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Abstract— This paper addresses the problem of adaptive
output regulation of a minimum-phase MIMO LTI system in
the presence of un-modeled (fast) input dynamics. The adoption
of a post-processing tunable internal model makes it possible
to implement standard methods for the analysis of two-time-
scale systems. The proposed adaptation law guarantees, under
suitable hypotheses, convergence to zero of the regulation error
as well as of the parameter estimation error.

I. INTRODUCTION

The problem of controlling systems under conditions of
significant lack of prior knowledge is a problem of high
interest in feedback design. This is the case in the classical
problem of output regulation, which is the problem of
controlling a plant so as to have its output asymptotically
tracking/rejecting exogenous commands/disturbances, where
uncertainties may include unknown parameters, unmeasur-
able states, uncertain exogenous inputs, and unmodeled dy-
namics. Solutions to the problem in question, at different
levels of generality and in different scenarios of uncertainty,
have been known since a long time in control theory. A
common feature of such solutions is the so-called internal
model principle (IPM), which establishes the necessity of
the presence, in the controller, of a suitable model of the
exogenous inputs [1]. 1

For a MIMO linear system, the IMP claims that asymptotic
regulation is achieved in the presence of plant parameter
variations “only if the controller utilizes feedback of the
regulated variable, and incorporates in the feedback path
a suitably reduplicated model of the dynamic structure of
the exogenous signals”. If such model is embedded in
the feedback path, a problem of output regulation in the
presence of structured/unstructured uncertainties is reduced
to a problem of robust stabilization of a suitable augmented
system [1][3]. Robust stabilization of such augmented system
can be achieved – in the case of structured uncertainties –
via (dynamic) high-gain output feedback if the system is
minimum-phase (see, e.g. [4], for a recent review in which
a notion of robust-minimum phase is exploited) and – in
the case of unstructured uncertainties – via H∞ and LMI
methods (see, e.g., [5], [6], [7]).
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1A thorough analysis of the implications of the concept of internal model,

not only in system science but also in various branches of natural sciences,
can be found in the recent survey [2].

Extensions of this viewpoint to nonlinear systems have
a long history in the literature, beginning with the series
works of [8], [9], [10]. For nonlinear systems, in recent years,
the issue of robustness has been thoroughly investigated and
limits to the ambition of achieving robustness have been
pointed out (see, in particular, [11], where it is claimed that
no finite-dimensional robust regulator exists if unstructured
perturbations are considered). This result has pushed a good
part of the research toward the development of approximate
but robust design methods (see e.g. [12]).

A kind of uncertainty that was not addressed in the
original works [1][3] is the possible lack of knowledge
of the parameters that characterize the so-called exosys-
tem, the (finite-dimensional) autonomous system that models
all possible exogenous exogenous inputs. Indeed, if such
parameters are unknown, the design of an internal model
becomes problematic. It was only with the works [13], in
which a tunable internal model was proposed, and [14][15],
in which the “modes” of the exosystem (assumed to be a
bank of harmonic oscillators) were directly estimated, that
the issue of robustness with respect exosystem uncertainties
begun to be systematically addressed. Since then, a number
of relevant contributions appeared (see, e.g., [16], [17],
[18][19][20][11][21], among the most recent ones).

An issue that, to the best of our knowledge, is not
explicitly addressed in the existing literature is the issue of
robustness with respect to unmodeled (but fast) input dynam-
ics. In dealing with such kind of unstructured uncertainty,
one is intuitively tempted to believe that a design based on
the nominal model (i.e. ignoring the input dynamics) would
also work in the presence of unmodeled input dynamics, if
the latter are sufficiently fast. Such intuition, though, has to
be supported by rigorous arguments, and this is precisely the
main goal of the present paper, where we deal with a rather
general class of MIMO linear time invariant systems. The
framework is essentially the same as of [4]. Specifically, it is
shown that the choice of a post-processing adaptive internal
model, as in [4], makes it possible to look at the augmented
system as a two-time-scale system, with consequent use the
pertinent methods of analysis. In this context, though, it
is necessary to make sure that, in the so-called “reduced”
subsystem, trajectories are uniformly attracted to a compact
invariant set on which the regulated output vanishes. This
is the case if the exogenous inputs have special properties,
that are assumed to hold in section III. A byproduct of such
assumptions is that the proposed design secures asymptotic
convergence to zero of the regulation error as well as of the
parameter estimation error.
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II. PROBLEM SETUP

In this paper we consider a MIMO linear system with
state x ∈ Rn, input v ∈ Rm and regulated output e ∈ Rm,
modeled by equations of the form

ẋ = Ax+Bv + Pw
e = Cx+Qw .

