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Abstract— We consider the problem of minimizing the sum
of cost functions pertaining to agents over a network whose
topology is captured by a directed graph (i.e., asymmetric
communication). We cast the problem into the ADMM setting,
via a consensus constraint, for which both primal subproblems
are solved inexactly. In specific, the computationally demanding
local minimization step is replaced by a single gradient step,
while the averaging step is approximated in a distributed
fashion. Furthermore, partial participation is allowed in the
implementation of the algorithm. Under standard assumptions
on strong convexity and Lipschitz continuous gradients, we
establish linear convergence and characterize the rate in terms
of the connectivity of the graph and the conditioning of the
problem. Our line of analysis provides a sharper convergence
rate compared to Push-DIGing. Numerical experiments corrob-
orate the merits of the proposed solution in terms of superior
rate as well as computation and communication savings over
baselines.

I. INTRODUCTION

Distributed multi-agent optimization has found paramount
applications across various fields such as in control [1], signal
processing [2], [3], machine learning and data mining [4],
[5], and wireless sensor networks [6], [7]. The archetypal
problem is to

minimize
x̂∈Rd

f (x̂) =

n∑
i=1

fi(x̂), (1)

where fi(·) is a local cost function corresponding to agent i.
Distributed optimization amounts to solving (1) over the
common decision vector x̂ by a synergy of local compu-
tations and communication exchanges. In specific, agent i
holds a local variable xi which is updated based on its local
cost fi(·) alongside information obtained by its neighbors
(e.g., their local variables or gradients), and consensus (i.e.,
x1 = · · · = xn) is achieved asymptotically.

There has been extensive work on the subject, especially
for the case that the communication network topology is
symmetric (i.e., an undirected graph) [8], [9], [10], [11].
Nevertheless, it is quite common to have unidirectional
communication links in wireless networks due to hetero-
geneity in transceivers or perceived levels of interference [7].
Algorithms on directed graphs can be roughly classified into:
a) primal methods and b) primal-dual methods, most notably
based on the Alternating Direction Method of Multipliers
(ADMM) [12]. In the former case, a local gradient step
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is used along with weighted averaging across neighboring
agents. A sublinear convergence is established [13], [14] even
for strongly convex problems, while linear convergence can
be retrieved using gradient tracking [15].

Recent work has developed ADMM-based methods for
distributed optimization on directed graphs [16], [17], [18].
In specific, [16] uses dynamically updated weights for local
averaging and establishes linear convergence under strong
convexity. The authors in [17] adopted ϵ−inexact consensus
and proposed an asynchronous method that requires a finite
number of communication steps per round. [18] allows
for both equality and inequality constraints and establishes
either sublinear rate to the exact solution or linear rate to a
neighborhood of optimality.

Notwithstanding, the prior art based on ADMM requires
an exact solution of the local subproblems, which may
incur heavy computational burden unsuitable for resource-
constrained devices. Besides, it is not amenable to partial
agent participation, an imperative requirement in real sce-
narios where user unavailability is common (due to vari-
able operating conditions such as battery level and network
bandwidth) and synchronization is difficult [19] . In order to
address these challenges, we propose IPD (Inexact, Partial
participation, Directed graph).
Contributions:

1) We propose a primal-dual method for distributed opti-
mization on directed graphs that alleviates the compu-
tational load by inexact solution of the local subprob-
lems (using a single gradient step).

2) Under standard assumptions, we establish linear con-
vergence and characterize the rate with respect to the
graph connectivity and the conditioning of the problem
(Thm. 1 and Cor. 1).

3) The method allows for partial user participation at
each iteration of the algorithm. Thm. 2 establishes
linear convergence with high probability and reveals
its dependency on the activation probability.

4) Our analysis provides a sharper characterization of
the rate compared to the state-of-the-art Push-DIGing
method with which it shares comparable communica-
tion and computation costs.

