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Abstract— This work investigates the finite-horizon optimal
covariance steering problem for discrete-time linear systems
subject to both additive and multiplicative uncertainties as
well as state and input chance constraints. In particular,
a tractable convex approximation of the optimal covariance
steering problem is developed by tightening the chance con-
straints and by introducing a suitable change of variables. The
solution of the convex approximation is shown to be a valid
(albeit potentially suboptimal) solution to the original chance-
constrained covariance steering problem.

I. INTRODUCTION

Covariance control examines the problem of driving a
stochastic system from a given initial distribution to a
specified final distribution. The problem has been previously
studied extensively for the infinite-horizon case [1]–[3], but
has only recently been studied for the finite-horizon case
(referred to as covariance steering). Specifically, in [4]–[7],
the authors introduced the finite-horizon covariance steering
problem. In [8], [9], the authors added expectation con-
straints, reference [10] introduced state chance constraints,
and in [11] the authors considered hard input constraints.
Additionally, covariance steering has been applied to robotic
path planning in [12], [13], differential games in [14], and
re-entry, descent, and landing tasks for space operations
in [15]–[17]. However, most recent work on covariance
steering focuses on linear systems subject only to additive
noise, where the initial and final distributions as well as the
noise characteristics are given as Gaussian distributions. A
few notable exceptions are [18], which considered additive
generic (non-Gaussian) noise, and [19], [20] which consid-
ered covariance control for nonlinear systems.

We examine the problem of steering a stochastic linear
system from an initial distribution characterized by its first
two moments to a given terminal mean and covariance
in finite time, when the system is subject to parametric
uncertainties (i.e. the disturbances enter both multiplicatively
with the state and control as well as additively). Although
the problem of steering the first two moments of a linear
system subject to state and control chance constraints and
mixed additive and multiplicative noise from initial to given
final conditions is, in general, nonlinear, this work shows
that the problem may be represented by a tightened con-
vex problem formulation, similar to that used for a model
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predictive control scheme in [21], the solution of which
ensures the satisfaction of the original problem’s chance and
terminal constraints. Therefore, the optimal solution of the
convex reformulation is an admissible (albeit potentially sub-
optimal) solution of the original nonlinear program.

During the preparation of this manuscript, the authors
became aware of a similar study [22]. The authors of
[22] also studied the covariance steering problem for linear
systems affected by multiplicative disturbances and solved
the problem using semi-definite programming. However, the
work of [22] assumes multiplicative disturbances affecting
the state and control and the additive disturbances are all
mutually independent, which simplifies the covariance prop-
agation. Contrary, the current work does not assume that
the disturbances affecting the system at a given time step
are independent of each other. Additionally, the proposed
approach in this paper includes chance constraints in the
problem formulation and shows how they can be ensured
using Boole’s and Cantelli’s inequalities and incorporated
into the semi-definite program using a linear bounding tech-
nique, whereas the work of [22] does not address chance
constraints.

This paper employs several standard notation practices. A
random variable drawn from a normal distribution with mean
µ and covariance matrix Σ is denoted by x ∼ N (µ,Σ).
E[·] denotes the expectation operator, and Pr(x) denotes the
probability of event x. In denotes the n×n identity matrix,
and tr(·) denotes the trace operation. A symmetric positive
(semi)-definite matrix is denoted by M ≻ 0 (M ⪰ 0).

II. PROBLEM FORMULATION

Consider the system

xk+1 = Akxk +Bkuk + dk, (1)

where xk ∈ Rnx , uk ∈ Rnu . Let the initial conditions be
given as E[x0] = µI and E[(x0−E[x0])(x0−E[x0])⊤] = ΣI ,
where ΣI ≻ 0. Additionally, the system matrices are com-
prised of a constant, known component, and a time-varying
stochastic component given by Ak = Ā +

∑m
j=1 Ãjqj,k,

Bk = B̄ +
∑m
j=1 B̃jqj,k, dk = d̄ +

∑m
j=1 d̃jqj,k, where

qj,k ∼ N (0, 1), for all k = 0, 1, . . . , is a Gaussian white
noise. Therefore,

E[qj1,k1qj2,k2 ] =

{
1 where j1 = j2 and k1 = k2,

0 otherwise.
(2a)

Furthermore, we assume

E[xkqj,k] = E[xk]E[qj,k] = 0, (2b)
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E[ukqj,k] = E[uk]E[qj,k] = 0, (2c)

for k = 0, 1, . . . , j = 1, . . . ,m which stem from causality
considerations.

