
 
 

 

 

Abstract—This paper proposes a unified framework for the 
stability analysis of discrete-time nonlinear systems from 
social networks, including the Friedkin-Johnsen opinion 
model, two opinion dynamics models in the study of social 
power, and a general nonlinear polar opinion model. Three 
novel convergence results are proposed to treat various 
conditions based on LaSalle invariance principle. Several 
applications are provided to illustrate the power of the 
proposed framework.   

I. INTRODUCTION 

typical social network is composed by social agents and 
their opinions, where agents interactive and evolve their 
opinions across the network, influencing and/or being 

influenced by one another. The recent years have witnessed a 
significant tendency of various agent-based opinion 
dynamics models, see the surveys [17, 18, 23], and the 
references therein. Opinion dynamics models refers to a 
description of how individuals' and groups' opinions, 
behaviors, and decisions change through interactions with the 
opinions of the others. Convergence analyses of opinion 
dynamics models are important because they characterize 
that local interactions result in various phenomena of the 
whole network. 

The most well-known models are the DeGroot model [4] 
and its continuous-time counterpart known as the Abselson 
model [1], both of which describe how individual opinions 
are updated through a convex combination of their own and 
others' opinions, aiming to achieve consensus or agreement 
among agents. More consensus studies could be found in [9, 

13, 14, 15, 19] for cooperative networks and in [2, 20] for 

cooperative-antagonistic networks. However, this class of 
opinion dynamics models lacks the analytical capability to 
address the impact of agents defending their own opinions on 
system changes. In order to account for different 
susceptibilities, the Friedkin-Johnsen model [5, 6] expands 
upon the DeGroot model by introducing a diagonal matrix 
representing the open attitude, where stubbornness of agents 
is considered. Obviously, the convergence analyses of 
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DeGroot model could be covered by that of Friedkin-Johnsen 
model by viewing no stubbornness. Further variations such as 
the concatenated Friedkin-Johnsen model [22] and the 
multidimensional Friedkin-Johnsen model [16] focused on 
the evolvement of agents’ opinions over an infinite sequence 
of interdependent issues and over multiple logic-constrained 
issues, respectively. Immersing the DeGroot model into the  
Friedkin-Johnsen model leads to the so-called 
DeGroot-Friedkin model, where have the capability of 
formulating the processes of reflected-appraisal mechanism 
and reflecting the social powers [10, 25]. The studies of 
DeGroot-Friedkin model subject to stubbornness could be 
seen in [24]. Susceptibility in all these Friedkin type models 
is determined solely by agents’ initial opinions and does not 
change during the whole evolution procedure. So it is more 
reasonable to consider the agents’ current attitude at hand. 
Toward this issue, a general nonlinear polar opinion model 
was proposed recently [3] for cooperative networks, and 
variations for cooperative-antagonistic networks and 
time-varying networks were reported in [26] and [11], 
respectively.    

This paper summarizes a class of discrete-time nonlinear 
systems and verifies that opinion dynamics models such as 
DeGroot model, Friedkin-Johnsen model, and 
DeGroot-Friedkin model could fall (or be converted) into the 
category of this class of systems. Our main contribution is to 
investigate a comprehensive stability analysis of such a class 
of nonlinear systems and hence provide a unified framework 
in convergence analyses of all these mentioned opinion 
dynamics models. Indeed, three novel convergence results 
are proposed to treat various conditions based on LaSalle 
invariance principle so that they can be applied to more 
general systems beyond linear systems. Applications on 
Friedkin-Johnsen model and DeGroot-Friedkin model are 
clearly reported, showing the power of our framework. It is 
further emphasized that the proposed framework could also 
be applied to a discrete-time version of nonlinear polar 
opinion model. 

Notations:   is the set of real numbers, },,1{0, Z  

}.,,1{ pZ p  For any subset ,S  
  },,,{ 1 pi
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p
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For any subset ,0

p .inf
00

vuu v  
 For a finite set 

S, S#  denotes the number of all elements. 1p  denotes the 

p-item vector of ones and ,, p

p

i Zie   with the i-th 

entry being 1 and the other entries being 0. A row-stochastic  

matrix p pA  is a nonnegative matrix  with .11 ppA   
  pp

puudiag ,,1   is the diagonal matrix with its 

diagonal entries being .,,,1 puu   For any 

 1 k p qJ i i      ,  1 2\ =  q q kJ j j j      and 

( ) ,p q

ijD d     , 1( )
l s

k k k

J i i l sD d 
   and 

( )

1 ,1 ( )( ) .
l r

k q k

J i j l k r q kD d  
    

    For a function : ,px Z   
})(limsuch that {)( utxtux nnn

p    

is the ω-limit set of x.  