5) Experiments on two real-life machine learning datasets
demonstrate merits in terms of a) faster rate compared
to Push-DIGing, b) computation and communication
savings over baselines.
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II. NOTATION

The network topology is captured by a directed graph
G = {V, E}, where V is the set of agents (with cardinality
n := |V|) and E is the set of directed communication
links: (i, j) ∈ E if and only if agent i can send a message
to agent j. We define the set of agent i’s in-neighbors
as N in

i := {j : (j, i) ∈ E}, and its out-degree by di :=
| {j : (i, j) ∈ E} |. The maximum out-degree is denoted by
dmax := maxi∈V di, while D := diag(d1, d2, . . . , dn)
is a diagonal matrix with entries the out-degrees of the
corresponding agents. The adjacency matrix A ∈ Rn×n

satisfies Aij = 1 if (j, i) ∈ E and Aij = 0 otherwise.
We further define P :=

(
I +AD−1

)
/2 and for λ2(P ) its

second largest eigenvalue, while we use ϕ for the diameter
of the graph. All vectors are meant as column vectors.
The notation xi ∈ Rd is for the local vector of agent
i, while x ∈ Rnd is reserved for the concatenation, i.e.,
xT := [xT

1 , . . . , x
T
n ]

T (and analogously for other variables).

We let x̄k := 1
n

n∑
i=1

xk
i ⊗ 1n, where 1 means the all-one

vector, and xk
⊥ := xk − x̄k where superscript k corresponds

to the k−th iterates; analogous definitions apply for z̄k and

zk⊥. Additionally, we define F (x) :=
n∑

i=1

fi (xi) and the

consensus set C := {x : x1 = · · · = xn} with corresponding
indicator function:

IC (x) =

{
0, x ∈ C
∞, else

Finally, we let [n] := {1, . . . , n} for n ∈ N.

III. PROPOSED METHOD

To cast problem (1) into the setting of ADMM, we re-write
is as:

minimize
x,z∈Rnd

F (x) + IC (z)

subject to x = z (2)

The augmented Lagrangian (AL) for (2) is given by:

Lρ (x, z, y) = F (x) + IC (z) + yT (x− z) +
ρ

2
∥x− z∥2,

where y ∈ Rnd is the dual variable and ρ > 0. The iterations
of ADMM are given by sequential alternating minimization
of the AL over x, z plus a dual ascent step, as follows:

xk+1 = argmin
x

Lρ

(
x, zk, yk

)
, (3a)

zk+1 = argmin
z

Lρ

(
xk+1, z, yk

)
, (3b)

yk+1 = yk + ρ
(
xk+1 − zk+1

)
. (3c)

Step (3a) decomposes to local optimization subproblems at
the agents. Solving these exactly is generally computationally
burdensome, therefore inexact minimization is invoked in the
form of a single gradient descent step (with η > 0) as:

xk+1
i = xk

i − η
(
∇fi

(
xk
i

)
+ yki + ρ

(
xk
i − zki

))
. (4)

Algorithm 1 IPD

Initialization: x0
i = z0i = y0i = 0, w0

i (0) ∈
(
0, d

−(2ϕ+1)
max

]
1: for k = 0, 1, . . . do
2: for each active agent i do
3: Compute xk+1

i using (4)
4: Initialize ξk+1

i (0) = xk+1
i

5: for b = 0, 1, . . . , B − 1 do
6: Broadcast wk

i (b) and ξk+1
i (b)

7: Compute wk
i (b+ 1) using (5)

8: Compute ξk+1
i (b+ 1) using (6)

9: end for
10: Set wk+1

i (0) = wk
i (B) and zk+1

i = ξk+1
i (B)

11: Compute yk+1
i = yki + ρ

(
xk+1
i − zk+1

i

)
12: end for
13: end for

Problem (3b) is a quadratic program with closed form
solution given by:

zk+1
i =

1

n

n∑
j=1

(
xk+1
j +

ykj
ρ

)
.

The challenge here is that this is a global averaging step
that can not be computed in a distributed manner without
(prohibitively) extensive message-passing. For this reason,
we also opt to solve (3b) inexactly by B distributed averaging
steps with weights obtained by the weight balancing method
proposed in [16]. The latter requires each agent to initialize
its local weight w0

i (0) ∈
(
0, d

−(2ϕ+1)
max

]
and update it (for

k ≥ 0, b ∈ {0, . . . , B − 1}) using:

wk
i (b+ 1) =

1

2

wk
i (b) +

1

di

∑
j∈N in

i

wk
j (b)

 , (5)

setting wk+1
i (0) = wk

i (B).
We use ξki (·) as the proxy for zki , which is initialized as
ξk+1
i (0) = xk+1

i and updated (b ∈ {0, . . . , B − 1}) using:

ξk+1
i (b+1) =

(
1− diw

k
i (b)

)
ξk+1
i (b)+

∑
j∈N in

i

wk
j (b)ξ

k+1
j (b),

(6)
whence we let zk+1

i := ξk+1
i (B).

