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An Integer Programming Approach for
Angular Coverage under Uncertainty

Yuntian Zhang', Chen Chen!, Shuxin Ding?, and Fang Deng'-?

Abstract— This paper investigates angular coverage under
uncertainty (ACU). A compact integer programming (IP) for-
mulation is developed to model the angular field-of-view (FoV)
of sensors and probabilistic coverage under uncertainty. The IP
formulation minimizes the weighted non-coverage probability
over the target set as well as considering the practical co-
location and budget constraints. Recognizing the non-linearity,
non-convexity, and non-separability of ACU, we first introduce
the reformulation-linearisation technique (RLT) to obtain a
tractable mixed-integer linear programming model which pro-
vides a tight lower bound for the original problem. Further, we
exploit the structure of the mathematical model and customize a
branch-and-cut (B&C) algorithm to solve the derived problem
exactly. We show that the solution for the derived problem
can also solve the original problem based on the bounding
scheme. Computational experiments on a series of problem
instances ranging from moderate to large size scaling up to
4,000 dimensional decision variables reveal the effectiveness and
efficiency of the proposed exact approach.

I. INTRODUCTION

Location covering problem [1], [2] is a classic and im-
portant combinatorial optimization problem. In general, the
location covering problem can be divided into two cate-
gories, including maximizing coverage with a fixed cost and
minimizing cost to ensure required coverage. The former
leads to mathematical models such as maximal covering
location problem (MCLP) [3] and its variants, while the latter
comprises location set covering model (LSCP) [4] and its
variants.

Among these classical formulations, there still exists some
basic assumptions which should be reconsidered in real
world applications:

e The coverage is radial. That is, a sensor covers a target
if the distance metric between them is less than or equal
to the coverage radius. However, in the camera-based
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surveillance network, the field-of-view (FoV) is angular
rather than circular. This makes angular coverage an
important and challenging issue in the optimization task.

o The coverage is deterministic. It is assumed that a
target can be covered by a sensor within coverage.
On the contrary, due to the uncertainty in the real
world, there exists a non-zero probability that sensor
coverage may not be provided to a target even within
the desired coverage standard [1]. This calls for reliable
probabilistic coverage under uncertainty.

There are works focusing on either angular or reliable
coverage. Reference [5] determines the optimal camera
placement in order to achieve the angular coverage for
a given region continuously. Reference [6] formulates the
angular coverage problem in two dimensions which extends
the MCLP with angular covering characteristic as well as
maximizing the overlapping coverage. Reference [7] designs
a novel reformulation for a probabilistic variant of the
set covering problem as well as derives efficient bounds.
Reference [8] proposes an efficient linearisation technique
to handle the location problem with site-dependent failure
probabilities. Reference [9] studies several omnidirectional
probabilistic coverage models for automated external defib-
rillators (AEDs) in public areas. Reference [10] considers
uncertainty in real world practice and presents an efficient
under-approximation for the two-level cooperative robust set
covering problem. We note that the coverage uncertainty
is considered and approximated in the constraints in [10],
while we regard it as the objective function. Reference [11],
[12] models probabilistic angular coverage and designs meta-
heuristic algorithms for solving it due to its computational
complexity. However, these algorithms provide only empiri-
cally good solutions and are not theoretically exact.

Hence, in this paper, we jointly consider angular coverage
and coverage under uncertainty and propose the angular
coverage under uncertainty (ACU) model. First, a compact
binary integer programming (IP) [13] formulation is de-
signed. The formulation aims to minimize the weighted non-
coverage probability over the target set with practical co-
location and budget constraints. Co-location indicates that
multiple sensors (e.g., surveillance cameras) with various di-
rections can be deployed in the same location. Second, recog-
nizing the non-linearity, non-convexity, and non-separability
of the basic formulation, we introduce the reformulation-
linearisation technique (RLT) to reformulate a tractable linear
model. Third, the obtained linear model is solved via a
customized branch-and-cut (B&C) algorithm. It provides a
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tight lower bound for the reformulated problem, which is
also proven to be the optimal value for the original problem.
The proposed ACU is analysed over instances ranging from
moderate to large size scaling up to 4,000 dimensional
decision variables.

The rest of the paper is organized as follows. Section II
formulates the proposed ACU. Section III introduces the RLT
and illustrates the exact algorithm procedure. Computational
experiments and analysis are presented in section IV. Section
V concludes this paper and discusses some open issues.

