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Abstract— A nonlinear optimal control strategy, named the
geometry enhanced finite time θ−D technique, is proposed to
manipulate the acrobatic flip flight of variable pitch (VP) quad-
copter unmanned aerial vehicles (abbreviated as VP copter).
A unique superiority of the VP copter, which can provide
the thrust in both positive and negative vertical directions by
varying the pitch angles of blades, facilitates the acrobatic flip
motion. The finite time θ−D technique can offer a closed-
form near-optimal state feedback control law with online
computational efficiency as compared with the finite time state-
dependent Riccati equation (SDRE) technique. Meanwhile, by
virtue of the geometric technique, the singularity issue of the
rotation matrix in the acrobatic flip maneuver can be avoided.
The simulation experiments verify the proposed control strategy
is effective and efficient.

I. INTRODUCTION
Due to its superiority in providing force in both positive

and negative directions, VP copter has been receiving wide
attention and has been applied to different aspects of our
human society [1]. Numerous research focus on the VP
copter. Cutler et.al [2] developed a nonlinear, quaternion-
based control technique associated with a trajectory planning
scheme that can be used to find a polynomial minimum-
time trajectory with the constraint of actuator saturation.
Bhargavapuri et.al [3] presented a backstepping-based
nonlinear robust controller to achieve the flip motion of
VP copter. Fresh [4] presented a quaternion-based control
method to control the attitude of a VP copter. Sheng and Sun
[5] proposed an identification method to get the parameters
of the dynamic model of the electric variable pitch. In
addition, a control strategy and the adaptive compensation
method for the VP blades were proposed with consideration
the minimize energy consumption. As a result, the response
performance of the lift force was increased, and the direct
lift-based flight control method also extremely improved
flight performance.

It is more challenging to perform the agile flight based
on the perspectives of ”optimality”, ”finite time”, and
”singularity-free”. In this manuscript, a control architect,
which incorporates attributes of the finite time, optimality,
and singularity-free, is proposed and is named as geometry-
enhanced finite time θ−D scheme. Actually, developing
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a closed-form state-feedback optimal control law for a
nonlinear system is difficult since there exists a technical
barrier that the partial differential Hamilton-Jacobi-Bellman
(HJB) can not be solved analytically [6]. Admittedly, some
numerical methods can generate numerical optimal solutions
to nonlinear systems. Rao published a comprehensive review
paper [7] about the numerical optimal control methodologies.
The key limitation of the numerical methods is that only
open-loop solutions can be accessed. The state-dependent
Riccati equation technique is a beautiful scheme, which
can provide a closed-form state-feedback optimal control
law. However, it suffers intensive online computational
burdens. Based on those considerations, the proposed finite
time θ−D scheme can get a closed-form state-feedback
optimal control law with less online computational load,
significantly facilitating the onboard implementation. Lee
[8] introduced the geometric concept into UAV attitude
control. Since the geometric concept is a coordinate-free
control strategy, the singularities and complexities of using
local coordinates can be circumvented.

The contribution of this manuscript is summarized as
follows: Both advantages of the computational efficiency of
finite time θ−D technique and singularity-free property in
the geometrical method are fully incorporated and exploited
to develop a new control architecture, which can manipulate
the VP copter to fulfill acrobatic flip and drive it from
start point to end point successfully. Compared with the
finite-time SDRE technique, the simulation results show that
the proposed control scheme is effective. More significantly,
it can save almost 50 % of computing time which is
necessary for the corresponding SDRE control method.

II. VARIABLE PITCH QUADCOPTER DYNAMIC
MODEL

In this manuscript, the gesture of VP copter is described
over an inertial coordinate O-XYZ. At the center of mass
of (CoM) the copter, a body coordinate o-xyz is attached to
it. The translational profile is expressed within the inertial
frame by:

Position : X = [xc, yc, zc]
T (1)

Linear Velocity : Ẋ = [ẋc, ẏc, żc]
T (2)

Orientation Angle : Ω = [Φ,Θ,Ψ]T (3)

Angular Rate : Ω̇ = [Φ̇, Θ̇, Ψ̇]T (4)

The thrust force T vp is defined into the body frame and
along with the z-axis. The torque, τ vp = [τΦ, τΘ, τΨ], is
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depicted on the inertial frame along with angle [Φ,Θ,Ψ].
The overall state x will be collected as

x =
[
X T , Ẋ T

,ΩT , Ω̇
T
]T

=
[
xc, yc, zc, ẋc, ẏc, żc,Φ,Θ,Ψ, Φ̇, Θ̇, Ψ̇

]T
12×1

(5)