These steps can be carried in a distributed fashion using
information obtained from in-neighbors which, in turn,
suggests that broadcasting to out-neighbors suffices for
communication. Our method is termed IPD (IPD: inexact,
partial participation, directed graph) and is presented
as Alg. 1. It supports partial participation (step 2); this
is analyzed as random activation with probabilities qi
(Thm. 2). Besides, local computation amounts to an
economical single gradient step (step 3). Communication
is carried by broadcasting ξi and weight wi (step 6; total
cost is d + 1) which are updated by distributed averaging
(steps 7-8), while step 11 is for dual ascent. In view of
partial participation, an implicit assumption is that the latest
information received by broadcasting is stored in a buffer
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so that the update of an active agent will not be affected
by the inactivity of its neighbors and an active agent is
available to carry all operations in steps 5-9. We emphasize
that since only the latest information is stored, the storage
requirements do not increase.

IV. CONVERGENCE ANALYSIS

The analysis is carried under the following two assump-
tions:

Assumption 1. The directed graph G is strongly connected.

Assumption 2. The objective functions fi satisfy:
1) Each fi, i ∈ [n] is strongly-convex, i.e., there exists

mf > 0, such that ∀x, y ∈ Rn,

(∇fi (x)−∇fi (y))
T
(x− y) ≥ mf∥x− y∥2.

2) The gradient of each fi, i ∈ [n] is Lipschitz continuous
with constant Mf > 0, i.e., ∀x, y ∈ Rn,
∥∇fi (x)−∇fi (y)∥ ≤ Mf∥x− y∥.

We denote the primal-dual optimal solution of (2) by
(x⋆, z⋆, y⋆); strong convexity guarantees unique primal solu-
tions, while (7c) of the following KKT conditions guarantees
uniqueness of the dual optimal solution:

x⋆
1 = · · · = x⋆

n, (7a)
x⋆ = z⋆, (7b)

∇F (x⋆) + y⋆ = 0. (7c)

The following lemma establishes an error bound on the
deviation of zk from the average z̄k that is key in establishing
our convergence theorem. The analysis is similar with some
steps in establishing [16, Theorem 1], but the obtained upper
bound is more general.

Lemma 1. Let xk
⊥ := xk − x̄k, zk⊥ := zk − z̄k. Under

Assumption 1, there exist k̄ > 0, δ ∈ (0, 1), such that the
sequence generated by Alg. 1 satisfies∥∥zk⊥∥∥2 ≤ δ2B−1

∥∥xk
⊥
∥∥2 +∆k

(∥∥xk − x⋆
∥∥2 + ∥x⋆∥2

)
,

∀k ≥ k̄, and ∆k → 0 geometrically with rate λ2(P ).

Proof: See Appendix.
We proceed to analyze the convergence of Alg. 1 in two

steps: a) Thm. 1 establishes linear convergence with full
participation; b) Thm. 2 considers the case of partial partici-
pation and establishes the convergence with high probability.

Theorem 1 (Full Participation). Under Assumptions 1
and 2, by choosing η ≤ 4

15(Mf+mf )
, ρ ∈

(
0, 4

87
Mfmf

Mf+mf

)
,

B ≥ max
{
1, 1

2

(
(ln 5

36
/ ln δ) + 1

)
, 1
2

(
ln

8Mfmf

9(Mf+mf )2
/ ln δ + 1

)}
,

if all agents are active in each iteration, the sequence
generated by Alg. 1 satisfies∥∥xk − x⋆

∥∥2 + ∥∥yk − y⋆
∥∥2 = O

(
λk
)
,

where
λ = max

{
2µ1

1+µ1
, λ2(P )

}
,

µ1 = max
{

c1+c2
2c2

, 1− 2
3ρc3

}
,

c1 := 1
2η + 2ρ+ 3ρδ2B−1 − mfMf

mf+Mf
,

c2 := 1
2η − δ2B−1

[
5ρ
4 + 1

η +
3(mf+Mf )

4

]
− ρ,

c3 := min
{

1
3(mf+Mf )

, η2
(

3(mf+Mf )
16 − ρ

)
, c2−c1
ρ2(4+4δ2B−1)

}
.