II. PRELIMINARIES  

In this section, the studied system is introduced and 
motivated. Boundedness of solutions is proven. Then, several 
useful results including the well-known LaSalle invariance 
principle and Brouwer fixed-point theorem are also provided.  

A. The studied system and motivation 

For a closed set ,pX   consider the following 
discrete-time system:  
                                    XxxxFx                          (1) 

where x  is the state, ppXF :  is a matrix-valued 
continuous function. A function XZx :  is said to a 
solution of (1), if )())(()1( kxkxFkx   for any Zk .  
  System (1) includes at least three typical systems from 
social networks as discussed below.  

The fist opinion model: Recall the so called Friedkin and 
Johnsen opinion model as follows [5]: 
                           (0))-( zIAzz                    (2) 

where pz   is the state, ,ppA    which corresponds  to 
a social network, is a row-stochastic  matrix, and 

),,,( 21 pdiag   where ,,10 pi Zi   represents 
the stubborn condition of each agent.  

Consider an equilibrium point *z  of (2) as follows: 
                             (0).)-(** zIAzz                        (3) 
As we shall see below, under certain connectivity condition 
(see (C) in Section IV.A), A  is Schur stable and hence 

)( AI   is nonsingular. Thus, 
(0).)-()( 1

* zIAIz                  (4) 
Let *zzx   be the error state and the error system can be 
written into the form of (1) with AF  .  

The second model relative to social power: Consider the 
so-called DeGroot-Friedkin model (see Lemma 2.2 of [10]): 
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where ,2p  1 pz  is a state with ,,0 1 pi Ziz  
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                                       ),,,( 121 pdiag                       (6) 

is positive definite. Such a system comes from the study of 
social power [25]. Let  
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System (5) cannot be defined for any Eeu j   and  
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So it is reasonable to define a function :H  as 
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By definition, H is a continuous function on   and the 
system (5) can be extended to the following system: 
                                         ).(zHz                                 (10) 

Moreover, each element in E is an equilibrium point. In the 
later development, we will see that in case of ,2p E is the 
set of all equilibrium points if and only if there is a 10  pZi  
such that 2/1

0
i  [10]. For simplicity, we assume that 

without lose of generality, 10  pi  and show how to convert 
such a system into the form (1). 
   Indeed, let ,,2 1 pii Zic  and 

 .,122 111 ppp

p

i i Zicc                (11) 

Then, for every solution 1: 
  pZz of (10), under the map 
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the composition function XkzZkx   ))((:   is a 

solution of the form (1) where  
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                                                                                          (15) 
Lemma 1 shows this argument with its proof omitted here.  

Lemma 1. Consider the function H defined as in (9) where 

,2p  ,2/11 p 11

1  



p

i i  and pi Zi ,0 . Let 
pXF :  be defined as in (13)-(15). Then,   and F  are 

both continuous, X)(  and  

                        .~))~(())~((  uuHuF                 

The third model: Consider system (10) where H is defined as 
in (9) with 2/1i   .1 pZi Firstly, we assume that there 
exists an extra equilibrium point Ez \*  , which will be 
discussed later.  
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   Let *zzx   be the error state and  
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Then, for any solution z of (10), *zzx   is a solution of (1) 
where for some ,00   

                          *

0 ))1(( zBX                             (17) 

is a closed set and for any ,1 pZi   

,
)ˆ(

ˆ
1

1 




p

l liii

iii
ii zyy

zyy
F


,,

)ˆ( 1

1

ij
zyy

zyy
F

p

l liii

jjii

ij 





 




      (18) 

where for each ,1 pZi )1/()1/( *

iiiiii zxzz    is 

viewed as a function of x.  

