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Abstract— This paper deals with the problem of selecting 
input and output variables for the system being specified. The 
paper covers the fairly general case where the output variables 
of the model are represented as conditional mathematical 
expectations of the output variables of the system model with 
respect to the (generalized) input variables. Output variables 
can also be selected in multiple-input/multiple-output models. 
This paper shows that the appropriate choice of variables (both 
inputs and outputs) is done in a way that applies measures 
consistent with Rényi’s notions of random value and vector 
dependence (all definitions are given in the text). We also 
introduce the heterogeneity of input and output variables and 
present a generalization of Rényi’s axioms to the case of 
multivariate dependence. 

I. INTRODUCTION 

As it is well known, the best approximation of a non-
linear dependence, say ݕ of ݖ, is the conditional mathematical 
expectation ۳ሼݕ ⁄ݖ ሽ [1]. The same is with regard to the 
multiple dependence, say ݕ of ܼ, where ܼ ൌ ሺݖଵ, … ,  ,௡ሻ்ݖ
what means ۳ሼݕ ܼ⁄ ሽ ൌ ۳ሼݕ ,ଵݖ … , ⁄௡ݖ ሽ. Accordingly, 
numerical publications are related to the problem, in 
particular, the ones based on the kernel regression estimation 
[2-6]. 

At the same time, few attentions are paid to the selection 
of namely the variables ܼ ൌ ሺݖଵ, … ,  ௡ሻ், what means aݖ

proper choice of the subset ܼ௜ ൌ ൫ݖ௜ଵ, … , ௜௠൯ݖ
்
, ݉ ൑ ݊, in 

a certain sense. From the point of view of the identification 
theory, variables ܼ ൌ ሺݖଵ, … ,  ௡ሻ் are natural to be referredݖ
to as input variables, while ݕ, the output variable. As well, 
the same is valid for suitable selecting output variables 

ܻ ൌ ൫ݕଵ, … , ௣൯ݕ
்
, where ۳ሼݕ௜ ܼ⁄ ሽ ൌ ۳ሼݕ௜ ,ଵݖ … , ⁄௡ݖ ሽ, 

݅ ൌ 1, … ,   This means selecting a subset .݌

௝ܻ ൌ ቀݕ௜ଵ, … , ௜௤ቁݕ
்
ݍ , ൑  being suitable in a certain ,݌

sense. 

The paper is organized as follows. In the next section, few 
comments on measures of dependence are presented, 
continued with the notion of the consistent measures of 
dependence in Section III. Section IV is devoted to 
constructing Rényi-consistent measures of dependence, and 
Section V presents the input selection problem, continued 
with the reducing mutual dependence of the input variables in 
Section VI. In turn, Section VII is devoted to the extending 
Rényi axioms to the case of multivariate dependence, and 
Section VIII presents the selection of output variables. Ways 
of selecting a suitable consistent measure of dependence is 
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considered in Section IX. Concluding remarks are presented 
in Section X. 

II. COMMENTS ON MEASURES OF DEPENDENCE 

In general, the solution of probabilistic system 
identification problems is always based on the use of random 
variable measures of dependence, among which the 
convenient correlation is mostly known, but it can vanish 
even in deterministic cases of the variables interconnection 
[7, 8]. 

Moreover, this applies to the case of stochastic 
dependence, say a part of the Sarmanov class of probability 
distribution densities ݌௭௬;ఒሺݖ,   ሻ [9, 10]ݕ

,ݖ௭௬;ఒሺ݌ ሻݕ ൌ ሻሺ1ݕ௬ሺ݌ሻݖ௭ሺ݌ ൅ ሻሻ,ݕሻ߶ଶሺݖଵሺ߶ߣ a

where 

න݌௭ሺݖሻ߶ଵሺݖሻ݀ݖ ൌ 0, b

න݌௬ሺݕሻ߶ଶሺݕሻ݀ݕ ൌ 0, c

ሻݕሻ߶ଶሺݖଵሺ߶ߣ ൒ െ1. 