Proof: See Appendix.
The following corollary shows that for appropriate param-

eter choice the convergence rate depends on a) the condition
number κ (with a dependency of 1

κ that is reminiscent of first
order methods without acceleration) and b) the connectivity
of the graph (λ2(P )). The lower bound on B increases
logarithmically with the condition number and decreases
logarithmically with the parameter δ (pertaining to the graph
topology).

Corollary 1. Let η = 4
15(Mf+mf )

, ρ = 2
87

Mfmf

Mf+mf
, and

B > 1
2 + ln(1000(κ+1))

2 ln 1/δ , and define κ :=
Mf

mf
. Then Alg. 1

with full participation converges linearly with rate

λ = max

{
1−O

(
1

κ

)
, λ2(P )

}
.

In the following theorem, parameters η (stepsize), ρ
(penalty coefficient), B (inner-loop rounds) are as in Thm. 1.
Convergence with partial participation is established under a
simple stochastic model that assumes agents are activated
with probability qi > 0 at each iteration (step 2 of Alg. 1).

Theorem 2 (Partial Participation). Let Assumptions 1 and
2 and parameters η, ρ, B as in Thm. 1. If at every round
agent i is active with probability qi (i.i.d. across rounds)
with qmin := mini∈[n] qi > 0, then for any ϵ ∈ (0, 1), with
probability at least 1− ϵ, the following holds:

∥∥xk − x⋆
∥∥2 + ∥∥yk − y⋆

∥∥2 = O
(
λk
p

)
,

where λp can be arbitrarily chosen from (λ1, 1),
λ1 = max

{
λ2(P ), 1− qmin

1−µ1

1+µ1

}
.

Proof: See Appendix.

Remark 1. Convergence in Thm. 2 is established with high
probability, where the dependency on ϵ is hidden in O(·),
since the established rate analysis is asymptotic. In specific,
for any ϵ ∈ (0, 1), with probability at least 1 − ϵ, there
exists some K = K(ϵ, λp), such that ∀k > K,

∥∥xk − x⋆
∥∥2+∥∥yk − y⋆

∥∥2 ≤ λk
p .

V. COMPARISON WITH PUSH-DIGING

Push-DIGing [15] is the most popular gradient-based
method for directed graphs that achieves linear convergence
through gradient tracking (second line in (11)). The updates
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for agent i at iteration k are as follows:

ui(k + 1) = cii(ui(k)− ηyi(k))

+
∑
j∈N in

i

cij(k)(uj(k)− ηyj(k)), (8)

vi(k + 1) = cii(k)vi(k) +
∑
j∈N in

i

cij(k)vj(k), (9)

xi(k + 1) = ui(k + 1)/vi(k + 1), (10)

yi(k + 1) = cii(k)yi(k) +
∑
j∈N in

i

cij(k)yj(k)

+ {∇fi(xi(k + 1))−∇fi(xi(k))} . (11)

where η is the stepsize, C(k) is a column-stochastic matrix,
and the initialization uses vi(0) = 1, xi(0) = ui(0), and
yi(0) = ∇fi(xi(0)).

We first show that our proposed solution has comparable
computation/communication cost (in fact lower communica-
tion cost for the case B = 1):
• for Push-DIGing, in each round the cost for one agent
includes one broadcast of 2d + 1, one gradient evaluation,
plus a local averaging cost of din

i (2d + 1) where din
i is the

in-degree of agent i.
• for our method, the cost includes one broadcast of
B(d + 1), one gradient evaluation, and averaging cost of
din
i (B(d+ 1)).

We conclude that for B = 1, IPD has lower computation
and communication costs.

We proceed to compare our rate with the one established
in [15, Theorem 18]. For Push-DIGing, by denoting V (k) :=
diag (v1(k), . . . , vn(k)), it holds that supk

∥∥V (k)−1
∥∥
max

=
O (nn) [15, Equation 49], which results in an upper bound
selection of stepsize as O (n−n); this, in turn, leads to a
rate of 1 − O (n−n). This is reminiscent of the analysis
technique which was developed to address a more general
problem that also considers time-varying graphs. In contrast,
the stepsize in our case depends only on the scaling and
not on the population (see Thm. 1). We further study the
rate experimentally in Fig. 2, which depicts a substantial
acceleration for the same stepsize. This is also translated to
substantial computation and communication savings (since
B = 1 is used in all comparisons) . The superior rate
achieved by our proposed method can further be explained
by the weight balancing process in (5) which converges to
a doubly stochastic matrix. In contrast, (11) in Push-DIGing
uses a column-stochastic matrix (i.e., it does not apply the
push-sum protocol in the gradient estimation step).