(1)

The exogenous input w ∈ Rd is generated by an exosystem

ẇ = Sρw (2)

in which ρ denotes a vector of uncertain parameters.
The input v of (1) is the output of an unmodeled dynamics

v = C0x0
µẋ0 = A0x0 +B0u

(3)

with state x0 ∈ Rn0 and control u ∈ Rm, in which µ ∈ R+

is small.

Remark 1: The dynamics (3) represents dynamics that are
neglected in the modeling process, such as the dynamics of
the actuators or any dynamics affecting the plant’s input.
Typically, such dynamics are much faster compared with the
plant’s own dynamics, and stable. However, its parameters
and even its order might be unknown.

We address the classical problem of (adaptive) output
regulation, i.e. the design of a feedback controller – with
input e and output u – yielding a closed-loop system in which
trajectories are bounded and limt→∞ e(t) = 0, regardless
of the actual values of the uncertain parameters in the
exosystem.

III. BASIC ASSUMPTIONS

A. Assumptions about the plant

The plant (1) is assumed to be invertible and minimum
phase. If this is the case, as observed in [4], there exists a
change of coordinates by means of which the equations (1)
can be transformed into equations of the form 2

ż = A00z +A01z1 +A02z2 + P0w
ż1 = A11z1 +A12z2
ż2 = A20z +A21z1 +A22z2 +B22v + P2w
e = H1z1 +H2z2

(4)

in which z2 ∈ Rm, the matrix A00 is Hurwitz (a consequence
of the assumption of minimum phase), the matrix A11 is
also Hurwitz (a consequence of the special choice coordi-
nates yielding (4)) and the matrix B22 is nonsingular. We
assume, in addition, that the matrix B22 is positive definite.
Borrowing a terminology from [22] such system could be
called a “hyper minimum-phase” system. 3

Remark 2: In this respect, it should be stress that in [4] we
considered a broader class of plants, namely systems having

2Note that in (1) the exogenous input w does not affect the dynamics of
z1 nor the regulated output e. This is a consequence of the special choice
of coordinates z, z1, z2.

3For convenience, in the present paper we have considered the case of
a system having the same number of inputs and outputs. If the system has
more inputs then outputs, and is right-invertible, the results of the paper can
be extended without much effort.

p < m regulated outputs and in which m − p inputs could
be used, via feedback from an auxiliary measured output yr,
to enforce the property of minimum phase. Extension of the
approach presented in the current paper to this broader class
of systems is possible, but it would imply a sensible increase
of length. For such reason, we have limited the consideration
to the class of systems defined in (1), and have chosen to put
the emphasis on a rigorous proof of the intuition that a design
based on the nominal model works also in the presence of
unmodeled input dynamics, if the latter are sufficiently fast.

It is also assumed that the solution (Π,Ψ) of the so-called
regulator equations of (1), namely the equations

ΠSρ = AΠ +BΨ + P
0 = CΠ +Q ,

(5)

has the following property:

Assumption 1: Let Ψi denote the i-th row of Ψ. For some
integer 1 ≤ i∗ ≤ m the pair (Sρ,Ψi∗) is observable.

B. Assumptions about the exosystem

The matrix Sρ ∈ Rd×d is a matrix in companion form
with characteristic polynomial

ψ(λ) = (λ− λ1)(λ− λ2) · · · (λ− λd)
with λi 6= λj 6= 0 for i 6= j and Re[λi] = 0 for i = 1, . . . , d.4

This being the case, it is clear that d is even and – after a
suitable coordinates transformation w̃ = Tw – the exosystem
can be expressed as a bank of d/2 harmonic oscillators of
the form

˙̃wi =

(
0 ρi
−ρi 0

)
w̃i w̃i ∈ R2 (6)

in which ρi 6= ρj for i 6= j. The ρi’s, the components of the
vector ρ of uncertain parameters, are real numbers assumed
to vary between fixed upper and lower bounds.