Remark 1. When T

pLv ),,,( 121     is the unique left 
positive eigenvector of a Laplace matrix L of a strongly 
connected digraph G with 11

1  



p

i i , it can be shown that 
either there exists 10  pZi such that 2/1

0
i  or 2/1i  for 

all 1 pZi  [10].                                                                     ■ 

B. The boundedness of solutions  

The boundedness of solutions of (1) is guaranteed here. To 
this end, the following assumption is needed: 
(A1) For some 00 r  and any ,pZi  1)(1  

p

j ij uF  for any 
)( 0rBXu   where )(uFij  is the ),( ji  entry of ).(uF  

Proposition 1. Consider system (1) where (A1) holds. Then, 
every solution XZx :  of (1) with 0)0( rx 


 satisfies  

0)()1( rkxkx 


 . Zk             (19) 

Particularly,  

.)0()0()()( 
 Zkxpxpkxpkx  

Proof of Proposition 1: By (A1),  

   uuuFuuF p

j ij

p

j jij 11 )()(             (20) 

for any pZi  and )( 0rBXu  .  So 


 uuuF )(  for 

any )( 0rBXu  . The remainder is trivial.                      ■ 

C. Several useful results 

This section proposes several prepared results. The first 
one is the well-known LaSalle invariance principle [11, 21]. 

Proposition 2. Consider system (1). Let XZx :  be a 
bounded solution and 0  a nonempty closed set of p . 
Suppose there exists a continuous function ),0[: XV  
such that it is nonincrasing along the solution x, i.e., 
                           ,))(())1((  ZkkxVkxV             (21) 

and for any solution )(: xZx   satisfying 
,)),(())1((  ZkkxVkxV  we have .)0( 0x  Then, 

.0)(lim
0


 kxk                                                                ■ 

Next the Brouwer fixed-point theorem is recalled. We refer 
readers to [8] for an elementary proof.   

Proposition 3. Let ppf [0,1][0,1]:   be continuous. Then, 
there exists px [0,1]*   such that .)( ** xxf                          ■ 

Finally, the following simple and useful criterion is 
proposed. The proof is trivial and left for readers.  

Lemma 2. If 1 1

p p

i ii ia b    and ii ba   for any pZi , then 

ii ba   for any pZi .                                                           ■ 

III. MAIN RESULTS 

    This section proposes three main results under some extra 
conditions to guarantee the convergence of solutions.  

A. Exponential convergence under a stronger condition 

    The following stronger condition than (A1) is made. 
(A2) There exists 10 0    such that for any pZi  and 

,Xu 01 )(  

p

j ij uF .  

    With (A2), Theorem 1 shows the exponential convergence 
of any solution XZx :  of (1).  

Theorem 1. Considered system (1). Suppose (A2) holds. 
Then, there exist 0a  and 0b  such that the inequality 
                            

  Zkxaekx bk )0()(               (22) 

holds for every solution XZx :  of (1). 

Proof of Theorem 1: By (A2),  

   uuuFuuF p

j ij

p

j jij 011 )()(              (23) 

for any pZi  and Xu .  So 


 uuuF 0)(   for any 

Xu . Let 02/1  pa  and 0)ln( 0  b . Then,  

.)0()0()()( 0 



 Zkxaexpkxpkx bkk ■ 

B. Asymptotic convergence under a graph condition 

This section proposes a graph-like condition to guarantee 
asymptotic stability.  

   To this end, the following “connectivity” condition is 
assumed: 
(G) For any positive constant c and any solution  XZx :  
of (1) with ,,)( 

 Zkckx  there exist a sufficiently 
large integer 0N  and a non-empty set pZJ 0  such that the 
following conditions hold: 
(G1) For any 0\ JZj p   with ckx jj )(  for some integer 

0Nk j  , there exist 00 , JiNn   and a finite sequence 
 ),(),,(),,( 13221  nn ijiiiiii     

such that 0))1((
)1(




nlkxF jii ll
 for any .nZl   

(G2) For any Xu  with u c

 and ( ) ,F u u c


   

1 ( )p

il ll F u u c   for any 0 .i J  

Remark 2. Condition (G1) means that any node j attaining the 
maximal absolute value of all partial states at a sufficiently 
large time instant must be affected directly or indirectly 
(corresponding to the condition  0))1((

)1(



nlkxF jii ll

) 
within N-steps by a node i in a root-like node set 0J  , while 
condition (G2) requires that with the maximal node set 
defined as ( ) { ( ) }p iM k i Z x k c    for each ,k Z  0J  
cannot be a common (invariant) subset of ( ), ,M k k Z   
i.e., the size (absolute value) of the partial state ix  with 

0i J  must shrink when it attains the maximal absolute value 
of all partial states.                                                                ■ 
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Remark 3. In addition to (A1), it is possible to show that (G2) 
is equivalent to the following conditions: 
(G2’) For any Xu  with ( )F u u c


  and u c


 ,  and 

any 0 ,i J  one of the following conditions must hold:   
a) 1 ( )p

il ll F u u c  .   

b) 1 ( )p

il ll F u u c  .                                

c) 1 ( ) 1.p

ill F u                                                                   ■ 

    Based on (A1) and (G), the following result holds.  