II. FORMULATING THE ACU

In ACU, sensors j € N = {1,...,n} are deployed to
provide coverage for the targets i € M = {1,...,m}, where
n denotes the number of candidate positions for sensors and
m denotes the number of targets. Each target is associated
with a weight w;. Considering the direction of the angular
sensor, we divide the circular FoV equally according to
the parameter kK € P = {1,...,p} as shown in Fig. I.
Accordingly, let p;;;. denote the target ¢ is covered by j-th
sensor with k-th sector of FoV. To make the mathematical
model compact, we define 5,k € 7 = N x P where x
denotes the Cartesian product. For each target, the coverage
by various sensors is independent under the assumption.
Thus, the non-coverage probability of target i € M by the
coverage set is [[;c s rep (1 — piji). Define for all i € M,
T = {jk € T :0<pijx <1}, T.m = {j,k € T :
0<p,-jk<1}, and 7;1 =7, — 77_ = {j, keT: Pijk = 1}.

The sensing model is modified from that in reference [9]
and depicted for all i € M,j € N,k € P as follows

1 -I(aij,k), if d” S dl,
pijk = e~ M=) (ay;. k), if dy<di; <dz, (1)
0, otherwise,

where d;; denotes the Euclidean distance metric between
sensor j and target ¢. I(-) is the indicator function. If the
angle a;; between sensor j and target ¢ falls within the k-th
sector of FoV, the indicator function value is 1. Otherwise,
the indicator function value is 0. o denotes the decay factor.
d; and dy can be determined by the performance parameter
of specified sensors.
The basic formulation of ACU is presented as

min - w; [T (1 =piu)™r, 2

ieM  GkET;
s.t. Z zjr <C, VjeN, (2a)
keP
> oz =P (2b)
5,keT
zj, € {0,1}, Vj e N,k e P. (2c)

where the objective function seeks to minimize the weighted
non-coverage probability over the target set. Eq. (2a) depicts
the co-location. Co-location is not allowed if C' = 1.
Otherwise, C sensors with various directions can be deployed
in the same candidate position. Eq. (2b) is a budget constraint

that denotes that the number of the deployed sensors is re-
stricted to P. Eq. (2¢) indicates the binary decision variables.
21, equals to 1 if the sensor is deployed in the j-th candidate
position with k-th sector of FoV, and 0 otherwise.

Fig. 1. Divisions of the circular FoV for 90° (p = 4), 60° (p = 6), and
45° (p = 8), respectively. Note that under the circumstances of p = 8, two
sensors are co-located in the 3-rd and 8-th sector of the same position.

Moreover, with the pre-defined 7, 7;+ and 7}, we can
rewrite ACU in the form as follows

mnzn Zwi H (1 —z1) H (I—pij)* |, 3

ieEM J.keT} ]3;667-7,%
s.t. Z zj, <C, VjeN, (3a)
keP
> ap =P (3b)
J,keT
zjr € {0,1}, Vj e N,k € P. (o)

We can make a preliminary analysis of the above math-
ematical model. The formulation of ACU is a binary IP
problem with linear constraints. However, the objective func-
tion is non-linear, non-convex, and non-separable, making it
computationally intractable for traditional exact algorithms.
We exploit the mathematical structure of the problem and
apply RLT to derive a tractable model in the following
section. We also customize a B&C algorithm for solving
the derived problem in an exact manner.

III. RLT AND EXACT ALGORITHM
We overview the solution methods for ACU in Fig. 2.

/ RLT \
Reformulation Linearisation

l Equivalent l Approximation

ACU <«—> RACU " RLIACU

> Cutting Planes

Branch-and-Cut

Lower Bound

Solutions

Upper Bound I

Fig. 2. Overview of the solution methods for ACU. Note that the blue part
corresponds to the mathematical model, while the red part corresponds to
the solution approaches.

Recap that the non-linearity, non-convexity, and non-
separability make ACU computationally intractable. Thus,
we focus on applying modelling techniques along with
efficient algorithms to solve it. First, we reformulate ACU
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and acquire an equivalent model RACU which is proved in
the following subsection. Considering the non-linearity of
RACU, we further linearise it to obtain a mixed-integer linear
programming model RLACU. It is interesting that RLACU
is a relaxation of RACU and provides a lower bound for
RACU (i.e., also for its equivalent model ACU). Moreover,
RACU itself can recover the upper bound for ACU. If we
approximate RACU tightly with RLACU, we can let the gap
between the upper bound and lower bound be zero, thus
obtaining the optimal solution for ACU. Subsequently, a
B&C algorithm is customized to solve RLACU exactly. The
B&C algorithm detects the current solution along with the
mathematical structure, and generate a set of cutting planes
to enforce a tighter approximation of RACU.

We illustrate the RLT, bounding scheme, and B&C algo-
rithm sequentially in the following subsection.