The state and control inputs in (1) are subject to the chance
constraints

Pr(xk ∈ X ) ≥ 1− px, Pr(uk ∈ U) ≥ 1− pu, (3)

for all k = 0, 1, . . . , N − 1, where X ⊆ Rnx and U ⊆ Rnu

are convex sets and px, pu ∈ (0, 0.5) are given maximal
probabilities of constraint violation. We further assume that
the sets X and U can be written as an intersection of a finite
number of linear inequality constraints as follows

X ≜
Ns⋂
ix=1

{
x : α⊤

x,ixx ≤ βx,ix
}
, (4)

U ≜
Nc⋂
iu=1

{
u : α⊤

u,iuu ≤ βu,iu
}
, (5)

where αx,ix ∈ Rnx and αu,iu ∈ Rnu are constant vectors,
and βx,ix ≥ 0 and βu,iu ≥ 0 are constant scalars.

We wish to steer (1) to a given final mean µF ∈ X and
covariance ΣF ≻ 0 at time N , such that

E[xN ] = µF , E[(xN − E[xN ])(xN − E[xN ])⊤] = ΣF ,

while minimizing the cost function

J(µI ,ΣI ;u0, . . . , uN−1) = E

[
N−1∑
k=0

ℓ(xk, uk)

]
. (6)

In particular, we will examine the case where ℓ(·, ·) has the
quadratic form

ℓ(x, u) = x⊤Qx+ u⊤Ru. (7)

The problem may thus be summarized as follows. Given
µI ,ΣI , µF ,ΣF , determine the control sequence u =
{u0, . . . , uN−1} that solves the following finite-time, optimal
covariance steering problem

min
u

J(µI ,ΣI ;u) = E

[
N−1∑
k=0

x⊤k Qxk + u⊤k Ruk

]
, (8a)

subject to
E[x0] = µI , (8b)

E[(x0 − E[x0])(x0 − E[x0])⊤] = ΣI , (8c)

xk+1 = (Ā+

m∑
j=1

Ãjqj,k)xk + (B̄ +

m∑
j=1

B̃jqj,k)uk

+ d̄+

m∑
j=1

d̃jqj,k, k = 0, . . . , N − 1 (8d)

Pr(xk ∈ X ) ≥ 1− px, k = 0, . . . , N − 1 (8e)
Pr(uk ∈ U) ≥ 1− pu, k = 0, . . . , N − 1 (8f)
E[xN ] = µF , (8g)

E[(xN − E[xN ])(xN − E[xN ])⊤] = ΣF . (8h)

III. COVARIANCE STEERING CONTROLLER DESIGN

We now turn our attention to formulating a computation-
ally tractable approximation of Problem (8) using standard
relaxations, the solution of which will provide a (suboptimal)
feasible solution to the original problem. Specifically, we
first formulate Problem (8) as a deterministic optimal control
problem by evaluating the expectations in (8a)-(8h) and
derive explicit expressions for the propagation of the system
mean and covariance. Additionally, we use Boole’s inequality
and Cantelli’s inequality to approximate the chance con-
straints (8e)-(8f) as deterministic inequality constraints. We
then show that the deterministic problem can be cast as a
convex programming problem by performing a change of
variables, tightening the chance constraints, and relaxing
the terminal covariance constraint (8h) to a linear matrix
inequality (LMI) constraint.