Theorem 2. Considered system (1). Suppose (A1) and (G) 
hold. Then, every solution XZx :  of (1) with 

0)0( rx 


 satisfies .0)(lim  kxk  
Proof of Theorem 2: Let 0


xV be a Lyapunov 

candidate. According to Proposition 1, it is nonincrasing 
along the solution x, i.e., (19) holds. In view of LaSalle 
invariance principle (Proposition 2) with }0{0  , it 
remains to check that for any solution 

 )()(: 0rBXxZx     

satisfying ,,)0()( 
 Zkcxkx  we have .0)0( x  

When ,0c 0)0( x  and the theorem is done. In the 

following, if 0c , a contradiction will be found. 

Let  ckxZiM ipk  )(  for any .Zk  Based on 

(A1), for any 1 kMi , the following inequalities hold: 

1 1 &( 1) ( ( )) ( ) ( ( )) ( )p

i ij j ij jj j p j ic x k F x k x k F x k x k       

   1 & ( ( )) ( ) ( ) .ijj p j i F x k x k x k c    
                          (24) 

All inequalities then become equalities. When 0))(( kxFij , 
it holds that ckxkx j 


)()(  by Lemma 2 and kMj .  

    Let 0N  and 0J  be the integer and the set given in (G) 
(with respect to x ), respectively.  We show that 01 JM k   is 
empty for any .Zk  Indeed, for any 

1ki M  , Xkxu  )(  satisfies ,u c

   

( ) ( 1)F u u x k c
 
   , 1 ( ) ( 1) .p

il l il F u u x k c     

Thus, 0i J  by (G2). So 01 JM k   is empty for any .Zk   
    Employing (G1), for any 10

 NMj , there exists a finite 
sequence ),(),,(),,( 13221  nn ijiiiiii    with 

, , 00 JiNn   and  0))(( 0)1(



nlNxF

ll ii  for any .nZl  
Again by the previous discussion and using induction, 

nlNl Mi 
0

 for any 1.nl Z   Particularly, 

01 1 0N ni i M J    , a contradiction.  
    Therefore 0c  and the result follows Proposition 2.     ■ 

C. Asymptotic convergence when all diagonal entries are  
positive 

    This section assumes the following stronger condition:  
(A3) For some 00 r  and any ,pZi  0)( vFii  for any 

}0{\)( 0rBXv  and 1)(1  

p

j ij uF  for any 
)( 0rBXu  .  

Under the following “observability-like” condition, 
asymptotic stability can then be established:  
(E) For any pZJ  , the set }0{JD  where 

{ ( ) ( ( )) ,  ( ( )) 0,  ,  }.J J J J J iD u x F u u u F u u u i J


       (25) 

   Now the following result can be proposed, which together 
with Proposition 1, shows that the origin is globally 
asymptotically stable w.r.t. X. 

Theorem 3. With a closed set ,pX   consider the system 
(1). Suppose (A3) and (E) hold. Then, every solution 

XZx : of (1) satisfies .0)(lim  kxk  
Proof of Theorem 3: Let .0


xV  It is nonincrasing 

along the solution x. In view of LaSalle invariance principle 
(Proposition 2) with }0{0  , it remains to check that for 
any solution )(: xZx   satisfying 

 ,,)0()( 
 Zkcxkx   

we have .0)0( x  When ,0c 0)0( x  and the theorem is 
done. If 0c , a contradiction will be found. 

Let  ckxZiM ipk  )(  for any .Zk  We first 
claim that for any ,Zk  .1 kk MM   Indeed, if ,1 kMi  

0)( 


ckx  implies 0)))(((,0)(  kxFkx ii  and 

ckxkxkxF

kxkxFkxkxFkxc

j

p

ijj ij

iiij

p

j iji












)()())((

)())(()())(()1(

,1

1
  (26) 

based on (A3). By Lemma 2, we then have 
.)1()(  kxckx ii  Hence kk MM 1  for any Zk  

and the claim is true. 
Since pk ZM   is a finite set, there exists Zk*  such 

that ,
*kk MM  .*kk   Again by (26) and Lemma 2, for 

any ,
*kMi if 0,))(( * kxFij  then ckx j )( *  and so 

.
*kMj  This indicates 

*
*( ( ( ))) 0.

kMF x k    On the other hand, 
when ),()1( ** kxkx ii  )()1( ** kxkx ii   (due to 

** 1 kk MM  ) and 

ckxkxFkxkxkxF iiiij

p

ijj ij   )())(()1()())(( ****,1 *            

violates (26). Therefore  )()1( ** kxkx ii   and 

).())(()1()( ****
****

kxkxFkxkx
kkkk MMMM       (27) 

So }0{)(
*

* 
kMDkx  by (E), a contradiction appears.  