In this paper, we make two additional assumption on the
exosystem. The first assumption is that the initial conditions,
taken in a compact invariant set, are such that all modes of
the system are excited. In the special coordinates yielding a
model consisting of a bank of d/2 harmonic oscillators of
the form (6) the assumption in question is that each w̃i(0)
is taken in an “annular” set of the form

Bba = {w̃i ∈ R2 : 0 < a ≤ ‖w̃i‖ ≤ b} .
In the original coordinates of (2) the assumption reads as
follows:

Assumption 2: The initial conditions of (2) are taken in
the set

W = T−1(Bba × · · · ×Bba) .

Clearly, if w(t) is expressed in the form

w(t) =

d∑
j=1

v̄je
λjtūTj w0 , w0 = w(0) (7)

Assumption 2 is that ūTj w0 6= 0 for all j = 1, . . . , d.

4Note that we exclude the case of an exosystem with an eigenvalue at 0.
Such assumption is related to Assumption 2.
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The second assumption is that all ρi’s are rationally
related.

Assumption 3: There exist a real number Ω and integers
N1, N2, . . . such that ρiNi = Ω for all i.

If this is the case, the exogenous input w(t) is a periodic
function of t.

C. Assumptions about the unmodeled dynamics

As indicated in Remark 1, the unmodeled dynamics (3) has
to be stable and sufficiently fast. Thus, we assume that the
matrix A0 is Hurwitz and µ > 0 is sufficiently small number.
Moreover, we assume C0A

−1
0 B0 = −I so as to make v =

−C0A
−1
0 B0u = u for the case with the unmodeled dynamics

excluded, i.e. when µ = 0.

IV. THE INTERNAL MODEL AND THE CONTROL

Let the system be augmented with a post-processing
internal model

η̇ = Fη +G[Γ̂(t)η + z2]

in which
F = Im ⊗ F0 F0 ∈ Rd×d
G = Im ⊗G0 G0 ∈ Rd×1
Γ̂ = Im ⊗ Γ̂0 Γ̂0 ∈ R1×d

η = col(η1, . . . , ηm) ηi ∈ Rd×1 ,
where “⊗” denotes the Kronecker product of matrices. The
matrix F0 is a Hurwitz matrix in companion form and G0 =(
0 · · · 0 1

)T
. Choose

u = −k[Γ̂(t)η + z2] .

The resulting system is modeled by equations of the form
ż = A00z +A01z1 +A02z2 + P0w

η̇ = (F +GΓ̂(t))η +Gz2
ż1 = A11z1 +A12z2
ż2 = A20z +A21z1 +A22z2 +B22C0x0 + P2w

µẋ0 = A0x0 − kB0(Γ̂(t)η + z2)
e = H1z1 +H2z2 .

(8)
Let Γ0,ρ be such that F0 +G0Γ0,ρ = Sρ, set

Γρ = Im ⊗ Γ0,ρ

and define an estimation error as

Γ̃ = Γ̂− Γρ = Im ⊗ Γ̃0 where Γ̃0 = Γ̂0 − Γ0,ρ .

Set x = col(z, η, z1, z2) and

Aρ =


A00 0 A01 A02

0 (F +GΓρ) 0 G
0 0 A11 A12

A20 0 A21 A22

 Bρ =


0
0
0
B22



P =


P0

0
0
P2

 Q =


0
G
0
0

 Cρ =
(
0 Γρ 0 I

)
.

Then, the resulting closed-loop system can be expressed in
the form

ẋ = Aρx + BρC0x0 + Pw + Q(Γ̃η)

µẋ0 = A0x0 − kB0Cρx− kB0(Γ̃η) .

To these equations we need to add the adaptation law for Γ̂,
which determines the dynamics of Γ̃.