VI. EXPERIMENTS

We evaluate IPD on a distributed logistic regression prob-
lem:

fi(x) :=
1

mi

mi∑
j=1

[
ln
(
1 + ew

T
j x
)
+ (1− yj)w

T
j x
]
,

where mi is the number of data points held by each agent
and {wj , yj}mi

j=1 ⊂ Rd × {0, 1} are labeled samples. We

(a) (b)

Fig. 1: Computation cost to reach a target accuracy compared
with [16] (a) and convergence paths for variable B (b) (Full
participation is considered in both cases).

(a) (b)

Fig. 2: Comparison on different levels of participation for
B = 5 (a) and comparison (full participation) with Push-
DIGing (b).

used two datasets from LIBSVM1 and the UCI Machine
Learning Repository2 for Fig. 1 and Fig. 2 respectively. In
each case we take 5,000 data points with dimension d = 22,
distribute them uniformly at random across n = 50 agents.
The communication topology is captured by a directed graph
obtained by randomly adding edges to the ring graph with
probability 0.2. We use the relative cost error as the metric for
convergence which is defined as

∑n
i=1 f(xk

i )−f(x⋆
i )∑n

i=1 f(x0
i )−f(x⋆

i )
. Fig. 1.a

shows the comparison with the alternative of solving the
local optimization problem (3a) exactly as in [16] : it
reveals a large computational saving of 87.5% in all cases.
Fig. 1.b illustrates a negligible dependency on the number
of communication steps B. In fact, all other experiments
for both datasets were conducted for B = 1. Fig. 2.a
shows the effect of increasing participation in the speedup
of the algorithm (as expected from Thm. 2). Last but not
least, we compared against Push-DIGing in Fig. 2.b for two
different stepsizes (common for both methods). The superior
convergence rate of IPD translates to 90.4% computation
and 94.9% communication savings for target accuracy of
0.5. In particular, to reach the target accuracy with stepsize
η = 0.01, our method needs about 100 rounds while Push-
DIGing needs 600 rounds and the cost per round is based
on the analysis in the previous section.

VII. CONCLUSION

This paper proposed proposed IPD, a primal-dual method
for distributed optimization over directed graphs. The

1Available at https://www.csie.ntu.edu.tw/˜cjlin/libsvm/.
2Available at https://archive.ics.uci.edu/ml/index.php.
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two primal subproblems are solved inexactly: one step
of gradient descent for the local optimization problem
(x−variable) and distributed averaging based on weight
balancing (z−variable). IPD was shown both theoretically
and experimentally to have faster convergence than Push-
DIGing (Sec. V) as well as substantial computation and
communication savings over baseline methods. The estab-
lished linear rate gives a decomposition in terms of the
problem conditioning and the network connectivity (Thm. 1
and Cor. 1), similar with first order methods on undirected
graphs. Furthermore, the lower bound for B (number of
communications per round) was shown to have a logarithmic
dependency with conditioning and connectivity (Cor. 1). A
distinctive attribute of IPD is the feasibility of partial agent
participation, which is crucial in large-scale real systems (the
rate was established in Thm. 2).
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APPENDIX

Due to length constraints, we provide proof sketches in
the following. The complete proofs are accessible at [20].

Proof of Lemma 1: For each k, we consider the l−th entry
of each ξki (·) and combine them to form an n−dimensional
vector denoted by ξ̃k (·), and we let

ξ̃k⊥ (·) :=
(
I − 11T /n

)
ξ̃k (·) .

We define W k(b) := I − (D − A)diag
(
wk(b)

)
. Then,

according to the first property of [16, Lemma 2], there exists
pk(b), so that W k(b)pk(b) = pk(b) and (pk(b))T 1 = 1.
Following the steps in [16] we can obtain that for all k ≥ k̄∥∥∥z̃k⊥ + (1/n− pk(B))1T x̃k

∥∥∥ ≤ δB
∥∥∥x̃k

⊥ + (1/n− pk(0))1T x̃k
∥∥∥.