A. Expectation and Uncertainty Propagation

We may write the nominal system as

E [xk+1] = E [Akxk +Bkuk + dk]

= E[(Ā+

m∑
j=1

Ãjqj,k)xk + (B̄ +

m∑
j=1

B̃jqj,k)uk

+ d̄+

m∑
j=1

d̃jqj,k]. (9)

Using the independence of the disturbances (2) and the fact
that E[qj,k] = 0 for all k = 0, 1, . . . and j = 1, . . . ,m, the
nominal system is given by

x̄k+1 = Āx̄k + B̄ūk + d̄, (10)

where x̄k = E[xk] and ūk = E[uk].
Next, let us define the deviation of the stochastic system

from the nominal dynamics as x̃k = xk − x̄k. The error
dynamics are given as

x̃k+1 = Āx̃k + B̄ũk

+

m∑
j=1

Ãjqj,kxk +

m∑
j=1

B̃jqj,kuk +

m∑
j=1

d̃jqj,k, (11)

where ũk = uk − ūk. Considering (2), the covariance
dynamics are given by

Σxk+1
= ĀΣxk

Ā⊤ + ĀΣxkuk
B̄⊤ + B̄Σ⊤

xkuk
Ā⊤ + B̄Σuk

B̄⊤

+

m∑
j=1

(ÃjΣxk
Ã⊤
j + ÃjΣxkuk

B̃⊤
j + B̃jΣ

⊤
xkuk

Ã⊤
j + B̃jΣuk

B̃⊤
j )

+

m∑
j=1

(Ãj x̄k + B̃j ūk + d̃j)(Ãj x̄k + B̃j ūk + d̃j)
⊤ (12)

where Σuk
= E[(uk − E[uk])(uk − E[uk])⊤], and Σxkuk

=
E[(xk−E[xk])(uk−E[uk])⊤] are properties of the particular
control policy under consideration.
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B. Control Policy

Rather than optimizing over control actions, we optimize
over control policies. In order to steer the mean and covari-
ance of the system dynamics, we propose the following affine
state-feedback control policy

uk = Lkx̃k + ck, (13)

where Lk ∈ Rnu×nx and ck ∈ Rnu are new optimization
variables, for k = 0, . . . , N − 1. Thus, ūk = ck, Σuk

=
LkΣxk

L⊤
k , Σxkuk

= Σxk
L⊤
k , for k = 0, . . . , N − 1.

C. Deterministic Reformulation

We are now ready to formulate a deterministic approxima-
tion of Problem (8). First, the expectation of the stage cost
function (7) can be written in terms of the mean and co-
variance as E[ℓ(xk, uk)] = x̄⊤k Qx̄k+tr(QΣxk

)+ ū⊤k Rūk+
tr(RΣuk

). Next, using Boole’s inequality [23] and (4)-(5),
conservative approximations of the chance constraints (3) are
given by the inequality constraints

Pr
(
α⊤
x,ixxk ≤ βx,ix

)
≥ 1− px,ix , ix = 1, . . . , Ns, (14a)

Pr
(
α⊤
u,iuuk ≤ βu,iu

)
≥ 1− pu,iu , iu = 1, . . . , Nc, (14b)

where px,ix , pu,iu ≥ 0 are such that
∑Ns

ix=1 px,ix ≤ px,∑Nc

iu=1 pu,iu ≤ pu, for all k = 0, 1, . . . , N − 1. We
introduce the following lemma to convert (14a) and (14b)
to deterministic inequalities.

Lemma 1 ([24]): The state chance constraints (14a) are
ensured by the tightened deterministic constraints given in
terms of the mean and covariance as

α⊤
x,ix x̄k +

√
α⊤
x,ix

Σxk
αx,ix

√
1− px,ix
px,ix

− βx,ix ≤ 0, (15)

where ix = 1, . . . , Ns, k = 0, . . . , N − 1. Likewise,
the input constraints (14b) are ensured by the tightened
deterministic constraints given in terms of the mean control
and control covariance as

α⊤
u,iu ūk +

√
α⊤
u,iu

Σuk
αu,iu

√
1− pu,iu
pu,iu

− βu,iu ≤ 0, (16)

where iu = 1, . . . , Nc, k = 0, . . . , N − 1. Furthermore, the
satisfaction of the original chance constraints (3) is ensured
by the satisfaction of (15) and (16).

Proof: Due to space limitations, the proof is omitted.
However, the proof may be found in [24], [25].

