equal to the dimension of the state space
of the corresponding agent Si: i.e.,

Gi = {V i
1 , . . . , V

i
ni
}, i ∈ I.

Hence, the cardinality of G is equal to the dimension of
the state space of Σ and it is the sum of the dimensions
of the state spaces of the single agents which form Σ:
i.e.

cardG =
∑
i∈I

cardGi =
∑
i∈I

ni = n.

� The set of edges E contains
- an edge from the vertex V i

s to the vertex V i
r if and

only if the entry ars of the matrix Aii is not a fixed
zero, i.e. ars �≡ 0,

- an edge from the vertex V j
s to the vertex V i

r if and
only if the entry ars of the matrix Aij , with j �= i,
is not a fixed zero, i.e. ars �≡ 0.

The notation e(V j
s , V

i
r ) will be used to indicate an edge

from V j
s to V i

r in E . Moreover, V j
s and V i

r are respectively
called the tail and the head of the edge e(V j

s , V
i
r ).

Definition 1: An edge e(V j
s , V

i
r ) in Ek is said to be

- inner if its tail and its head belong to the same subset
of vertices Gi = Gj , that is if j = i;

- outer if its tail and its head belong to two different
subsets of vertices Gi �= Gj , that is if j �= i.

Letting

E i = {e(V i
s , V

i
r ), for s, r∈{1, . . . , ni}}

denote the set of inner edges between the vertices of Gi, we
have that (Gi, E i) is a subgraph of (G, E) that structurally
describes the internal dynamic relations between the state
variables of the agent Si.

A path P of length h̄ ≥ 1 in (G, E) is an ordered set of
h̄ edges

P = {e1(V j1
s1 , V

i1
r1 ), . . . , eh̄(V

jh̄
sh̄

, V ih̄
rh̄

)}

in E such that the head V ih
rh

of eh(V
jh
sh

, V ih
rh

) coin-
cides with the tail V

j(h+1)
s(h+1)

of eh+1(V
j(h+1)
s(h+1)

, V
i(h+1)
r(h+1)

) for
h=1, . . . , h̄− 1.

The tail of the first edge of the path is called the tail of
the path. The head of the last edge of the path is called the
head of the path. The edges that form a path and their tails
and heads will be said, respectively, to be the edges and the
vertices which belong to the path.

Definition 2: A path P is said to be

- inner if it consists of inner edges only (i.e., if it is a
path of the subgraph (Gi, E i) for some i∈I);

- outer if it contains at least an outer edge.
Definition 3: An inner cycle (or, respectively, an outer

cycle) is an inner path (respectively, an outer path)

Pc = {e1(V j1
s1 , V

i1
r1 ), . . . , eh̄(V

jh̄
sh̄

, V ih̄
rh̄

)}

of any length h̄ ≥ 1 in E such that the head V
ih̄
rh̄ of the last

edge coincides with the tail V j1
s1 of first edge, i.e. such that

V
ih̄
rh̄ = V j1

s1 .
Definition 4: A cycle Pc in (G, E) of length at least 2 is

said to be simple if there are no other cycles, except possibly
auto-loops, that have one or more than one vertex in common
with it.

III. MAIN RESULTS

Overall qualitative properties of the structured multi-agent
system Σ depend not only on the dynamics of the single
agents, but also on the topology and on the gains of the
network that allows their mutual interactions. Since the
topology of the network is characterized by the entries
of A that are not fixed zeros and it is displayed by the
graph (G, E), our setting describes the situation in which
the topology of the network is known, while its gains are
unknown. In such situation, it is interesting to investigate how
the network topology or, equivalently, the graph theoretic
properties of (G, E) influence specific qualitative properties
of Σ, regardless of the values that the unknown parameters
may take. In particular, assuming that each agent has an
asymptotically stable dynamics, we aim to gain insight into
how graph theoretic properties influence the possibility that
Σ be asymptotically stable, regardless of the actual values
that the unknown parameters may take.

If there are no outer cycles in the associated graph, it is
easy to see that, possibly reordering the set of agents, the
dynamic matrix A of the overall multi-agent system Σ can
be given a block diagonal form, with the internal dynamics
matrices Aii on the main diagonal. Hence, in such situation,
the asymptotic stability of each agent is clearly a necessary
and sufficient condition for the asymptotic stability of Σ,
regardless of the values that the unknown parameters may
take. On the other hand, as will be shown in this section,
the presence of simple outer cycles implies that there exist
values of the parameters in the matrices Aij for which Σ is
not asymptotically stable.