Letting p̂k = argmaxp∈{pk(0),pk(B)} ∥1/n− p∥, we get∥∥z̃k⊥∥∥ ≤ δB
∥∥x̃k

⊥
∥∥+ (1 + δB

) ∥∥∥(1/n− p̂k)1T x̃k
∥∥∥

≤ δB
∥∥x̃k

⊥
∥∥+ 2

∥∥∥(1/n− p̂k)1T x̃k
∥∥∥,

which implies (using δ ∈ (0, 1), (a + b)2 ≤ 1
δa

2 + 1
1−δ b

2

for any a, b ∈ R, along with Jensen’s inequality, and some
algebra):∥∥z̃k⊥∥∥2 ≤ δ2B−1

∥∥x̃k
⊥
∥∥2 + 4

1− δ

∥∥∥(1/n− p̂k)1T x̃k
∥∥∥2

≤δ2B−1
∥∥x̃k

⊥
∥∥2

+
8

1− δ

∥∥1/n− p̂k
∥∥2 (n∥∥x̃k − x̃⋆

∥∥2 + n∥x̃⋆∥2
)
.

Since l is arbitrarily chosen from {1, . . . , d}, the inequality
above holds for each entry position. Adding the d

inequalities together and defining ∆k := 8n
1−δ

∥∥1/n− p̂k
∥∥2,

which in view of the fact that both
∥∥1/n− pk(0)

∥∥2 and∥∥1/n− pk(B)
∥∥2 tend to zero geometrically with the rate to

be λ2(P ) [21], completes the proof. ■

Proof of Theorem 1: For notational simplification, we
denote ∇F

(
xk
)

by ∇F k and ∇F (x⋆) by ∇F ⋆. From (4)
and (7c) we have

∇F k −∇F ⋆ = −1

η
(xk+1 − xk)− (yk − y⋆)− ρ(xk − zk)
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and

(xk − x⋆)T (∇F k −∇F ⋆) =

(xk+1 − x⋆)T (∇F k −∇F ⋆)︸ ︷︷ ︸
(i)

+(xk − xk+1)T (∇F k −∇F ⋆).

(i) = −1

η
(xk+1 − x⋆)T (xk+1 − xk)︸ ︷︷ ︸

(ii)

−(xk+1 − x⋆)T (yk − y⋆)︸ ︷︷ ︸
(iii)

−ρ(xk+1 − x⋆)T (xk − zk)︸ ︷︷ ︸
(iv)

.

The following is to bound the three terms. The detailed
calculations can be found in [20].

(ii) =
1

2η

(∥∥xk − x⋆
∥∥2 − ∥∥xk+1 − x⋆

∥∥2 − ∥∥xk+1 − xk
∥∥2) ,

(iii) =− (zk+1
⊥ )T (yk − y⋆)− 1

2ρ

(∥∥yk+1 − y⋆
∥∥2

−
∥∥yk − yk+1

∥∥2 − ∥∥yk − y⋆
∥∥2) ,

(iv) =
ρ

2

(∥∥x⋆ − zk
∥∥2 + ∥∥xk − xk+1

∥∥2 − ∥∥x⋆ − xk
∥∥2

−
∥∥xk+1 − zk

∥∥2)
≤ρ

2

(∥∥xk − xk+1
∥∥2 − ∥∥xk+1 − zk

∥∥2
+∆k

(∥∥xk − x⋆
∥∥2 + ∥x⋆∥2

))
.

Adding the three terms gives:

(i) ≤ 1

2η

(∥∥xk − x⋆
∥∥2 − ∥∥xk+1 − x⋆

∥∥2)
+

1

2ρ

(∥∥yk − y⋆
∥∥2 − ∥∥yk+1 − y⋆

∥∥2)
+ (

ρ

2
− 1

2η
)
∥∥xk+1 − xk

∥∥2 + ρ

2
∆k
(∥∥xk − x⋆

∥∥2 + ∥x⋆∥2
)

+
1

2ρ

∥∥yk − yk+1
∥∥2 − ρ

2

∥∥xk+1 − zk
∥∥2︸ ︷︷ ︸

(v)

− (zk+1
⊥ )T (yk − y⋆)︸ ︷︷ ︸

(vi)

.