As a preliminary step in the choice of the adaptation law, it
is important to examine first the influence of the parameters
µ and k. To this end, we introduce appropriate additional
notations, defining5

A = Aρ − kBρCρ

B = Q− kBρ

C =
(
0 0 0 I

)
D =

(
0 I 0 0

)
.

(9)

Lemma 1: There is a number k∗ such that, if k > k∗, the
matrix A defined in (9) is Hurwitz.

Proof: The proof uses arguments identical to arguments
used in the proof of Proposition 4 in [4] and is not repeated
here.

Lemma 2: Pick k > k∗. There is a number µ∗ > 0 such
that, if 0 < µ < µ∗, the linear matrix equation(

Π
µΠ0

)
Sρ =

(
Aρ BρC0

−kB0Cρ A0

)(
Π
Π0

)
+

(
P
0

)
(10)

has a (unique) solution (Π,Π0). Moreover, if Π is parti-
tioned, accordingly with the partition of x, as

Π =


Πz

Σ
Π1

Π2

 ,

then Π1 = 0 and Π2 = 0.

Proof: It is known6 in [23] that the equation in question
has a unique solution if the matrix

A(λ, µ) =

(
I 0
0 µI

)
λ−

(
Aρ BρC0

−kB0Cρ A0

)
is nonsingular for each λ which is an eigenvalue of Sρ.

Indeed, the matrix A(λ, µ) is nonsingular if so is the
matrix

Ā(λ, µ) = A(λ, µ)

(
I 0

kA−10 B0Cρ I

)
=

(
λI − (Aρ − kBρCρ) −BρC0

µλkA−10 B0Cρ µλI −A0

)
.

We know from Lemma 1 that, since k > k∗, the matrix
(Aρ−kBρCρ) is Hurwitz. Moreover, A0 is a Hurwitz matrix
by assumption. Let d(λ, µ) denote the determinant of the
matrix Ā(λ, µ), let λ ∈ σ(Sρ)

7 and observe that

d(λ, 0) = det[λI − (Aρ − kBρCρ)]det[−A0] 6= 0

because A0 is nonsingular and no eigenvalue of Sρ can be
an eigenvalue of (Aρ−kBρCρ). By continuity, d(λ, µ) 6= 0
also for small µ.

5The partitions in C and D are consistent with the partitions of x.
6See Theorem A.1 in [23].
7The notation σ(Sρ) denotes spectrum of the matrix Sρ.

1539



Rewrite (10) as 
Πz

Σ
Π1

Π2

µΠ0

Sρ =


A00 0 A01 A02 0
0 (F +GΓρ) 0 G 0
0 0 A11 A12 0
A20 0 A21 A22 B22C0

0 −kB0Γρ 0 −kB0 A0




Πz

Σ
Π1

Π2

Π0

+


P0

0
0
P2

0

 . (11)

It is known8 that, because of the special structure chosen
for F,G,Γρ, the equation on the second block-row, namely

ΣSρ = (F +GΓρ)Σ +GΠ2

implies Π2 = 0. This being the case, the resulting equation
on the third block-row, namely

Π1Sρ = A11Π1 +A12Π2 = A11Π1

yields Π1 = 0 (because the spectra of Sρ and A11 are
disjoint).

Rescaling state variables as z̃ = z −Πzw, η̃ = Σw, x̃0 =
x0−Π0w (no rescaling is needed for z1, z2 because Π1 = 0
and Π2 = 0) and setting x̃ = col(z̃, η̃, z1, z2), yields

˙̃x = Aρx̃ + BρC0x̃0 + Q(Γ̃η)

µ ˙̃x0 = A0x̃0 − kB0Cρx̃− kB0(Γ̃η)

Note that we have not rescaled the variable η in the product
(Γ̃η).

We analyze this system choosing the standard change of
variables used in dealing with two-time-scale systems (see
Example 5.14 or proof of Theorem 11.4 of [24]). Change x̃0
into

y = x̃0 − kA−10 B0[Cρx̃ + (Γ̃η)].

to obtain equations of the form
˙̃x = Ax̃ + B(Γ̃η) + BρC0y (12)

in which A,B are defined as in (9), and
µẏ = A0y

− µkA−10 B0

[
Cρ[Ax̃ + B(Γ̃η) + BρC0y] + d

dt (Γ̃η)
]
.