Thus, a deterministic version of Problem (8) is given by

min
c,L

J̄(µI ,ΣI ; c,L) =

N−1∑
k=0

x̄⊤k Qkx̄k + tr(QkΣxk
)

+ ū⊤k Rkūk + tr(RkΣuk
) (17a)

subject to
x̄0 = µI , Σx0

= ΣI , x̄N = µF , ΣxN
= ΣF , (17b)

x̄k+1 = Āx̄k + B̄ūk + d̄, (17c)

Σxk+1
= ĀΣxk

Ā⊤ + ĀΣxkuk
B̄⊤ + B̄Σ⊤

xkuk
Ā⊤ + B̄Σuk

B̄⊤

+

m∑
j=1

(ÃjΣxk
Ã⊤
j + ÃjΣxkuk

B̃⊤
j + B̃jΣ

⊤
xkuk

Ã⊤
j + B̃jΣuk

B̃⊤
j )

+

m∑
j=1

(Ãj x̄k + B̃j ūk + d̃j)(Ãj x̄k + B̃j ūk + d̃j)
⊤, (17d)

ūk = ck, Σuk
= LkΣxk

L⊤
k , Σxkuk

= Σxk
L⊤
k , (17e)

α⊤
x,ix x̄k +

√
α⊤
x,ix

Σxk
αx,ix

√
1− px,ix
px,ix

− βx,ix ≤ 0, (17f)

α⊤
u,iu ūk +

√
α⊤
u,iu

Σuk
αu,iu

√
1− pu,iu
pu,iu

− βu,iu ≤ 0, (17g)

for ix = 1, . . . , Ns, iu = 1, . . . , Nc, and k = 0, . . . , N − 1,
where c = {c0, . . . , cN−1} and L = {L0, . . . , LN−1}. We
denote the optimal solution of Problem (17) as (c∗,L∗)
which generates the stochastic control sequence given by
u∗k = L∗

kx̃
∗
k + c∗k, where, from (11) and (8d), follows that

x̃∗k+1 = (Ā+B̄L∗
k)x̃

∗
k+

∑m
j=1 Ãjqj,kx

∗
k+

∑m
j=1 B̃jqj,ku

∗
k+∑m

j=1 d̃jqj,k, x∗k+1 = (Ā +
∑m
j=1 Ãjqj,k)x

∗
k + (B̄ +∑m

j=1 B̃jqj,k)u
∗
k+ d̄+

∑m
j=1 d̃jqj,k, x̄∗k+1 = Āx̄∗k+B̄ū

∗
k+ d̄,

and ū∗k = c∗k for all k = 0, . . . , N − 1, and where x̃∗0 =
x0 − µI , x∗0 = x0, and x̄∗0 = µI .

Theorem 1: Let c# = {c#0 , . . . , c
#
N−1} and L# =

{L#
0 , . . . , L

#
N−1} be a feasible solution of Problem (17).

Problem (17) is a conservative approximation of Problem
(8), such that, any feasible solution of Problem (17) will
generate a control sequence given by u = {u#k }

N−1
k=0 =

{L#
k x̃

#
k + c#k }

N−1
k=0 , which is a feasible solution of Prob-

lem (8). Moreover, by letting {u∗k}
N−1
k=0 = {L∗

kx̃
∗
k+ c

∗
k}
N−1
k=0 ,

the optimal solution of Problem (17), in particular, is always
a feasible solution of Problem (8) satisfying the constraints
(8b)-(8h).

Proof: The mean and covariance propagation equations
(17c) and (17d) are exact representations for the first two
moments of system (8d), given the control policy (13).
Therefore, constraints (17b) are exact representations of (8b),
(8c), (8g), and (8h), respectively. For the chance constraints,
by Lemma 1, (17f) and (17g) are tightened versions of (8e)
and (8f), respectively, such that the satisfaction of (17f) and
(17g) implies satisfaction of (8e) and (8f), respectively. Thus,
since {u#k }

N−1
k=0 and {u∗k}

N−1
k=0 necessarily satisfy constraints

(17b)-(17g), they satisfy constraints (8b)-(8h).