To proceed, let us introduce the following definition.
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Definition 5: Assume that each agent in the structured
multi-agent system Σ of the form (2) is asymptotically stable.
Then, Σ is said to be structurally asymptotically stable if,
for any choice of the parameters in the matrices Aij , with
i �= j, the resulting multi-agent system Σ̄, with the dynamics
described by Ā, is asymptotically stable.

The main result of this work is then given by the following
theorem.

Theorem 1: Let Σ be a structured multi-agent system of
the form (2) in which all the agents are asymptotically stable
and let (G, E) denote the associated graph. If there exists a
simple outer cycle Pc in (G, E), then Σ is not structurally
asymptotically stable.

Proof: Let Pc be described by

Pc = {e1(V j1
s1 , V

i1
r1 ), . . . , eh̄(V

jh̄
sh̄

, V ih̄
rh̄

)}
and assume, without loss of generality, that the last edge
eh̄(V

jh̄
sh̄ , V

ih̄
rh̄ ) of Pc is an outer edge. Rename the vertices

of (G, E) (without taking into account to which subset Gi

they belong to), in such a way that V j1
s1 = V

ih̄
rh̄ becomes V1

(namely, the tail of the first edge, which coincides with the
head of the last edge, in above representation of Pc, becomes
V1); the tails of the other edges in Pc become V2, . . . , Vh̄,
according to the order in which they are encountered by
following the path along Pc starting from V1. Then, rename
Vh̄+1, . . . , Vh̄+k in an arbitrary way all the vertices that are
the head of a path in (G, E) whose tail is one of the vertices
V1, . . . , Vh̄. Finally, rename Vh̄+k+1, . . . , Vn, in an arbitrary
way, the remaining vertices of (G, E).

Note that renaming in this way all the vertices corresponds
to a change of basis in the state space of Σ. In particular,
after applying the procedure described above, the dynamics
matrix A takes the form

A =

⎡
⎢⎢⎣

A11 0 A13

A21 A22 A23

0 0 A33

⎤
⎥⎥⎦ (3)

where

A11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 0 . . . . . . 0 a1h̄

a21 a22 0 . . . . . . 0

0 a32 a33 0 . . . 0

...
. . . . . . . . . . . .

...

...
. . . . . . . . . 0

0 . . . . . . 0 ah̄ h̄−1 ah̄ h̄

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

A22 is a square matrix of dimension k, A33 is a square
matrix of dimension n − (h̄ + k). The entries represented
by 0 in A11 and the entries of the null blocks in A are fixed
zeros due to the fact that Pc is a simple cycle. Note that the
elements ai i−1 and a1 h̄, for i = 1, . . . , h̄, in A11 correspond
to the edges of Pc and, therefore, they are not fixed zeros.
Moreover, since a1 h̄ corresponds to an outer edge, it is an
independent parameter that can assume any value in R.

From (3) and (4), we have

det(sI −A) =

det(sI −A11) det(sI −A22) det(sI −A33),

with

det(sI −A11) =⎛
⎝ h̄∏

i=1

(s− aii) + (−1)2h̄+1a1h̄

h̄∏
i=2

aii−1

⎞
⎠ .

Note that the constant term

(−1)2h̄+1a1h̄

h̄∏
i=2

aii−1,

can be made negative by a suitable choice of a1h̄, no matter
which values the nonzero parameters aii−1 assume. Hence,
det(sI−A11) is not a Hurwitz polynomial for all the possible
values that the parameters of A may take. Consequently,
the multi-agent system Σ is not structurally asymptotically
stable.

Theorem 1 states that a necessary condition for the
structural asymptotic stability of a structured multi-agent
system Σ of the form (2) is the absence of simple outer cycles
in the associated graph (G, E). This result is useful in the
design of the communication network that connects a set of
agents, each having an asymptotically stable linear dynamics,
since it indicates how to choose a network topology avoiding
connections which would definitely prevent the asymptotic
stability of the resulting multi-agent system for some values
of the gains of the communication channels.

Remark 2: The condition of Theorem 1 can be checked
by finding all the cycles in (G, E) by means of, e.g., the
MATLABTM function allcycles and, then, by looking for
those which have some vertex in common, with the exclusion
of auto-loops.

IV. ILLUSTRATIVE EXAMPLES

In this section, we illustrate the content of Theorem 1 by a
straightforward example, the first one. Then, with the second
example, we show that the hypothesis that the outer cycle is
simple cannot be dropped.

To avoid unnecessarily heavy notation, in these examples,
the vertices of the graphs are denoted with the same symbols
of the corresponding state variables in the mathematical
models.