In (1), ݌௭ሺݖሻ, ݌௬ሺݕሻ are the marginal probability 
distribution densities, ߶ଵሺݖሻ, ߶ଶሺݕሻ are functions, meeting 
condition (2) jointly with the scalar ߣ. 

III. CONSISTENT MEASURES OF DEPENDENCE 

To overcome the drawback concerned with vanishing a 
measure of dependence under a dependence, more complex, 
non-linear measures of dependence have been used to 
identify the system. And an important feature of this 
approach is the use of consistent dependence measures. 
According to Kolmogorov’s terminology, a measure of 
dependence between two random variables is called 
consistent if the measure vanishes only if these random 
values are stochastically independent. Therefore, such a 
measure of dependence should be called Kolmogorov 
consistent. 

At one time, paper [8] formulated seven axioms, which 
became known as the most appropriate for characterizing 
measures of dependence between two random values. 

A) ߤሺݖ,  ݖ ሻ is defined for any pair of random valuesݕ
and ݕ, neither of them being constant with 
probability 1. 

B) ߤሺݖ, ሻݕ ൌ ,ݕሺߤ  .ሻݖ
C) 0 ൑ ,ݖሺߤ ሻݕ ൑ 1. 
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D) ߤሺݖ, ሻݕ ൌ 0 if and only if ݖ and ݕ are independent. 
E) ߤሺݖ, ሻݕ ൌ 1 if there is a strict dependence between ݖ 

and ݕ, i.e. either ݕ ൌ ߮ሺݖሻ or ݖ ൌ ߰ሺݕሻ where  and 
 are Borel-measurable functions. 

F) If a Borel-measurable functions  and  map the real 
axis in a one-to-one way onto itself,  
,ሻݖሺ߮ሺߤ ߰ሺݕሻሻ ൌ ,ݖሺߤ  .ሻݕ

G) If the joint distribution of ݖ and ݕ is Gaussian, then 
,ݖሺߤ ሻݕ ൌ ,ݖሺ࢘࢘࢕ࢉ| ,ݖሺ࢘࢘࢕ࢉ ሻ|, whereݕ  ሻሻ is theݕ
ordinary correlation coefficient of ݖ and ݕ. 

Correlation coefficients and correlation ratios are often 
used as measures of dependence based on comparing the 
characteristic moments of the joint and marginal probability 
distributions of a pair of underlying random variables of 
interest. The mentioned correlation ratio is of the form 

,ݖሺߠ ሻݕ ൌ
ݕ൫۳൛ܚ܉ܞ ൗݖ ൟ൯
ሻݕሺܚ܉ܞ

, ሻݕሺܚ܉ܞ ൐ 0, 

as well, the maximum correlation coefficient is as 
follows: 

ܴሺݖ, ሻݕ ൌ ܘܝܛ
ሼ஻ሽ,ሼ஼ሽ

,ሻݕሺܤሺܚܚܗ܋  ,ሻሻݖሺܥ

ሻሻݕሺܤሺܚ܉ܞ ൐ ሻሻݖሺܥሺܚ܉ܞ				,0 ൐ 0.


In (3), (4), ܚ܉ܞሺ⋅ሻ stands for the variance. In (4), the 
upper bound is taken over the sets of Borel measurable 
functions, {B} and {C}, and also, ܤ ∈ ሼܤሽ, ܥ ∈ ሼܥሽ. 

Of these, only the maximum correlation coefficient 
satisfies all of the axioms for the above measures of 
dependence [8], not the usual correlation or correlation ratio, 
and especially the correlation coefficient does not satisfy 
axioms D, E, and F. 

Along with the maximum correlation coefficient, a wide 
class of dependence measures is constructed by direct 
comparison of the joint ݌௬௭ሺݕ,  ሻݖ௭ሺ݌ ,ሻݕ௬ሺ݌ ሻ and marginalݖ
probability distribution densities of random values. Such a 
class is called divergence measures of probability 
distributions. The best-known representatives of the class are 
differential mutual information 

0 ൑ ,ݖሺܫ ሻݕ ൌ ۳ ln
,ݖ௭௬ሺ݌ ሻݕ
ሻݕ௬ሺ݌ሻݖ௭ሺ݌

൑ ∞, 

and contingency coefficient 

0 ൑ Δଶሺݖ, ሻݕ ൌ	

ൌ ۳
ሺ݌௭௬ሺݖ, ሻݕ െ ሻሻଶݕ௬ሺ݌ሻݖ௭ሺ݌

,ݖ௭௬ሺ݌ ሻݕ௬ሺ݌ሻݖ௭ሺ݌ሻݕ
൑ ∞. 