(13)
We proceed now with the choice of the adaptation law,

which is suggested by the following result, whose proof is
identical to the proof of a similar result in [4].

Proposition 1: Let A,B,C be defined as in (9). There
exists a positive definite symmetric matrix P such that, if k
is sufficiently large,

PA + ATP < 0
PB = −CT.

Proof: See proof of Proposition 4 in [4].

In view of this, one is tempted to use the adaptation law
already used in [4], which is a law of the form

˙̂
ΓT
0 = ˙̃ΓT

0 =
(
η1 · · · ηm

)
z2 =

(
η1 · · · ηm

)
Cx̃ .

(14)
In fact, if such law is adopted, along the trajectories of

˙̃x = Ax̃ + B(Γ̃η)
˙̃ΓT
0 =

(
η1 · · · ηm

)
Cx̃

8See Lemma 4.3 in [23].

the positive definite function V (x̃, Γ̃T
0 ) = x̃TPx̃ + Γ̃0Γ̃T

0

satisfies
V̇ = x̃T(PA + ATP)x̃ ≤ 0.

Having chosen the adaptation law in this way, let’s
augment the dynamics of (12) and (14) with that of the
exosystem, so as to obtain an autonomous system of the
form ẇ

˙̃x
˙̃ΓT
0

 =

 Sρw

Ax̃ + B(Im ⊗ Γ̃0)η(
η1 · · · ηm

)
Cx̃

+

 0
BρC0

0

 y (15)

in which η = Dx̃ + Σw with D defined as in (9) and Σ
defined as in Lemma 2

V. THE ASYMPTOTIC PROPERTIES OF THE REDUCED
SYSTEM

To proceed with the analysis of the two-time-scale system
consisting of (15) and (13), it is convenient to begin with
the discussion of the asymptotic properties of the “reduced”
system, which – since µ = 0 in (13) implies y = 0 – is ẇ

˙̃x
˙̃ΓT
0

 =

 Sρw

Ax̃ + B(Im ⊗ Γ̃0)η(
η1 · · · ηm

)
Cx̃

 where η = Dx̃ + Σw.

(16)
Note that this system, setting p = col(x̃, Γ̃T

0 ), can be
regarded as a system of the form

ẇ = Sρw
ṗ = f(w, p) .

(17)

Since w(t) evolves on the compact invariant set W , it is
natural to consider system (17) as a system evolving on the
(closed) “cylinder” C = {(w, p) : w ∈ W, p ∈ Rnp}, where
np = n+md+m. Note that the set

A = {(w, p) ∈ C : p = 0} (18)

is an invariant set of (17).

Proposition 2: The invariant set A is uniformly stable (in
the sense of Lyapunov).

Proof: Consider the Lyapunov function

U(w, p) = W (w) + V (p)

with V (p) = x̃TPx̃ + Γ̃0Γ̃T
0 and W (w) = wTQw, with

Q = QT > 0 satisfying QSρ + ST
ρ Q = 0 (which is

admissible because all eigenvalues of Sρ have zero real
part and multiplicity one in the minimal polynomial). Then,
U̇ = x̃T(PA + ATP)x̃ ≤ 0. Thus, the function U(w, p)
is non-increasing along the trajectories of (17). Observe that
W (w(t)) is constant along trajectories, because Ẇ (w(t)) =
0. Hence, for t ≥ 0, we have

V (p(t)) ≤ V (p(0)) . (19)
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Since V (p) is positive definite, there exist positive numbers
a1, a2 such that a1‖p‖2 ≤ V (p) ≤ a2‖p‖2 . Using such
inequalities in (19) it is seen that

‖p(t)‖ ≤ (a−11 a2)
1
2 ‖p(0)‖ ∀t ≥ 0

which proves the uniform stability of the invariant set A.

Proposition 3: All trajectories of (17) are bounded in
positive time and the x̃(t) component of p(t) satisfies

lim
t→∞

x̃(t) = 0 . (20)

Proof: With the proof of the previous proposition in
mind and in particular the fact that U̇(t) ≤ −λ‖x̃(t)‖2
for some λ > 0, use standard results due to Barbashin-
Krasovskii-LaSalle to conclude that all trajectories are
bounded and (20) holds.