IV. CONVEX REFORMULATION

Although Problem (17) is deterministic, it still depends
on nonconvex constraints. First, the propagation of the state
covariance (17d) is nonconvex due to the multiplicity of
x̄k and ūk. Second, the input and state-input covariance
constraints (17e) are nonconvex owing to the multiplicity of
Lk and Σxk

. Third, the state and control constraints (17f)-
(17g) are nonconvex owing to their nonlinear dependence on
Σxk

and Σuk
.

We show that the first two issues can be overcome by re-
laxing the covariance propagation to linear matrix inequality
(LMI) constraints, which requires us to relax the terminal
covariance constraint (17b) to an inequality constraint, such
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that we merely ensure the terminal covariance satisfies an
upper bound. The third issue is overcome by further tighten-
ing the chance constraints such that they can be written as
linear inequality constraints.

Remark 1: Relaxing the terminal covariance constraint to
an inequality is not an issue in most applications as, in
general, the goal is to bound the covariance rather than to
drive it to a specific value, as most applications are concerned
with designing a controller to reduce the system’s uncertainty
rather than increase it.

1) Covariance Propagation Relaxation: The propagation
of the state uncertainty is a nonlinear constraint owing to
the multiplicities of x̄kx̄⊤k , x̄kū⊤k , and ūkū⊤k . However, this
problem can be overcome by relaxing the equality constraint
to a LMI. We introduce a new optimization variable Σ̄jk
such that

Σ̄jk ⪰ (Ãj x̄k + B̃j ūk + d̃j)(Ãj x̄k + B̃j ūk + d̃j)
⊤, (18)

which can be written as a positive semidefinite constraint
using the Schur complement[

Σ̄jk Ãj x̄k + B̃j ūk + d̃j
(Ãj x̄k + B̃j ūk + d̃j)

⊤ I

]
⪰ 0, (19)

for all j = 1, . . . ,m and k = 0, . . . , N − 1.
Similarly, to handle the nonconvexity of constraints (17e),

we utilize the following change of variables previously used
by [26], [27]. Let Σ̄uxk

be a new optimization variable such
that

Σ̄uxk
= LkΣxk

= Σ⊤
xkuk

, (20)

for all k = 0, . . . , N − 1. For Σxk
≻ 0, the original control

policy can then be recovered as Lk = Σ̄uxk
Σ−1
xk

. Using
(20), Σuk

may be written as Σuk
= Σ̄uxk

Σ−1
xk

Σ̄⊤
uxk

. We
then introduce a new optimization variable Σ̄uk

and relax
the expression for Σuk

to an inequality given by

Σ̄uk
⪰ Σ̄uxk

Σ−1
xk

Σ̄⊤
uxk

= Σuk
, (21)

which, using the Schur complement, is given by the positive

semidefinite constraint
[
Σ̄uk

Σ̄uxk

Σ̄⊤
uxk

Σxk

]
⪰ 0, for all k =

0, . . . , N − 1. We may then write the relaxed covariance
dynamics as

Σ̄xk+1
= ĀΣ̄xk

Ā⊤ + ĀΣ̄⊤
uxk

B̄⊤ + B̄Σuxk
Ā⊤ + B̄Σ̄uk

B̄⊤

+

m∑
j=1

(ÃjΣ̄xk
Ã⊤
j + ÃjΣ

⊤
uxk

B̃⊤
j + B̃jΣuxk

Ã⊤
j

+ B̃jΣ̄uk
B̃⊤
j + Σ̄jk), (22)

for k = 0, . . . , N − 1, where Σ̄x0 = Σx0 .
Relaxing (17d) and the third inclusion in (17e) with (18),

(20), (21), and (22) provides a bound on the state and input
covariances.