Conventionally, in (5), (6) ۳ሼ∙ሽ stands for the 
mathematical expectation. 

These measures of dependence are consistent according 
to Kolmogorov, but at the same time they do not satisfy 
Rényi’s axioms C, E and G. These measures of dependence 
satisfy all of Rényi’s axioms except perhaps axiom F, namely 
the invariance to one-to-one transformations of random 
variables, which we will refer to as the Rényi consistency. 

IV. CONSTRUCTING RÉNYI-CONSISTENT MEASURES OF 

DEPENDENCE 

On the other hand, in the general case, Kolmogorov 
consistency is weaker than Rényi consistency, as is evident. 
The latter notion is more stringent. In this paper, we propose 
a constructive procedure to construct the Rényi consistent 
measure of dependence using the Kolmogorov consistent 
measure of dependence. This procedure modifies the 
Kolmogorov consistent measure of dependence to obtain a 
measure of dependence satisfying all Renyi’s axioms except, 
possibly, axiom F, and consists of the following steps. 
Namely, 

1) For any consistent in the Kolmogorov sense measure 
of dependence Μ௭௬ between random values ݖ and ݕ, 
calculate this measure for the two-dimensional standard 
Gaussian density depending on the correlation coefficient 
,ݖሺܚܚܗ܋  .ሻሻݕ

2) Represent the expression obtained as a function, say ݂, 
in modulo of the correlation coefficient 

݂ሺ|ܚܚܗ܋ሺݖ, ሻሻ|ሻ,ݕ 

and invert expression (7). 

3) The expression obtained, 

݂ିଵ൫Μ௭௬൯, 

(as a function of the initial measure of dependence Μ௭௬) 
defines the measure of dependence between two random 
values ݖ and ݕ, meeting all Rényi axioms, with the exception, 
may be, axiom F. 

In particular, for the maximum correlation coefficient, the 
corresponding function is the identity transformation. 
Therefore, this method assumes the following transformation 
for differential mutual information, 

,ݖሺߡ ሻݕ ൌ ݂ିଵ൫ܫሺݖ, ሻ൯ݕ ൌ ඥ1 െ ݁ିଶூሺ௭,௬ሻ, 
and for the contingency coefficient 

,ݖଶሺߜ ሻݕ ൌ Θ୼ሺ௭,௬ሻ
ିଵ ൫Δሺݖ, ሻ൯ݕ ൌ

ൌ ඨ
Δଶ ሺݖ, ሻݕ

Δଶ ሺݖ, ሻݕ ൅ 1
.

These two equations are known in the literature as 
equations obtained by various non-universal methods and are 
presented here as examples to confirm the applicability of the 
general proposed technology. 

V. SELECTING INPUT VARIABLES 

Returning directly to system identification, the problem of 
probabilistic system identification and structural 
identification can actually be traced back to the possibility of 
identifying analytical relationships between the output and 
input variables of a system. Thus, only consistent measures 
of dependence can reveal such dependencies and describe 
them quantitatively. A system can then be considered as 
unidentifiable only if the value of the consistent measure of 
dependence is equal to zero for all pairs of input and output 
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variables. On the other hand, the fact that the consistent 
measure of dependence is typically “only” positive may not 
be sufficient to decide to include a given input variable in the 
model, because its magnitude is so small that the 
corresponding effect of that input variable on the output 
variable may not be sufficient in the sense of the researcher. 
This intuitively leads to the conclusion that the identification 
of a system should take into account not only the consistent 
value of the measure of dependence, but also the number of 
input variables and the diversity of their effects on the 
corresponding output variable. This is also an incentive to use 
consistent measures of dependence in the context of the 
identification problem described earlier. 