A. Example 1

The simplest example in which we can see an application
of Theorem 1 consists of a structured multi-agent system Σ,
of the form (2), with two agents, S1 and S2, of dimension 1,
defined by the following equations

S1 ≡
{
ẋ1(t) = a11x1(t) + a12x2(t),

S2 ≡
{
ẋ2(t) = a22x2(t) + a21x1(t).
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x1 x2

a12

a21 S2
S1

a11 a22

Fig. 1. Example 1 - The directed graph of the multi-agent system Σ.

To guarantee asymptotic stability of each agent, the entries
aii, with i=1, 2, are assumed to be negative. Moreover, the
entries ai,j , with i �= j, are assumed not to be fixed zeros.

The dynamics of Σ is described by the matrix

A =

[
a11 a12

a21 a22

]
,

where the unknown, off-diagonal entries correspond to the
outer edges of the associated graph (G, E) shown in Fig. 1.
Those entries represent the gains of the communications
channels between the agents S1 and S2.

Since the graph (G, E) contains the simple outer cycle

Pc = {e(x1, x2), e(x2, x1)},
according to Theorem 1, Σ is not structurally asymptotically
stable. In fact, we have

det (sI −A) =

(s− a11) (s− a22)− a12a21 =

s2 − (a11 + a22) s+ (a11a22 − a12a21)

and, no matter which values a11 and a22 actually assume,
there exist nonzero values of a12 and a21 which prevent
det (sI − A) from being a Hurwitz polynomial, by making
its constant term negative.

B. Example 2

In this example, we will show that the presence of outer
cycles in the directed graph (G, E) does not prevent the struc-
tural asymptotic stability of the corresponding multi-agent
system Σ, provided that none of the outer cycles is simple.

Let Σ be the multi-agent system of the form (2), which
consists of the two agents, S1 and S2, described by the
equations

S1 ≡

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ1
1(t) = −x1

1(t) + a x2
1(t),

ẋ1
2(t) = x1

1(t)− x1
2(t),

ẋ1
3(t) = x1

1(t)− x1
3(t),

ẋ1
4(t) = x1

2(t)− x1
3(t)− x1

4(t),

(5)

S2 ≡
{

ẋ2
1(t) = −x2

1(t) + b x1
4(t). (6)

Consistently with our general assumptions, the entries of
the dynamic matrix A of the overall multi-agent system Σ

x1
1

x1
2

x1
3

x1
4

x2
1

a

b

−1

−1

−1

−1

−1

−1

S1

S2

1

1

1

Fig. 2. Example 2 - The directed graph of the multi-agent system Σ.

corresponding to outer edges of the associated graph (G, E)
(which represent the gains of the communication channels
between S1 and S2) are unknown, except for those that are
fixed zeros, and are indicated by independent real parameters
– namely, a, b in (5), (6). The entries of the matrix A
corresponding to inner edges, which define, respectively, the
internal dynamics of S1 and of S2 are supposed to be known
and to assume the numerical values indicated in (5), (6). Note
that both the internal dynamics are asymptotically stable.

The associated graph (G, E) is shown in Fig. 2. It contains
only two cycles of length at least equal to 2: namely,

Pc1 = {e(x1
1, x

1
3), e(x

1
3, x

1
4), e(x

1
4, x

2
1), e(x

2
1, x

1
1)}

and

Pc2 = {e(x1
1, x

1
2), e(x

1
2, x

1
4), e(x

1
4, x

2
1), e(x

2
1, x

1
1)}.

Note that none of these two cycles is simple. In fact, they
have the vertices x1

1, x1
4, and x2

1 in common.
The matrix A which defines the dynamics of Σ is given

by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 a

1 −1 0 0 0

1 0 −1 0 0

0 1 −1 −1 0

0 0 0 b −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Therefore,

det(sI −A) = (s+ 1)5,

regardless of the values that a and b actually take.
Hence, Σ is structurally asymptotically stable.
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V. CONCLUSION

A necessary condition for the structural asymptotic sta-
bility of structured multi-agent systems has been given in
Theorem 1. It is worthwhile noting that there is a relevant
gap between the condition that there are no outer cycles in
the graph associated to a given system (which, as already
mentioned, is sufficient for structural asymptotic stability
provided that all the agents have an asymptotically stable
dynamics) and the necessary condition expressed in Theo-
rem 1, which calls into question the existence of outer cycles.
In particular, Example 2 shows that the absence of outer
cycles is not necessary, while the absence of simple outer
cycles is easily seen not to be sufficient. In general, it does
not seem possible to state necessary and sufficient conditions
for structural asymptotic stability of structured systems akin
to those considered in this work.
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