Lemma 2: If the inequalities

α⊤
x,ix x̄k +

√
α⊤
x,ix

Σ̄xk
αx,ix

√
1− px,ix
px,ix

− βx,ix ≤ 0, (23a)

α⊤
u,iu ūk +

√
α⊤
u,iu

Σ̄uk
αu,iu

√
1− pu,iu
pu,iu

− βu,iu ≤ 0, (23b)

Σ̄xN
⪯ ΣF , (23c)

hold, then the inequalities

α⊤
x,ix x̄k +

√
α⊤
x,ix

Σxk
αx,ix

√
1− px,ix
px,ix

− βx,ix ≤ 0, (24a)

α⊤
u,iu ūk +

√
α⊤
u,iu

Σuk
αu,iu

√
1− pu,iu
pu,iu

− βu,iu ≤ 0, (24b)

ΣxN
⪯ ΣF , (24c)

also hold for ix = 1, . . . , Ns, iu = 1, . . . , Nc, and k =
0, . . . , N − 1.

Proof: Due to space limitations, we omit the proof,
which can be found in [25].

2) Chance Constraint Tightening: Finally, the state and
input chance constraints (17f)-(17g) include a nonlinear
dependence on the state and input covariance, Σxk

and Σuk
,

respectively. To resolve this, we use a linearization procedure
similar to [24]. An upper bound on the square root of the state
covariance can be derived using a tangent line approximation
evaluated at λx,ix,k given by√

α⊤
x,ix

Σxk
αx,ix ≤ 1

2
√
λx,ix,k

(α⊤
x,ixΣxk

αx,ix − λx,ix,k)

+
√
λx,ix,k, (25)

for ix = 1, . . . , Ns and k = 0, . . . , N − 1. A similar bound
is given for the input covariance as√

α⊤
u,iu

Σuk
αu,iu ≤ 1

2
√
λu,iu,k

(α⊤
u,iuΣuk

αu,iu − λu,iu,k)

+
√
λu,iu,k, (26)

for iu = 1, . . . , Nc and k = 0, . . . , N − 1. This leads to a
conservative tightening of the chance constraints; therefore,
the original constraints are still guaranteed to be satisfied
by a solution of the convex reformulation at the expense of
reducing the size of the feasible solution set, as stated in the
following lemma.

Lemma 3: The satisfaction of the inequalities given by

α⊤
x,ix x̄k + (

√
λx,ix,k

2
+

1

2
√
λx,ix,k

α⊤
x,ixΣ̄xk

αx,ix)

√
1− px,ix
px,ix

− βx,ix ≤ 0, (27a)

α⊤
u,iu ūk + (

√
λu,iu,k

2
+

1

2
√
λu,iu,k

α⊤
u,iuΣ̄uk

αu,iu)

√
1− pu,iu
pu,iu

− βu,iu ≤ 0, (27b)

for ix = 1, . . . , Ns, iu = 1, . . . , Nc, and k = 0, . . . , N − 1,
imply satisfaction of (17f) and (17g).

Proof: We refer to [25] for the proof of Lemma 3.
Remark 2: The approximations given by (25) and (26)

are exact (i.e., satisfied as an equality) when λx,ix,k =
α⊤
x,ix

Σxk
αx,ix or λu,iu,k = α⊤

u,iu
Σuk

αu,iu , respectively.
Therefore, if estimates of Σxk

and Σuk
are available, they

should be used for the selection of the linearization points.
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3) Convex Covariance Steering Problem: Using the above
relaxations, a convex formulation of Problem (17) is given
by

min
c,Σ̄ux,Σ̄u,Σ̄

x̄⊤k Qkx̄k + tr(QkΣ̄xk
) + ū⊤k Rkūk + tr(RkΣ̄uk

)

(28a)
subject to
x̄0 = µI , Σ̄x0 = ΣI , x̄N = µF , Σ̄xN

⪯ ΣF , (28b)
x̄k+1 = Āx̄k + B̄ūk + d̄ (28c)

Σ̄xk+1
= ĀΣ̄xk

Ā⊤ + ĀΣ̄⊤
uxk

B̄⊤ + B̄Σ̄uxk
Ā⊤

+ B̄Σ̄uk
B̄⊤ +

m∑
j=1

(ÃjΣ̄xk
Ã⊤
j + ÃjΣ̄

⊤
uxk

B̃⊤
j

+ B̃jΣ̄uxk
Ã⊤
j + B̃jΣ̄uk

B̃⊤
j + Σ̄jk), (28d)