Remark 3: Note that since e(t) = H1z1(t)+H2z2(t) and
z1, z2 are components of x̃ (because such variables are not
rescaled), if y(t) were zero the limit (20) would imply

lim
t→∞

e(t) = 0. (21)

In the following two Propositions we take advantage of
Assumptions 1 and 2 to analyze the asymptotic properties of
system (17).

Proposition 4: 9 Suppose Assumptions 1 and 2 hold. Then

lim
t→∞

Γ̃0(t) = 0 , (22)

i.e. the invariant set A is globally attractive.

Remark 4: Note that, under such assumptions, if y(t)
were zero the chosen adaptation law would imply asymptotic
convergence of the estimate Γ̂(t) to the true value Γρ .

Initial conditions of (17) are assumed to range on a fixed
compact set B of C. It is known from Proposition 3 that the
positive orbit of B under the flow of (17) is bounded and
hence the ω-limit set 10 of B, denoted ω(B), is a non-empty
compact invariant set.

Proposition 5: 9 Let B be a compact set of C satisfying
A ⊂ int(B). Suppose Assumptions 1 and 2 hold. Then
ω(B) = A.

We complete the analysis of the asymptotic properties
of the reduced system by showing that the set A is also
locally exponentially stable. To this end, we recall that if
Assumption 3 holds, the exogenous input w(t) = eSρtw0 is
a periodically-varying function. Thus, the lower equation of
(17) can be seen as a periodically-varying system

ṗ = f(w(t), p) (23)

having an equilibrium at p = 0. The linear approximation of
this system at p = 0 is a linear system

ṗ = A(w(t))p (24)

which, in what follows, is proven to be exponentially stable.
This – due to standard results – provides the desired property.

9The proofs of Propositions 4 and 5 are omitted for reasons of space and
can be provided upon specific request.

10See Definition B.4 in [23].

Proposition 6: Suppose Assumptions 1, 2 and 3 hold.
Then, the equilibrium p = 0 of (23) is locally exponentially
stable, uniformly in w0.

Proof: Let the solution Σ of (11) be partitioned as
Σ = col(Σ1, . . . ,Σm) in which Σi is a square d× d matrix
for each 1 ≤ i ≤ m. System (24) is the periodically-varying
linear system

˙̃x = Ax̃ + B[Im ⊗ Γ̃0]Σw(t)
˙̃ΓT
0 =

(
Σ1w(t) · · · Σmw(t)

)
Cx̃ ,

(25)

which can be seen as the negative feedback interconnection
(i.e. ū1 = ȳ2 and ū2 = −ȳ1) of the strictly passive system

˙̃x = Ax̃ + Bū1
ȳ1 = −Cx̃

and of the lossless periodically-varying system
˙̃ΓT
0 =

(
Σ1w(t) · · · Σpw(t)

)
ū2

ȳ2 = [Im ⊗ Γ̃0]Σw(t) .

Using the same arguments used in the the proof of Proposi-
tion 3 we can conclude that x̃(t) → 0 as t → ∞, which in
turn implies limt→∞[Im ⊗ Γ̃0]Σw(t) = 0 .

The same arguments used in the the proof of Proposition
4 prove that, if Assumptions 1 and 2 hold, the latter implies
that also Γ̃T

0 (t) → 0 as t → ∞ (i.e. the lossless system
is observable). Thus, all trajectories of (24) asymptotically
decay to zero. Let Φ(t, t0) denote the state transition matrix
of (24) and let T be such that w(t+T ) = w(t) for all t ∈ R.
It is known that the asymptotic properties of a periodically-
varying system like (24) are determined by the eigenvalues
of the matrix Φ(T, 0). In particular, the trajectories of (24)
asymptotically decay to zero if and only if all eigenvalues of
Φ(T, 0) lie inside the open unit disc. Therefore, we can claim
the existence of a number 0 < δ < 1 with the property that
all eigenvalues of Φ(T, 0) are in Cδ = {λ ∈ C : |λ| ≤ δ}.11

This being the case, it follows that if Ã is a matrix satisfying
eÃt = Φ(T, 0), its eigenvalues have a real part that does
not exceed a fixed negative number (independent of w0).
Then, according to well-know properties of periodically-
varying linear systems, it is concluded that, for some λ > 0
and k > 0, the state transition matrix of (24) satisfies
‖Φ(t, t0)‖ ≤ ke−λ(t−t0) for all t ≥ t0 and all w0 ∈ W .
This being the case, the proposition follows from Theorems
4.12 and 4.13 of [24].