Then, the dynamics of the VP copter can be modeled as
a state-space form as [9],

ẋ =


Ẋ

1
mvp

I3×3

(
Rvp(:, 3)T vp −mvpge3 −DvpẊ

)
Ω̇

J−1
vp (Ω)

(
τ vp − Cvp(Ω, Ω̇)Ω̇

)


(6)

Some parameters in Eq.(6) are explained as follows:
1). mvp is the mass of copter; 2). I3×3 is 3×3 identity matrix;
3). g is the gravity acceleration constant; 4). e3 is denoted as
e3 = [0, 0, 1]T ; 5). Dvp is the aerodynamic effect [10] and
represents as Dvp = diag

(
[Dx, Dy, Dz]

)
; 6). Rvp(:, 3) is

the third column of rotation matrix Rvp(t), and it is defined
in the special orthogonal group SO(3). In addition, the
variation of Rvp(t) is

Ṙvp(t) = Rvp(t)Π̂ (7)

where Π represents the angular velocity, and the hat operator
is Π̂ = [Π×],which means the skew symmetric matrix. It is
worth noting that the rotation matrix Rvp(t) from SO(3)
benefits from the philosophy of geometric control described
in [8]. With the kinematic equation of Eq.(7), the singularity
issue can be circumvented in the control design process. 7).
The inertial matrix Jvp and Coriolis term Cvp(Ω, Ω̇) can be
found at the [9]. The detailed descriptions are skipped here
since they are well-developed concepts.

According to Eq.(6), the thrust force T vp and torque
τ vp are regarded as the control commands to VP copter
dynamics of Eq.(6). In real scenarios, the servo motors will
receive commands from ESC (electronic speed controller) to
change the angles of the propellers. Thus, thrust force T vp

and torque τ vp will be varied according to the principle
of aerodynamics. Usually, the first step is to develop the
relationship between blade angles to thrust coefficients based
on the blade element theory and momentum theory. The
second step is to utilize some motion mechanisms to describe
the mapping of the thrust coefficient to the thrust force T vp

& torque τ vp.
Actually, the relationship of blade angles to thrust coeffi-

cients is well-developed [11], and its expression is,

αi(t) = (3/2)γvp +
(
6/(σvpC

vp
lα )
)
Cvp

ti (t) (8)

The parameters of Eq.(8) are described as follows:
1). The ith blade angle is αi (i = 1, 2, 3, 4);
2). Cvp

ti represents the thrust coefficient from the ith blade;

3). Cvp
lα denotes the airfoil lift curve slope;

4). σvp is calculated by the equation of

σvp = Nvp
b cvp/πrvp (9)

where Nvp
b is the number of blades, rvp is the tip radius of

the blade, and cvp is the chord length;
5). γvp is the inflow ratio.

The next step is to define the relationship between the
thrust coefficients and the thrust force T vp & torque τ vp.
Based on the effects of the blade angle variation on the thrust
and torques [3], their relationship can be defined as[

T vp; τΦ; τΘ; τΨ
]
= (10)

Kvp Kvp Kvp Kvp

0 −LvpKvp 0 LvpKvp

−LvpKvp 0 LvpKvp 0

−ã
√

|Cvp
t1
| ã

√
|Cvp

t2
| −ã

√
|Cvp

t3
| ã

√
|Cvp

t4
|


 Cvp

t1
Cvp

t2
Cvp

t3
Cvp

t4


︸ ︷︷ ︸

Cvp

where Kvp ≜ ρairπr
4
vpω

2
ss, in which ρair is the air density

and ωss is the steady-state angular velocity of the blade,
ã ≜ (rvpKvp)/

√
2, and Lvp is the length of the rotor to the

CoM.

III. CONTROL ALLOCATION MECHANISM

According to Eq.(9) and Eq.(11), it is obvious that there
exists a nonlinear mapping from blade angles to thrust &
torque. Then, a proper dynamic control allocation strategy
is necessary, i.e. pseudo-inverse method, augmented pseudo-
inverse method, first order dynamics, mean value theorem,
and null-space of pseudo-inverse approach. [3], [9]. In this
paper, we employ the augmented pseudo-inverse method.
Firstly, Eq.(11) needs to be separated linear part of Eq.(11)
and the nonlinear part of Eq.(12).[

T vp; τΦ; τΘ
]︸ ︷︷ ︸

H1

= (11)