ūk = ck Σ̄uk
⪰ Σ̄uxk

Σ̄−1
xk

Σ̄⊤
uxk

(28e)

Σ̄jk ⪰ (Ãj x̄k + B̃j ūk + d̃j)(Ãj x̄k + B̃j ūk + d̃j)
⊤ (28f)

(

√
λx,ix,k

2
+

1

2
√
λx,ix,k

α⊤
x,ixΣ̄xk

αx,ix)

√
1− px,ix
px,ix

+ α⊤
x,ix x̄k − βx,ix ≤ 0, (28g)

(

√
λu,iu,k

2
+

1

2
√
λu,iu,k

α⊤
u,iuΣ̄uk

αu,iu)

√
1− pu,iu
pu,iu

+ α⊤
u,iu ūk − βu,iu ≤ 0, (28h)

for ix = 1, . . . , Ns, iu = 1, . . . , Nu, and k =
0, . . . , N − 1, where Σ̄ux = {Σ̄ux0

, . . . , Σ̄uxN−1
}, Σ̄u =

{Σ̄u0 , . . . , Σ̄uN−1
}, and Σ̄ = {Σ̄j,k}m,N−1

j=1,k=0.
Let us denote the optimal solution of Problem (28) as

(c⋆, Σ̄⋆
ux, Σ̄

⋆
u, Σ̄

⋆), which gives the optimal control policy
(c⋆,L⋆), where L⋆k = Σ̄⋆uxk

Σ̄⋆−1
xk

, Σ̄⋆xk+1
= ĀΣ̄⋆xk

Ā⊤ +

ĀΣ̄⋆⊤uxk
B̄⊤ + B̄Σ̄⋆uxk

Ā⊤ + B̄Σ̄⋆uk
B̄⊤ +

∑m
j=1(ÃjΣ̄

⋆
xk
Ã⊤
j +

ÃjΣ̄
⋆⊤
uxk

B̃⊤
j + B̃jΣ̄

⋆
uxk

Ã⊤
j + B̃jΣ̄

⋆
uk
B̃⊤
j + Σ̄⋆jk), and Σ̄⋆x0

=
ΣI .

Theorem 2: The optimal solution of Problem (28),
(c⋆, Σ̄⋆

ux, Σ̄
⋆
u, Σ̄

⋆), yields the optimal control policy
{c⋆k, L⋆k}

N−1
k=0 which is a feasible solution of Problem (17)

when constraint the terminal covariance constraint in (17b) is
relaxed to (24c). Furthermore, let u⋆ be the control sequence
given by u⋆ = {u⋆k = L⋆kx̃

⋆
k + c⋆k}

N−1
k=0 , where x̃⋆k+1 = (Ā+

B̄L⋆k)x̃
⋆
k+

∑m
j=1 Ãjqj,kx

⋆
k+

∑m
j=1 B̃jqj,ku

⋆
k+

∑m
j=1 d̃jqj,k,

x⋆k+1 = (Ā +
∑m
j=1 Ãjqj,k)x

⋆
k + (B̄ +

∑m
j=1 B̃jqj,k)u

⋆
k +

d̄+
∑m
j=1 d̃jqj,k, x̄⋆k+1 = Āx̄⋆k + B̄ū⋆k + d̄, and ū⋆k = c⋆k for

all k = 0, . . . , N − 1, and where x̃⋆0 = x0 − µI , x⋆0 = x0,
and x̄⋆0 = µI . The control sequence u⋆ is a feasible solution
of Problem (8) when (8h) is relaxed to (24c).

Proof: The constraints given by the first three inclusions
in (28b), (28c), and the first inclusion in (28e) are identical
to the corresponding constraints in Problem (17). Per Lemma
2, the satisfaction of the last inclusion in (28b) implies (24c)
will be satisfied. By Lemmas 2 and 3 satisfaction of (28g)
and (28h) implies satisfaction of (17f) and (17g). Thus,
{c⋆k, L⋆k}

N−1
k=0 is a feasible solution of Problem (17) when

the terminal covariance constraint given in (17b) is relaxed

to (24c). Feasibility of Problem (8) with the relaxation of
(8h) to (24c) is then given by Theorem 1.