By bounding (v) and (vi) and invoking the cocoercivity of
the gradient, the choices for B, η, ρ in Thm. 1 and moreover
γ = 4, τ =

3(Mf+mf )
4 , ζ = 3(Mf +mf ) guarantee that the

following inequalities hold:
1

4τ
+

1

ζ
− 1

mf +Mf
< 0, (12a)

τ + ρ+
1

γη
− 1

2η
< 0, (12b)

1

2η
−
[
δ2B−1

(
5ρ

4
+

γ

4η
+

ζ

4

)
+ ρ

]
> 0, (12c)

δ2B−1

(
17ρ

4
+

γ

4η
+

ζ

4

)
+ 3ρ− mfMf

mf +Mf
< 0. (12d)

Consequently, there exist µ1, µ2, µ3, k1, such that 0 < µ1 <
µ2 and for all k > k1, the following holds:

µ1

(∥∥xk − x⋆
∥∥2 + ∥∥yk − y⋆

∥∥2)+ µ3

(
∆k +∆k+1

)
∥x⋆∥2

≥
∥∥xk+1 − x⋆

∥∥2 + ∥∥yk+1 − y⋆
∥∥2,

where µ1 = max
{

c1+c2
2c2

,
(

1
2ρ − c3

)
/
(

1
2ρ

)}
and c1, c2, c3

are specified in the statement of the theorem. ■

Proof of Theorem 2: Let Ωk ∈ Rn×n be a 0−1 diagonal
matrix where 1 corresponds to the case agent i is active and
0 when it is inactive. Let E

[
Ωk
]
= Ω := diag(q1, . . . , qn).

The update of w can be written compactly as

wk(b+ 1) = wk(b) + Ωk
(
Pwk(b)− wk(b)

)
.

Let w∞ = lim
t→∞

P tw0(0), By taking conditional expectation

on the update of w (denoted by Ek, where conditioning is
on past activations), we have

Ek
[∥∥wk(b+ 1)− w∞∥∥2

Ω−1

]
=
∥∥wk(b)− w∞∥∥2

Ω−1 +
∥∥Pwk(b)− wk(b)

∥∥2
+ 2

(
wk(b)− w∞)T (Pwk(b)− wk(b)

)
.

From [21, Lemma 1], there exists some positive θ < 1 only
depending on P , such that

Ek

[∥∥∥wk(b+ 1)− w∞
∥∥∥2
Ω−1

]
≤ (1− qminθ)

∥∥∥wk(b)− w∞
∥∥∥2
Ω−1

.

By induction, we obtain

E
[∥∥wk(b)− w∞∥∥2] ≤ c1λ

kB+b
2 ,

for some constant c1 and λ2 := 1− qminθ, whence invoking
Markov’s inequality, we have ∀ϵ > 0, ∃K1(ϵ), which implies

Pr
[
∩∞
k=K1

∩B−1
b=0

{∥∥wk(b)− w∞∥∥2 < ϵ1

}]
≥ 1− ϵ

2
.

(13)

We define vk :=
[
(xk)T , (yk)T

]T
, and let Ta to be the

operator corresponding to Alg. 1 for full participation,
i.e., Ta : (xk, yk, zk) 7→ (xk+1, yk+1, zk+1) and T :=[
Id 0 0
0 Id 0

]
Ta.

We define Φk := blkdiag
(
Ωk ⊗ Id,Ω

k ⊗ Id
)

and Φk
a :=

blkdiag
(
Ωk ⊗ Id,Ω

k ⊗ Id,Ω
k ⊗ Id

)
, then

E
[
Φk
]
= Φ := blkdiag (Ω⊗ Id,Ω⊗ Id) so that

ΦkT = Φk

[
Id 0 0
0 Id 0

]
Ta =

[
Id 0 0
0 Id 0

]
Φk

aTa,

which allows the analysis to carry for T only.
For partial participation, we have

vk+1 = vk +Φk
(
Tvk − vk

)
,

i.e.,∥∥vk+1 − v⋆
∥∥2
Φ−1 =

∥∥vk − v⋆ +Φk
(
Tvk − vk

)∥∥2
Φ−1 .

An analogous use of Markov’s inequality in the establish-
ment of (13) concludes there exists some K2, such that

Pr
[
∩∞
k=K2

∥∥vk+1 − v⋆
∥∥2
Φ−1 ≤ λk

p

]
≥ 1− ϵ

2
,

where λp can be arbitrarily chosen in (λ1, 1) and λ1 is as in
the statement of Thm. 2. ■
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