 Kvp Kvp Kvp Kvp

0 −LvpKvp 0 LvpKvp

−LvpKvp 0 LvpKvp 0


︸ ︷︷ ︸

M1


Cvp

t1
Cvp

t2
Cvp

t3
Cvp

t4


︸ ︷︷ ︸

Cvp

τΨ/ã =

[
−
√
|Cvp

t1 |,
√
|Cvp

t2 |,−
√

|Cvp
t3 |,

√
|Cvp

t4 |
]
Cvp︸ ︷︷ ︸

κ(Cvp)

(12)

Then, an optimization problem is formulated as

min︸︷︷︸
Cvp

1

2
CT

vpWvpCvp (13)

with the constraints of Eq.(11) of
[
H1 − M1Cvp = 0

]
and Eq.(12) of

[
τΨ/ã − κ(Cvp) = 0

]
. The Wvp > 0 is the

weight matrix. It should be noted that minimizing the Cvp

is to indirectly minimize the control effect based on Eq.(10).

2253



To solve this nonlinear optimization problem, an augment
Lagrangian function is organized as

Lvp =
1

2

[
CT

vpWvpCvp + µΨ

(
τΨ/ã− κ(Cvp)

)2]
+ΛT

vp

(
H1 −M1Cvp

)
(14)

where Λvp is the Lagrangian multiplier vector, and µΨ > 0
is a scalar value that can determine the nonlinearity’s effect.

Taking the derivative w.r.t Cvp on both sides of Eq.(14)
and equating it to zero, it leads to

WvpCvp − µΨ

(
τΨ/ã− κ(Cvp)

)∂κ(Cvp)

∂Cvp
−MT

1 Λvp = 0

(15)

where

∂κ(Cvp)

∂Cvp
= f̃(Cvp)Cvp, and f̃(Cvp) =

3

2
diag

(
−

sign(Cvp
t1 )√

|Cvp
t1 |

,
sign(Cvp

t2 )√
|Cvp

t2 |
,−

sign(Cvp
t3 )√

|Cvp
t3 |

,
sign(Cvp

t4 )√
|Cvp

t4 |

)

Then, Cvp can be derived from Eq.(15),

Cvp =

[
Wvp − µΨ

(
τΨ/ã− κ(Cvp)

)
f̃(Cvp)︸ ︷︷ ︸

Υ(Cvp)

]−1

MT
1 Λvp

(16)
Taking Eq.(16) into Eq.(11), one can get

H1 = M1

[
Υ(Cvp)

]−1

MT
1 Λvp (17)

The Lagrangian multiplier Λvp can be obtained from
Eq.(17) to be

Λvp =
(
M1[Υ(Cvp)]

−1MT
1

)−1

H1 (18)

Finally, one can get Cvp by substituting Eq.(18) into
Eq.(16),

Cvp(t)4×1 =
[
Υ(Cvp)

]−1
MT

1

(
M1[Υ(Cvp)]

−1MT
1

)−1

H1

(19)

Then, substituting each element Eq.(19) into Eq.(8), the
each blade angle αi can be calculated. However, it has a
physical limitation for blade angle variations, i.e. αmax <
αi < αmin, where αmax and αmin are an upper bound and
lower bound of the blade angle variation. If the calculated
αi exceeds the bounds, αmax and αmin need to be used
to replace the calculated αi and to be involved in the
ensuing calculations. After that, using this αi to compute
the corresponding Cvp

ti as

Cvp
ti (t) =

(
σvpC

vp
lα /6

)(
αi(t)− 1.5γvp

)
(20)

Thus, this Cvp
ti (t) can be used as input command within

Eq.(10) to calculate the corresponding thrust and torque.

IV. THE DEVELOPMENT OF FINITE TIME θ−D
SUBOPTIMAL CONTROL

Considering a class of nonlinear dynamics as

ẋ = f(x)+ g(x)u (21)

with the cost function as

J =
1

2
xT (tf )S̃x(tf ) +

1

2

∫ tf

0

(
xT Q̃x+ uT R̃u

)
dt (22)

where x, f , g, and u are evolving within appropriate
dimensional compact sets which are subsets of Euclidean
space. The penalty matrices S̃, Q̃ and R̃ have compatible
dimensions with S̃ ≥ 0, Q̃ ≥ 0 and R̃ > 0.