  Consequently, 0)(lim  kxk  according to Proposition 2.■ 

Remark 4. In some important cases, we have 
ˆ( ( )) ( ( ))J J JF u F u  and ˆ( ( )) ( ( ))J J JF u F u   for some 

matrix-valued function F̂  . When this condition holds, under 
(A3), it can be seen that JD  is an invariant set and for 
each Ju D , Ju  is a fixed (equilibrium) point of the 
subsystem  ˆ( ( ) ) ( )J J J J Jx F x x F x x   . Consequently, (E) 
becomes a necessary condition to guarantee the convergence 
of state to zero.                                                                                     ■ 

IV. APPLICATIONS TO THREE IMPORTANT MODELS 

    Convergence analysis of the three models presented in 
Section II is performed in this section.  

A. The linear opinion model with stubborn agents 

  This section studies system (2) under the following 
connectivity condition where }10{0  ipZiJ   
contains all possible stubborn agents i, which have 0i . 
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(C) For any },1{\ 0  ipp ZiJZj   there exists a finite 
sequence ),(),,(),,( 13221  nn ijiiiiii    with 0Ji  and  

0
)1(


 ll iiA  for any .nZl  

    Based on Theorem 2, the following result can be proposed. 
To save space, its proof is omitted here.  

Theorem 4. Consider system (2). Suppose (C) holds. Then, 
A  is Schur stable, )( AI   is nonsingular and every 

solution pZz :  of (2) satisfies  
.(0))-()()(lim 1 zIAIkzk  

               (28) 

Remark 5. In case of 0i , )0()( ii zkz   and the attitude of 
this agent does not change. Such an agent is called a stubborn 
agent. If it doses not send any message to the other agents, 
convergence (agreement) is hard to be guaranteed. Roughly 
speaking, condition (C) requires that the information of 
stubborn agents ( 0i ) or partially stubborn agents ( 1i ) 
must pass their message to non-stubborn agents ( 1i ) 
through networks directly or indirectly (by a directed path) 
such that convergence (agreement) can be guaranteed. It is a 
necessary condition to guarantee that A  is Schur stable, see 
[22] for further discussion.                                                         ■ 

Remark 6. The assumption of A being row-stochastic can be 
relaxed. All we need is the following condition: 

(A0)  For any ,pZi .11  

p

j ijA  

Particularly, the result could be extended to the case of signed 
graphs.                                                                                   ■ 

B. DeGroot-Friedkin model with some gamma coefficient 
not less than 0.5 

    This section studies system (10) where H is defined as in 
(9), 2p  and there is 10  pZi  such that 2/1

0
i .  

To simply the discussion, we assume 10  pi  and 
consider the error system (1) where  zx   with  being 
defined as in (12), X is the closed set defined in (13), and the 
(i, j) entry ijF of F is defined as in (14)-(15).  

The following technique lemma is needed [10].  
Lemma 3. Consider system (10) and a solution Zz : . 
Assume that ,2p 2/11 pr  and 1)0(0  iz  for any 

1 pZi . Then, 1)1()(0 11   kzkz pp  for any Zk , 
and 1)1(1)( 1  pi zkz  for any pZi  and 1k .             ■ 

   Now the following result can be proposed and its proof is 
omitted here due to a limited space.  

Theorem 5. Considered system (10) and a solution 
Zz : . Suppose that },,,,{\)0( 21 peeez   

,2p .2/11 p  Then, .)(lim 1  pk ekz  Particularly, 
},,,{ 121  peeeE   is the set of all equilibrium points.  

Remark 7. Here we only consider the case of .2p  When 
1p  and ,2/121    system (10) becomes zz   and 

every point in   is an equilibrium point. On the other hand, 
if 1p  and ,2/1 21    the proof of Theorem 5 can be 
applied to show that for any },{\)0( 1ez   

.)(lim 2ekzk   Similarly, in case of 1p  and 

,2/1 21   1)(lim ekzk   when }.{\)0( 2ez   So 
},{ 21 eeE   is the set of all equilibrium points.                   ■ 

C. DeGroot-Friedkin model with each gamma coefficient 
less than 0.5 

    In this section, system (10) is studied where H is defined as 
in (9), 2p and 2/1i  for any 1 pZi . 