V. NUMERICAL RESULTS

The proposed approach is demonstrated through a vehicle
control example. The kinematic bicycle model is commonly
used to model the motion of a vehicle with respect to a
given reference path. Although the kinematic bicycle model
is nonlinear, a linear approximation may be obtained by
assuming a constant velocity and assuming the steering angle
and the heading error with respect to the reference path are
small, which is an approximation technique commonly used
in the literature [28].

The linear kinematic bicycle model [28] is given byφk+1

eψk+1

eyk+1

 =

 1 0 0
ν̄x

rf+rr
∆t 1 0

rr
rf+rr

ν̄x∆t ν̄x∆t 1

φkeψk

eyk

+

 0

ψ̇k∆t
0


+

 ∆t
rr

rf+rr
∆t

0

 (φ̇kθuk
) +

 0 0 0
∆t

rf+rr
0 0

rr
rf+rr

∆t ∆t 0


φkeψk

eyk

 ν̃xk
,

(29)

where ψ̇k = (
˜̇
ψk − ¯̇

ψref), eψ is the heading error with
respect to the reference heading ψref, νx is the velocity
parameter, rf and rr are the length from the center of
mass to the front and rear wheels respectively, φ is the
steering angle, ey is the lateral error with respect to the
reference path, φ̇k is the control input and where ν̄x and ¯̇

ψref
are the nominal parameters and ν̃x, ˜̇φk, θuk

are the random
disturbances. We set ν̄x = 10, rf = 1.2, rr = 3.6, ∆t = 0.1,
and ¯̇

ψref = 0.1. The initial and terminal conditions are
given as µI = [0, 0, 0]⊤, ΣI = diag(0.003, 0.03, 0.03),
µF = [0.1, 0, 0]⊤, and ΣF = diag(0.05, 0.05, 0.05). The
state chance constraints are given by αx,1 = [0, 0, 1.0]⊤,
βx,1 = 1.5, px,1 = 0.2, αx,2 = [0, 0,−1.0]⊤, βx,2 = 1.5,
px,2 = 0.2 and no control chance constraints are included
so that Ns = 2 and Nc = 0. λx,ix,k = α⊤

x,ix
Σnom
x,kαx,ix for

ix = 1, 2 and k = 0, . . . , N−1, and where Σnom
x,k is computed

as an N -step linear interpolation between ΣI and ΣF . The
trajectory is planned over 5 sec, so that N = 50.

The proposed approach is compared for three different
noise distributions with an optimistic approach that does not
consider the multiplicative uncertainties arising from Ãj and
B̃j and with a conservative approach in which the d̃j vectors
are set as an over-approximation of the noise arising from
input uncertainty (over-approximating the state transition
matrix uncertainty was also investigated; however, we found
this led to infeasibility in non-trivial cases). Fig. 1 shows the
trajectories resulting from the three approaches transformed
into a Cartesian coordinate frame, and it may be seen all three
approaches track the reference trajectory through the curve.
However, as highlighted in Fig. 1, the naı̈ve approach fails to
meet the terminal constraints and the conservative approach
exceeds the specified terminal covariance, while the proposed
approach successfully meets the required terminal mean and
covariance.
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Fig. 1: Covariance steering results for a path-following vehicle
application with parametric noise sampled from Gaussian, Uniform,
and Gamma distributions, respectively.

VI. CONCLUSION

This work has presented a general problem formulation
for stochastic linear systems subjected to both additive
and multiplicative noise, while subject to state and control
chance constraints as well as terminal constraints on the first
and second moments. Although the problem is, in general,
stochastic and nonconvex, a tightened, deterministic, convex
problem formulation is derived, the optimal solution of which
is guaranteed to be a valid (albeit potentially sub-optimal)
solution of the original nonconvex problem. Finally, the
results are demonstrated using Monte Carlo simulations on
an autonomous vehicle path following problem.
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