VI. BACK TO THE FULL SYSTEM

We return now to the full two-time scale system consisting
of (15) and (13). Setting p = col(w, p) we can can express
system (15) in compact form as

ṗ = M(p) +Ny (26)

in which M(p) is the right-hand side of (16) and N ∈
R(d+np)×m. System (13), on the other hand, can be seen

11Observe that, in the present case, the matrix Φ(T, 0) depends on the
initial condition w0 of the exosystem. Now, recall that |det[Φ(T, 0)]| =
Π
np
i=1|λi| in which λ1, . . . , λnp are the eigenvalues of Φ(T, 0). If all such

eigenvalues are inside the open unit disc, then |det[Φ(T, 0)]| < 1. Since
|det[Φ(T, 0)]| is a continuous function of w0 and the latter ranges over the
compact set W , we deduce the existence of a number 0 < δ < 1 such that
|det[Φ(T, 0)]| ≤ δ for all w0 ∈ W and this proves the claim.
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as a system of the form
ẏ = K(p, y) + v , where v = µ−1A0y. (27)

With A defined as in (18), let initial conditions
(p(0), y(0)) be taken in a compact set B × Y , with B a
compact set that contains A in its interior and Y = {y ∈
Rm : ‖y‖ ≤ R}. We have shown in the previous section
that, under appropriate hypotheses, in the system ṗ = M(p),
the invariant set A is stable in the sense of Lyapunov and
ω(B) = A . A consequence 12 of the latter property is
that, for each α > 0 and ε > 0 there exists T > 0 such
that dist(p(0),A) ≤ α13 implies dist(p(t),A) ≤ ε for all
t ≥ T . Inspection of (13) also reveals that K(p, 0) is zero
for all p ∈ A, and A0 is a Hurwitz matrix. The system thus
defined has the same structure of system (19) of [27] and
assumptions identical to those considered in Theorem 3 of
[27] hold. Thus, appealing to the results indicated in that
Theorem, it can be concluded as follows.

Proposition 7: There exists a number µ∗∗ such that, if 0 <
µ ≤ µ∗∗, all trajectories of the system (26), (27) are bounded,
limt→∞ dist(p(t),A) = 0, which implies limt→∞ p(t) =
0, and limt→∞ y(t) = 0. In particular, limt→∞ x̃(t) = 0
which in turn implies limt→∞ e(t) = 0. Thus, the goal of
asymptotic output regulation is achieved.

VII. COMPLETING THE DESIGN

The controller achieving (adaptive) output regulation is a
controller of the form

η̇ = Fη +G[(Im ⊗ Γ̂0)η + z2]
˙̂
ΓT
0 =

(
η1 · · · ηm

)
z2

u = −k[(Im ⊗ Γ̂0)η + z2]

which is driven by the “partial state” z2. Normally, the latter
is not directly available for feedback. However, it can be
estimated by means of a “high-gain” observer driven by
the regulated output e. Details of the design are somewhat
standard and are not repeated here. It should be stressed,
thought, that since the convergence of trajectories of system
(26)–(27) to the compact invariant set A × {0} is locally
exponential, the error in the estimation of z2 achieved by
means of a high-gain observer asymptotically decays to zero
and hence the property of asymptotic convergence of e(t) to
0 is conserved.

VIII. CONCLUSIONS

The problem of adaptive output regulation of a minimum-
phase MIMO LTI system with unmodeled input dynamics is
solved using a post-processing tunable internal model. As it
was shown, the proposed approach guarantees convergence
to zero of the regulation error as well as of the parameter
estimation error.
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