By definition of the equilibrium point Ez \*  , the 
following equation holds: 

                





  1

1

**1

1

* ).1/()1/( p

i ii

p

i iii zzze                 (29) 

The following property can be derived from (29), see 
Appendix for a proof.  

Lemma 4. For any ,1 pZi  let  

),1/(1 *

ii zy    





 1

,1

1

,1

* )1/(ˆ p

ijj

p

ijj jjjji yzy  .    (30) 

Then, )ˆ/(1 iiii yyy   for any .1 pZi                              ■ 
    To show the convergence, Lemma 5 below is needed. Its 
proof can be found in [Theorem 4.1, 10]. 

Lemma 5. Consider System (10) where 11

1  



p

i i  and 

                               .,2/10 1 pi Zi   

Then, there exists a sufficiently small 00   such that 
  )1())1((  BBH  for any 00   .        ■ 

Notice that for any sufficiently small ,0  
1)1( 

  pB    

is a convex compact set. Thus, it is possible to find a 
homeomorphism (see [8]) 

pB [0,1])1(:    .    

According to Lemma 5 and the Brouwer fixed-point theorem 
(Proposition 3), there exists one element px [0,1]*   such that 

.)))((( **

1 xxH    Let ).( *

1* xz   Then, 
EBzHz \)1()( **      is an equilibrium point. 

    Now the following convergence result can be proposed 
based on Theorem 1 where the proof is omitted. 
Theorem 6. Consider system (10).  Suppose that 2p and 

2/1i  for any 1 pZi . Then, there exists exactly one 
equilibrium point Ez \*  , and every solution Zz :  
with Ez \)0(   satisfies the following inequality: 

     ** )0()0()()( zzaexaekxzkz bkbk       (31) 

for any Zk  and some ,0a  .0b   

D. Possible extensions 

    Other than the considered three models, the proposed 
results could be applied to more systems.  

For example, consider the following continuous-time 
opinion model [3]: 
                         XxLxxAx  )(                           (32) 

where Xx  is the state, ppL    and 
))(,),(),(()( 21 xAxAxAdiagxA p  is a positive 

semi-definite matrix-valued function. For any ,pZi  iA  is 
called the susceptibility function and is continuous. Moreover, 

)( ijlL   is a matrix associated to a proper social network. 
Here we assume that it is a generalized opposing Laplace 
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(diagonally dominated) matrix that by definition, satisfies the 
following inequality [20]:  

(L) For any ,pZi    p

ijj ijii ll ,1 .  

 Using the first order approximation, the following Euler 
model can be obtained:  
            )()))((())1(( kTxLkTxTAITkx                 (33) 

where T>0 is the sampling time. The system (33) is in the 
form of (1) where 

.)()( LxTAIxF                            (34) 

Moreover, the following lemma shows that (A3) holds, see 
Appendix for a proof.  
Lemma 6. Suppose (L) holds. Then, LuTAIXuF )(:    
satisfies (A3) for any 00 r  and any sufficiently small 
sampling time T (depending on 0r ).                                    ■ 
    The proposed result (Theorem 3) can then be applied to 
such systems. Details are omitted here due to a limited space.  

V. CONCLUSIONS 

A unified framework was proposed to analyze a class of 
discrete-time nonlinear system, which contains several 
important models appeared in the recent studies related to 
social networks. Although only a few cases were discussed 
here, it is possible to extend these results to more systems. For 
example, we are working on the nonlinear opinion model (33). 
Based on the same framework, some comprehensive results 
can been achieved and will be studied in our future work.  

APPENDIX A:  PROOF OF LEMMA 4 

Since ),( ** zHz  )ˆ/(*

iiiiii yyyz    implies that for 
any ,1 pZi      

                    ).ˆ/(1)
ˆ

1/(1
1

1
* iii

iii

ii

i

i yy
yy

y

z
y 










  

The proof is then done.                                                         ■ 

APPENDIX B:  PROOF OF LEMMA 6 

Since X is closed and iA  is continuous, )( 0rBX   is 
compact and .)(max )( 0


 uAirBXu  By choosing any 

sufficiently small sampling time T, 0)(1)(  iiiii luTAuF  
for any pZi  and ).( 0rBXu   According to condition 
(L), (A3) holds by the fact that for any pZi ,  

).(1)()(1)( 0,11 rBXulluTAuF p

ijj ijiii

p

j ij       ■ 
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