The optimal control law is

u = −R̃−1gT (x)Vx (23)

where Vx needs to be acquired from the following Hamilton-
Jacobi-Bellman (HJB) equation,

VT
xf(x)−

1

2
VT

xg(x)R̃
−1gT (x)Vx+

1

2
xT Q̃x = −Vt (24)

where Vx = ∂V(x, t)/∂x, Vt = ∂V(x, t)/∂t, and V(x, t)
is the optimal cost-to-go, i.e.

V(x, t) (25)

= min︸︷︷︸
u

{
1

2
xT (tf )S̃x(tf ) +

1

2

∫ tf

t

(
xT Q̃x+ uT R̃u

)
dt

}
The state penalty matrix Q̃ in Eq.(22) should be modified

as {Q̃+
∑∞

i=1 θ
iDi}, in which the θ > 0 is a supplemental

scalar variable, and {Q̃ +
∑∞

i=1 θ
iDi} should be positive

semidefinite with proper selection of Di terms.
Eq.(21) should be rewritten to be

ẋ =
[
A0 + θ

(
A(x)

θ

)]
x︸ ︷︷ ︸

f(x)

+
[
B0 + θ

(
B(x)

θ

)]
︸ ︷︷ ︸

g(x)

u (26)

where
(
A0,B0

)
are constant matrix pair, and stabilizable;(

A0 +A(x),B0 +B(x)
)

is point-wise controllable [12].
The Vx is assumed to be expended as

Vx =

(
T0(t) +

∞∑
i=1

Ti(x)θ
i

)
x (27)

where {Ti, i = 0, · · · ,∞} are assumed to be symmetric and
can be determined at the following derivations.

Based on Eq.(27), the optimal cost-to-go V(x, t) can be
obtained from Vx by integral operation,

V =

∫
VT

xdx+ C′(t)

=

∫ [(
T0(t) +

∞∑
i=1

Ti(x)θ
i

)
x

]T
dx+ C′(t)

=
1

2
xTT0(t)x+ C′′(x,θ) + C′(t) (28)
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where C′(t) is function of t and determined by the boundary

condition, and C′′(x,θ) =
∫ [(∑∞

i=1 Ti(x)θ
i
)
x
]T

dx is
function of x and θ.

In addition, two assumptions, {C′(t) = 0|t ∈ [0, tf ]} and
{C′′(x,θ) = 0|t = tf}, should be hold. Admittedly, those
two assumptions are strong and at the expense of optimal
solutions to Eq.(21) and Eq.(22). However, it is similar to the
SDRE design scheme [12] within which P(x, t)x is assumed
to be the gradient of the optimal cost-to-go V(x, t) and
P(x, t) is also assumed to be symmetric, which may sacrifice
the optimality. Due to those assumptions, the proposed finite
time θ−D is claimed to be a sub-optimal or near-optimal
control design strategy.

Since we have known the expression of Eq.(28), then the
Vt can be derived as

Vt = ∂V/∂t = 1/2xT Ṫ0(t)x (29)

Additionally, with Eq.(25), Eq.(28) and two assumptions,
we can define the value of T(t) at the final time t = tf as

T0(tf ) = S̃ (30)

Finally, substituting Eq.(27), Eq.(29), and the decompo-
sition forms of f(x) & g(x) of Eq.(27) into the Eq.(25),
replacing Q̃ of Eq.(24) with {Q̃+

∑∞
i=1 θ

iDi}, sorting all
terms based on the power of θ, equating their coefficients to
be zeros, it will lead to the general formula can be organized
in a compact form as,

Ti(A0 −B0R̃
−1BT

0 T0) + (AT
0 − T0B0R̃

−1BT
0 )Ti

=

(
1− pie

−qit

)
︸ ︷︷ ︸
{ρi(t)|i=1,··· ,∞}

{
− Ti−1A(x)

θ
− AT (x)Ti−1

θ

+

i−1∑
j=0

Tj

(
B0R̃

−1B
T (x)

θ
+

B(x)

θ
R̃−1BT

0

)
Ti−1−j

+

i−2∑
j=0

Tj
B(x)

θ
R̃−1B

T (x)

θ
Ti−2−j

+

i−1∑
j=1

TjB0R̃
−1BT

0 Ti−j

}
(31)

Finally, the original control law of Eq.(23) can be updated
as

uθ−D = −R̃−1gT (x)

(
T0(t) +

∞∑
i=1

Ti(x)θ
i

)
x (32)

Note that more detail analysis about the finite time θ-D
technique can refer to [13].