Consider the following simple example. If the output 
variable of a system is expressed as a linear dependence on, 
say, 100 input variables, then the Rényi consistent measure of 
dependence between the output and each input variable is 
0.1, which intuitively would seem very small. Therefore, a 
natural conclusion would be to take into account the 
heterogeneity of the effect of the input variables on the output 
variables in order to make an informed decision on the choice 
of input variables. 

The following approach can be applied to describe the 
heterogeneity of the impact of input variables on the output 
one. Let the input variables of the system ݖଵ,…	,  ௡ beݖ
ordered in ascending order by the values of the Rényi-
consistent measure of dependence of the output and input 
variables 1݅ݖ,… ,  ݊݅ݖ

ଵߤ ൌ ,ݕோሺߤ ௜భሻݖ ൑ ⋯ ൑ ௡ߤ ൌ ,ݕோሺߤ ௜೙ሻ.ݖ

Then such heterogeneity can be quantitatively expressed 
by the following measure, 

௜௡௣ߟ ൌ
∑ ௞ߤ௞ߥ
௡
௞ୀଵ

∑ ௞௡ߤ
௞ୀଵ

, 

where 

௞ߥ ൌ 2
݇ െ 1
݊ െ 1

െ 1,

and take their values in the unit of interval: the closer the 
values of the Rényi-consistent measure of dependence are to 
each other, the closer to zero is the value of the heterogeneity 
measure characterizing the actual participation of the input 
variable and the uniformity of its effect on the output 
variable. The characteristics of the heterogeneity measure are 
as follows: 

Taking values in a unit interval 

0 ൑ ௜௡௣ߟ ൑ 1;

It turns to zero only if the values of the measure of 
dependence according to Rényi between the output and input 
variables are identical, 

௜௡௣ߟ ൌ 0 if and only if ߤଵ ൌ ⋯ ൌ 	ߤ௡;

It achieves unity only if the value of the Rényi consistent 
measure of dependence between the output and input 
variables is other than zero for an input variable and the value 

of the dependent measure of the consistent Rényi measure of 
dependence is zero for all other input variables. 

max
ఓభ,…,ఓ೙

௜௡௣ߟ ൌ 1,

argmax
ఓ೔భ,…,ఓ೔೙

௜௡௣ߟ ൌ ሼ0, … , 0, ߤሽ	∀ߤ ൐ 0.

To prove relationship (9), it is sufficient to look in more 
detail at the equation, where the coefficients are of the form: 

2
݇ െ 1
݊ െ 1

െ 1 ൌ
݊

݊ െ 1
2݇ െ 1
݊

െ 1.

After that, (9) can be expressed as follows: 

௜௡௣ߟ ൌ
݊

݊ െ 1
௡ܣ
௡ܤ
,

where: ܣ௡ is the square of a convex polygon formed by a 
segment ሾܣ, ଶܣଵܣܣ ሿ and a broken lineܥ	  ௡ isܤ and ,ܥ௡ିଵܣ…
the square of a triangle ܥܤܣ. This view is the end proof 
result. 

This therefore, the heterogeneity measure describes the 
diversity of the system structure in terms of input variables 
and provides a quantitative assessment that helps researchers 
decide whether to include one or more input variables in the 
final model. In the example under consideration, the 
heterogeneity measure is zero, which means that all input 
variables are equally important, which means that all of them 
should be included in the model. 

Based on this consideration, each input variable in the 
system can be associated with a point on the unit square 
(Figure 1). 

input variables 

 
output variables 

Figure 1.  The choice of variables based on their measure of dependence 
and heterogeneity values. 

 

In this case, the coordinates of such a point are the value 
of the Rényi-consistent measure of dependence plotted along 

the abscissa, ߤோ ቀݕ, ݆ ,௜ೕݖ ௜ೕቁ, individual for eachݖ ൌ 1,… , ݊, 

and the value of the heterogeneity measure is along the 
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ordinate, ߟ௜௡௣, common for all ݖ௜ೕ, ݆ ൌ 1,… , ݊. In this case, 
the researcher sets the minimum allowable value of the 
measure of dependence, say ߤ୫୧୬, and the maximum 
allowable value of the heterogeneity measure, say ߟ୫ୟ୶. 
These values define a rectangle in the upper left corner of the 
unit square. 