A. RLT

RLT is a useful technique helping solve a wide variety of
computationally hard IP formulations that arise in real world
practice [14], [15]. In this paper, we introduce the RLT to
yield a linear model. The optimal value of the linear model
provides a tight lower bound for the optimal value to the
original binary IP problem [7], [16]. We also observe that
the linear model itself solves the underlying IP problem.

In addition, for each i € M, we define two auxiliary
continuous variables &; and 7;, and ;= —In(l — pix)
for Vj,k € T,7,i € M. We present the RACU, the
reformulation of the original ACU as follows

mmin Z wids, )
s.t. gi g L— i, Vi k€T ieM, (4a)
G=ni— Y, w YieM, (4b)
G keTH
= > ket HiikTik .
n =e ’ i ) VZ € Ma (4C)
> ap <C,VjEN, (4d)
keP
Z zji, = P, (4e)
J,keT
giani Z Oa Vi € Ma (4f)
zjr € {0,1}, Vj e N,k e P. (4g)

Theorem 1: Model RACU is equivalent to model ACU if
(€,7,Z) solves RACU, then Z solves ACU and obtains the
identical objective value. What is more, if there is an optimal
solution for ACU, then RACU also has its optimum, with the
identical objective value.

Proof: (i) We prove that if (£,7,Z) solves RACU, Z can
solve ACU. Let (&,7, ) solves RACU, we can derive that
z is feasible to ACU for x satisfies Eq. (4d), (4e), and (4g).

(ii) We prove that the solution (&,7, %) of RACU and the
solution ¥ of ACU has the identical objective value. Define
Q = [ljrerr (U= 2j0) [T per+ (1 = pige) ™ for all i €
M. We utilize the structure of 7' to complete this proof.

Consider any i € M. If Z;, = 1 for any j, k € T;', then
), = 0. Moreover, Eq. (4a) and (4f) derives fl = 0. Note
that 7; < 1 from Eq. (4c) since pijx = —In(1 — pijx)>0
for Vj, k € ’T+ Also, Eq. (4b) is satisfied under &; and 7;.
Otherwise, if Z;;, = 0 for all j,k € T;*, then 7, < & < 1
according to Eq. (4a) and (4b). Since the objective function
minimizes &;, 7; = & = e~ 2 keT+ HianTir — =11
pijk)fﬂ’“ = Q,. Overall, we complete this part.

(iii) We prove that if any z* is feasible for ACU,
(&*,n*,x*) exists and is feasible to RACU. They have
identical objective value. The proposed problem can be
solved optimally if and only if it is feasible. Consider setting
n* given x = z* using Eq. (4¢). For each i € M, if Thy =
for all j, k € T, set & =} if xj, =1 forany j, k € 71,
set & = 0. Based on the proof in (ii), we can conclude that
the feasibility of (£*,n*,2*) to RACU. Also, the identical
objective value is achieved. This completes our proof. [ ]

We have reformulated the problem RACU. However, Eq.
(4¢) introduces the non-linear constraints which are un-
friendly to mixed-integer programming. We linearise Eq. (4c)
using a set of tangency functions

et (1=

1 — e Hi
nigl_(ue)ﬂuVZEM &)
ni > e P — (B = Bi)e ™,
_ 1 t—1 (6)
vﬂl S {05 ;,U/Za T 7t/’6i7/j/i} 7VZ € M7

where for all i € M, 5; = Zj ket t HighTin < i
and p; = . kT High- t is an pre- defined integer and
t > 2. We can observe from Fig. 3 that Eq. (5) and (6)
construct a convex polyhedral envelope which approximates
Eq. (4c). The convex polyhedral envelope provides a tighter
approximation as ¢ increases. By substituting Eq. (5) and (6)
into RACU, we derive a linear formulation RLACU

mln Z wi, (7

77]7
s.t. fzgl—x]k, Vi ke Tt ieM, (7a)
G>mi— Y, wm Yie M, (7b)
J.kET!
1 — e ki)
S Ll ) > migrtie, Vi€ M, (Tc)
Hi ],.7667;Jr
i >e M- Z pinrie — Bi | e,
GkeTH (7d)
- 1 t—1
v/BZ S {07 gui? Tty t.u“zvﬂz} ,Vz € M7
Y 2p<C ViEN, (Te)
keP
Z zj =P (7)
J.keT
&,mi >0, Vie M, (72)
zjr €{0,1}, Vj e N,k € P. (7h)
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Fig. 3. The blue curve depicts the compact form of Eq. (4c) which is
n; = e~ Pi. The red curves representing Eq. (5) and (6) which construct a
convex polyhedral envelope that approximates the blue curve. As the value
of the integer ¢ increases, the convex polyhedral envelope provides a tighter
approximation.