V. GEOMETRY ENHANCED FINITE TIME θ−D
BASED CONTROL DESIGN FOR VP COPTER

Geometry-enhanced finite time θ−D-based controller will
be developed to force the VP copter from the initial position
to reach a target position at the prescribed final time. Mean-
while, the flip maneuver will be operated. The control design

process is decomposed into translational control design and
attitude control design.

The first and second equations of Eq.(6) represents the
translational dynamics of VP copter. A new state xt is
defined as ẋt = [X , Ẋ ]T with a state-space equation as

ẋt =

[
03×3 I3×3

03×3 −(1/mvp)I3×3Dvp

]
︸ ︷︷ ︸

At

[
X
Ẋ

]
︸ ︷︷ ︸

xt

+

[
03×3

I3×3

]
︸ ︷︷ ︸

Bt

[
(1/mvp)Rvp(:, 3)T vp − ge3

]
︸ ︷︷ ︸

ut

(33)

Then, the translational control law can be

ut = −R̃−1
t BT

t Kt(xt − xt,des) (34)

where xt,des is desired position and speed. After getting the
ut, T vp has to been recalculated with

T vp = mvp

(
Rvp(1, 3)ut(1) +Rvp(2, 3)ut(2)

+Rvp(3, 3)(ut(3) + g)
)

(35)

The third and fourth equations of Eq.(6) represents the
attitude dynamics of VP copter. A new state xt is defined
as ẋa = [Ω, Ω̇]T with a state-space equation as

ẋa =

[
03×3 I3×3

03×3 −J−1
vp (xa)Cvp(xa)

]
︸ ︷︷ ︸

Aa(xa)

[
Ω

Ω̇

]
︸ ︷︷ ︸

xa

+

[
03×3

J−1
vp (xa)

]
︸ ︷︷ ︸

Ba(xa)

[τ vp]︸ ︷︷ ︸
ua

(36)

Based on Eq.(43), the geometry-enhanced finite time θ−D
based attitude controller can be designed as

ua = −R̃−1
a BT

a (xa)
(
T0 + θT1(xa) + θ2T1(xa)

)[
eR
eΩ

]
(37)

By selecting proper R̃a, Q̃a and S̃a , ua can be obtained in
which the error signal [eR, eΩ]

T are from the geometric
technique [14]

(
distinct from the traditional error signal

(xa − xa,des)
)
.

According to the geometric technique, an error function
over the nonlinear space SO(3) [8] should be defined,

E(Rvp(t), Rd(t)) = 2−
√

trace
(
RT

d (t)Rvp(t)
)
+ 1 (38)

where trace(•) is trace operator, and RT
d (t) is the desired

rotation matrix.
The variation of Eq.(38) is

∆Rvp(t)

(
Rvp(t), Rd(t)

)
=

∂E(Rvp(t), Rd(t))

∂Rvp(t)
Ṙvp(t)

(39)
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With the dynamics of Rvp(t) Eq.(7), Eq.(39) leads to

∆Rvp(t)

(
Rvp(t), Rd(t)

)
=

trace
(
RT

d (t)Rvp(t)Π̂(t)
)

2

√
trace

(
RT

d (t)Rvp(t)
)
+ 1

(40)

The following property can be applied for the numerator
of Eq.(40)

trace
(
RT

d (t)Rvp(t)Π̂(t)
)

=
(
RT

d (t)Rvp(t)−RT
vp(t)Rd(t)

)∨
Π̂(t) (41)

where ∨ is vee operator [8].
Eq.(40) leads to

∆Rvp(t)

(
Rvp(t), Rd(t)

)
=(

RT
d (t)Rvp(t)−RT

vp(t)Rd(t)
)∨

2

√
trace

(
RT

d (t)Rvp(t)
)
+ 1

Π̂(t) (42)

Thus, the attitude error eR(t) can be expressed as

eR(t) =

(
RT

d (t)Rvp(t)−RT
vp(t)Rd(t)

)∨
2

√
trace

(
RT

d (t)Rvp(t)
)
+ 1

(43)

Besides, eΩ can be obtained by the following equation,

Ṙvp(t)− ṘT
d (t)

(
RT

d (t)Rvp(t)
)

= Rvp(t)
(
Π(t)−RT

vp(t)Rd(t)Πd(t)
)∧

(44)

Thus, eΩ is

eΩ(t) = Π(t)−RT
vp(t)Rd(t)Πd(t) (45)

In this paper, the desired rotation matrix is given by,

Rd(t) = [Rd(:, 1)(t), Rd(:, 2)(t), Rd(:, 3)(t)] (46)

where,

Rd(:, 1)(t) =

 cΘdes
cΨdes

cΘdes
sΨdes

−sΘdes

 (47)