Γ ൌ ሾ0, ୫୧୬ሿߤ ⊗ ሾߟ୫ୟ୶, 1ሿ. 

Thus, if a point lies within rectangle (10), then the 
corresponding output variable should not be included in the 
constructed system model, and if not, then the input variable 
should be included. Figure 1 shows the corresponding 
diagram for the three variables “above”, where the asterisks 
indicate the case described in the example above for all input 
variables to be used in the model. 

VI. REDUCING THE MUTUAL DEPENDENCE OF INPUT 

VARIABLES 

On the other hand, there may be important relationships 
with the input variables. These relationships are naturally 
reflected in the value of the Rényi-consistent measure of 
dependence, which represents the relationship between the 
output variables and the input variables. Therefore, the 
following algorithm is proposed to appropriately exclude the 
input variables from the model based on the above ideas. For 
the input variable with the largest Rényi-consistent measure 
of dependence on the output variable 

,ݕோ൫ߤ ௜బ൯ݖ ൒ ோߤ ቀݕ, ݆∀				௜ೕቁݖ ് 0

Rényi-consistent measures of dependence with each of 
the other input variables are calculated, 

ோߤ ቀݖ௜బ, ݆∀				௜ೕቁݖ ് 0.

If the values of these measure of dependence are greater 
than the value ߢ specified by the researcher, 

,௜బݖோሺߤ ௜ೖሻݖ ൒ ,ߢ

this is because the contribution to the output variable was 
made by the input variable which, relatively, has the highest 
value of the measure of dependence with the output variable. 
Consequently, these variables ݖ௜ೖ are excluded from the 
model. 

VII. EXTENDING RÉNYI AXIOMS TO THE CASE OF THE 

MULTIVARIATE DEPENDENCE 

The presented approach for constructing Rényi-consistent 
measures of dependence allows a detailed extension of 
Rényi’s axioms to the multivariate dependence case and, 
hence, Rényi-consistent dependence measures for random 
vectors. In the literature, an extension of Rényi’s axioms to 
the multivariate case was presented in [11]. However, it does 
not provide the exact agreement with Rényi’s axioms for the 
two-dimensional distribution case that is generally required. 

In particular, it concerns axioms C, E and G, which are 
related to the normalization conditions. On the other hand, 
the normalization condition is very important, since taking 
only the semi-positive values does not actually provide a 
basis for comparing and evaluating the significance of certain 

quantities. The axioms proposed in this paper, in a suitable 
comparison with the axioms of [11], are as follows, with 
indicating the changes in red. 

A) ߤሺݖଵ, … ,   ௡ሻ is defined for any random vectorݖ
ܼ ൌ ሺݖଵ,… ,  ௡ሻ, neither of the components of theݖ
vector ܼ being a constant with probability 1. 

B) For any permutation ߪ ൌ ሺ݅ଵ, … , ݅௡ሻ of the indexes 
ሼ1, 2, … , ݊ሽ the measure is invariant, i.e.  
ሺܼሻߤ ൌ ,ଵݖሺߤ … , ௡ሻݖ ൌ ,௜భݖ൫ߤ … ,  .௜೙൯ݖ

C) 0 ൑ ,ଵݖሺߤ … , ௡ሻݖ ൑ 1 versus 0 ൑ ,ଵݖሺߤ … , ௡ሻݖ ൌ  can) ߛ
be ∞) in [11]. 

D) ߤሺݖଵ, … , ௡ሻݖ ൌ 0 if and only if the random variables 
,ଵݖ … ,  .௡ are independentݖ

E) ߤሺݖଵ, … , ௡ሻݖ ൌ 1 versus 0 ൑ ,ଵݖሺߤ … , ௡ሻݖ ൌ  (∞ can be) ߛ
in [11] if and only if there exists a deterministic 
dependence between components of the random 
vector ܼ. 