Rd(:, 2)(t) =

 −sΨdes
cΦdes

+ sΘdes
sΦdes

cΨdes

sΦdes
cΨdes

sΘdes
+ cΨdes

cΦdes

sΦdes
cΘdes

 (48)

Rd(:, 3)(t) =

 sΘdes
cΦdes

cΨdes
+ sΨdes

sΦdes

−cΨdes
sΦdes

+ cΦdes
sΨdes

sΘdes

cΦdes
cΘdes

 (49)

in which Φdes and Θdes can be found in Eq.(50) and Eq.(51)
and Ψdes can be given independently; the symbol s(•) is
the sinusoidal function of sin(•), the symbol c(•) indicates
cosine function of cos(•).

Θdes(t) = arctan

(
ut(2)sΨdes

+ ut(1)cΨdes

ut(3) + g

)
(50)

Fig. 1. VP profiles by two techniques

Φdes(t) = arcsin

(
ut(1)sΨdes

− ut(2)cΨdes

ut(1)2 + ut(2)2 +
(
ut(3) + g

)2)
(51)

where ut(i) can be found in Eq.(34).
To conduct the flip motion within [0, tf ], a flip time slot

is selected as tflip = [t1, t2], 0 < t1 < t2 < tf . In this
manuscript, it is assumed that the flip maneuver is about the
X-axis with the following conditions,

Φdes(t) = Φdes(t), if 0 ≤ t < t1;

Φdes(t) = ϕf , if t1 ≤ t < t2; (52)
Φdes(t) = Φdes(t) + ϕf , if t2 ≤ t ≤ tf ;

where ϕf is the flip value which is set as π, implying a full
flip.

VI. NUMERICAL EXPERIMENT AND ANALYSIS

A Macbook Pro laptop with a processor i7 and 16 GB
memory is used to perform the simulations. There are
two objectives of the simulation experiment: 1). verifying
the proposed geometry-enhanced θ−D control strategy is
effective to manipulate the VP copter to have a full flip
along the trajectory to the target position. 2). showing the
proposed method is more efficient than the SDRE technique
while the performances generated by both techniques are
comparable.

The VP copter’s physical parameters can refer to [15].
The penalty matrices are selected as R̃t = I3×3, Q̃t =
diag([1×I3×3, 0×I3×3]), S̃t = diag([10×I3×3, 0×I3×3]),
R̃a = I3×3, Q̃a = diag([10 × I3×3, 5 × I3×3]) and
S̃a = diag([100 × I3×3, I3×3]). The parameters for θ − D
method are p1 = 0.9, p2 = 0.99, q1 = 10, and q2 = 100.
The initial value is x(0) = 012×1. The final condition is
x(tf ) = [−3, 2, 1,Φdes(tf ),Θdes(tf ), 0, 01×6]

T
12×1.

Figs.1 shows the performance profile of both
methods, including the history of the position(Fig.1.a),
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Fig. 2. Thrust force profile by two techniques

attitude(Fig.1.b), linear velocity(Fig.1.c), and angular
velocity(Fig.1.d), in which the red dashed line represents the
performance of the proposed method, and the blue line is
the performance of the SDRE technique. From those figures,
one can observe that both performances are comparable,
which implies both techniques are sufficient to drive the
VP copter from the initial position to the ending position.
Besides, one can notice the performance of Φ, which is
varied from zero rad to π rad, i.e. a full flip completed.
Furthermore, it is also worth pointing out that the singularity
issue does not happen due to the property of the geometric
control strategy.

Fig.2 and Fig.3 are the thrust and torque profiles
generated by both control methods. When comparing the
control energy

∫ tf
0
(uTu)dt of both methods, the SDRE

consumes 545 units to complete the task while the proposed
method requires 544.2 units. Significantly, the proposed
method only needs 9e-4 seconds to calculate the control
commands at every time instant while the SDRE
technique requires 1.8e-3 seconds to get the control
law at every time instant. It clearly demonstrates that the
proposed finite-time θ−D technique is more efficient for
online implementation.

VII. CONCLUSION

This manuscript presents a control strategy that combines
the merit of the finite time θ−D technique, which is more
efficient in online computation, and the merit of the geomet-
ric method, which can circumvent the singularity issue of
traditional attitude control for UAV. Numerical simulations
verify the proposed control strategy is effective and efficient.
Meanwhile, the finite time θ−D strategy can extend to other
engineering problems that require fast control executions.
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