F) Invariance to any one-to-one transformation  
Ψ ൌ ሺ߰ଵ,… , ߰௡ሻ of ܼ ൌ ሺݖଵ,… ,  .௡ሻ onto ܴ௡, i.eݖ
Ψሺܼሻ ൌ ൫߰ଵሺݖଵሻ, … , ߰௡ሺݖ௡ሻ൯, namely: 

,ଵሻݖ൫߰ଵሺߤ … , ߰௡ሺݖ௡ሻ൯ ൌ …,ଵݖሺߤ ,  .௡ሻݖ

G) If the joint distribution of the vector ܼ ൌ ሺݖଵ,… ,  ௡ሻ isݖ
Gaussian, then for the case of ݊ ൌ 2,  
,ଵݖሺߤ ଶሻݖ ൌ ,ଵݖሺܚܚܗ܋| ,ଵݖሺߤ ଶሻ| versusݖ  ଶሻ is anݖ
increasing function of ܚܚܗ܋ሺݖଵ,  .ଶሻ in [11]ݖ

VIII. SELECTING OUTPUT VARIABLES 

Similar to the approach described above for 
characterizing heterogeneity in the significance of input 
variables, the Rényi-consistent multiple measure of 
dependence can be used to properly construct the 
heterogeneity of the output variables of the system under 
study and reveal the most significant ones. That is, suppose 
that the output variables of the system are sorted in ascending 
order based on the value of the Rényi-consistent multiple 
measure of dependence for each output and all input 
variables 

ଵߤ ൌ ,௜భݕோሺߤ ,ଵݖ … , ௣భሻݖ ൑ ⋯ ൑
൑ ௠ߤ ൌ ,௜ಾݕோሺߤ ,ଵݖ … , .௣೗ሻݖ

 

In (11), the lower scripts 1, … , ,ଵ, …, 1݌ … ,  ௟, are݌
used to denote input variables that have been selected in 
accordance to the above procedure for the input variables 
selection. 

The heterogeneity of the effects of all input variables 
(selected) on each output variable of the target system can 
then be expressed quantitatively by the following measure, 
which takes values in the units interval 

௢௨௧ߟ ൌ
∑ ௞ߤ௞ߥ
௣
௞ୀଵ

∑ ௞ߤ
௣
௞ୀଵ

, 

where 
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௞ߥ ൌ 2
݇ െ 1
݌ െ 1

െ 1.

The characteristics of heterogeneity measure of the output 
variable (12) are the same as that of the input variable. 

It takes values in unit interval, 

0 ൑ ௢௨௧ߟ ൑ 1.

It becomes zero only if the value of the Rényi multiple 
measure of dependence between all output and input 
variables matches 

௢௨௧ߟ ൌ 0 if and only if ߤଵ ൌ ⋯ ൌ		  .௣ߤ

Unity is achieved only if the measure of multiple 
dependence between an output and all input variables is not 
zero, its value is consistent with the Rényi concept for all 
other output variables, and the measure of multiple 
dependence is zero, 

max
ఓభ,… ,ఓ೘

ሼߟ௢௨௧ሽ ൌ 1, 

argmax
ఓ೔భ,…,ఓ೔೛

௢௨௧ߟ ൌ ሼ0, … , 0, ߤሽ	∀ߤ ൐ 0.

Accordingly, the solution of the problem of inclusion or 
exclusion of one or another output variable is solved 
similarly to the case of choosing input variables. Namely, the 
researcher presets the minimally admissible magnitude of the 
Rényi-consistent measure of the multiple dependence ߤ୫୧୬, 
and the maximally admissible magnitude of the measure of 
the heterogeneity ߟ୫ୟ୶. These magnitudes forms a rectangle 

Δ ൌ ሾ0, ୫୧୬ሿߤ ⊗ ሾߟ୫ୟ୶, 1ሿ. 

and if there is an output variable within rectangle (13), it 
is excluded from the model. Figure 1 shows an example of 
selecting output variables within the unit square (bottom four 
dots), which means that all four output variables are included 
in the model. 

IX. TOWARDS THE CHOICE OF THE RÉNYI CONSISTENT 

MEASURE OF DEPENDENCE 

Strictly speaking, the choice of a Rényi consistent 
measure of dependence is a separate problem. In this case, 
Rényi axiomatics [8] plays the most significant role. Thus, 
the maximum correlation is redundantly satisfying the Rényi 
axioms, insofar as, in accordance with the Rényi axioms, the 
measure of dependence must satisfy the axiom of invariance 
with respect to the one-to-one transformation of each of the 
pair of random variables. But the maximum correlation 
satisfies such an axiom for any transformations. On the other 
hand, the calculation of the maximum correlation is a rather 
complicated problem associated with the iterative 
calculation of the first eigenfunctions of the stochastic 
kernel, which has the form 

,ݕ௬௭ሺ݌ ሻݖ

ඥ݌௬ሺݕሻ݌௭ሺݖሻ
. 

Naturally, under the conditions of solving the 
identification problem itself, when neither the joint nor the 
marginal probability distribution densities of random 
variables are known, the construction of the first 

eigenfunctions of a given stochastic kernel makes the 
solution of such a problem much more complicated. 

As is well known, a wide class of consistent measures of 
dependence can be built on the basis of divergence measures 
of probability distributions, of which the Kullback-Leibler 
divergence is the best known. But at the same time, it is not 
symmetrical. On its basis, a well-known dependence 
measure is built – differential mutual information – and, 
accordingly, the information correlation coefficient  

ඥ1 െ ݁ିଶூ೤೥ሺ௬,௭ሻ, 

where ܫ௬௭ሺݕ,  .ሻ is the differential mutual information (5)ݖ
In turn, the construction of estimates of the differential 
mutual information based on sample dependent observations 
is based on L’Hospital rule [12] applied for each of the 
differential entropies, which, ultimately, is a serious 
problem. 

This problem disappears when Rényi and Tsallis 
divergence measures of any order are used. On the other 
hand, the computational complexity of the Rényi and Tsallis 
divergences increases with increasing the order, but it is 
generally accepted that order two, i.e. quadratic divergence, 
is quite sufficient. On the other hand, another advantage of 
Rényi divergence over Kullback-Leibler divergence is that 
Rényi divergence contains the logarithm of the integral rather 
than the integral of the logarithm. But the Tsallis divergence 
does not contain a logarithm at all. At the same time, a 
symmetric measure of divergence was constructed in [13] 
based on Tsallis entropy of order two. It can be shown that its 
version, normalized to unity, 

ට1 െ
ଵ

൫଼గூమ
೅ሺ௬,௭ሻାଵ൯

మ, 

where ܫଶ
்ሺݕ,  ሻ is the symmetric mutual information ofݖ

Tsallis of order two [13], satisfies all Rényi axioms, except 
for the axiom about invariance with respect to a one-to-one 
transformation of each of a pair of random variables. Thus, 
this measure of dependence is Rényi consistent and is the 
most appropriate for the purposes outlined in this paper. 

X. CONCLUSIONS 

The paper has been devoted to a most general case of 
selecting variables in the non-linear system model 
represented in the form of the conditional mathematical 
expectation. Meanwhile, the input variable  
ܼ ൌ ሺݖଵ, … ,  ௡ሻ் can involve both system input variablesݖ
and preceding output variables, and the problems of selecting 
these variables (their quantity and quality) have been 
considered in the paper. 

At the heart of the whole approach is the consistent 
application of the concept of Rényi measures of dependence 
and heterogeneity measures that allow for the selection of 
input and output variables. And of course, the role of the 
researcher remains in the foreground, appropriately choosing 
the minimum allowable size of the measure of dependence 
and the maximum allowable size of the heterogeneity 
measure. 

The approach is distribution free, and as a measure of 
dependence any consistent in the Rényi sense measure of 
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dependence can be applied. Nevertheless, the inference of 
Section IX about selecting a Rényi consistent measure of 
dependence should not be excluded. 
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