We briefly summarize that there mathematical models
are presented, including basic ACU and the derived RACU
and RLACU. We have proved that RACU is equivalent to
ACU. The linear RLACU is an approximation and also a
relaxation of RACU. We tend to approximate RACU tightly
with RLACU so that we can let the gap between the upper
bound and lower bound of ACU be zero. Thus, the optimality
is obtained. In the following subsection, we present the
bounding scheme and exact algorithm for solving RLACU.

B. Bounding Scheme

Recap that ACU is equivalent to RACU. On the one
hand, if z* can solve RLACU optimally, then it is also
feasible to ACU. We recover the upper bound of ACU
via its objective value ;. w;[[; per (1 — Pijr)%iF =
> iem Wi Il ket (1 — pijiay). This upper bound is avail-
able for RACU. On the other hand, RLACU provides a lower
bound for RACU (i.e., also for ACU). If we approximate
RACU tightly with RLACU, we can let the gap between the
upper bound and lower bound be zero for optimality proof.

C. B&C Algorithm

B&C [17] is the mainstream framework for solving IP
problems. B&C is the intensification of the branch-and-
bound algorithm. That is, B&C involves applying branch-
and-bound algorithm [18] and using cutting planes [19], [20],
[21] to tighten the linear programming relaxation. B&C is the
cornerstone of the IP solution approach embedded in modern
commercial solvers [22].

RLACU is a linear binary mixed-integer programming
problem and itself is solved via B&C first. Note that RLACU
is obtained using RLT which provides a tight lower bound
for the optimal value to the binary IP problem. To enforce the
lower bound tighter, we sequentially detect the current so-
lution along with the mathematical structure, and generate a
set of customized cutting planes (i.e., constraints) efficiently.

nize = | > pigkwie — B | e ()
g keTH
Algorithm 1 shows the pseudo-code of the B&C algorithm

procedure. RLACU is first solved optimally with loaded
parameters. Then, the constraints violation is detected, and

Algorithm 1: B&C Algorithm

Input: Hyper-parameters {¢, e} where e denotes the
lower bound improvement tolerance, RLACU;
Output: Solution to RLACU.
// Load Parameters and Solve RLACU
1 Solve RLACU and denote the obtained optimal
solution as (£*,n*, x*);
2 Initialize p; with a negative value (e.g., -1);
3 if p;<0 for any i € M, or the lower bound is more
than e better than that in the previous loop then
// Identify the Cutting Planes
4 | Compute 5 =3, o+ pijrey, for each i € M
and p; = 0 — e~Pi. We customize the cut of
form Eq. (8) with 5}
// Add the Cutting Planes
5 Add the identified cut sequentially Vi € M for
the current RLACU model;
6 Solve RLACU for the new optimal solution;
7 end
8 Return the solution to RLACU;

the cutting planes are generated using Eq. (8) with the current
solution. RLACU is solved again after adding the above
cutting planes sequentially. Repeat these procedures until the
stopping criterion is met. That is, all the violated cuts are
identified and the iterated lower bound is not more than e
better than the bound in the previous loop.

IV. COMPUTATIONAL EXPERIMENTS AND ANALYSIS

In this section, we present the design of experiment and
the main results of the proposed approach as well as conduct
empirical analysis on the hyper-parameters to provide some
operational insights for practitioners.

A. Experiment Settings

We generate a set of problem instances ranging from
moderate to large scale as follows. The spatial coordinates
of both sensors and targets are generated randomly within
the 1 x 1 grid. The weight of each target is computed by
sampling from the uniform distribution in [0,1]. We test
parameter P as [0.1 xn], [0.2xn], [0.5xn] and C as 1,3
in the ACU model. Recap that C' depicts the co-location. P
is the restriction of the number of the deployed sensors and
n denotes the number of the candidate positions for sensors.
The setting of P indicates the relatively low, median, and
high resource availability. The decay factor is o« = 0.05 as
that in [9]. The performance parameters of sensors d; and
ds corresponding to each P parameter are 0.2 and 0.4, 0.1
and 0.2, 0.04 and 0.08 if n < 50, respectively. If n>50, each
performance parameter is multipled by %. Each instance in
each case is evaluated five times randomly. ¢ and € are set
as 10 and 0, respectively, while we conduct some analysis
on these hyper-parameters in the following subsection.

All experiments are done on a computer with an Intel(R)
Core(TM) i9-9900 CPU @ 3.10GHz with 64GB of RAM.
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TABLE I
COMPUTATIONAL RESULTS FOR ACU

P =10.1xn] P =10.2xn] P =10.5xn]
Case n m p c=1 Cc=3 c=1 C=3 c=1 C=3

Time % Opt Time % Opt Time % Opt Time % Opt Time % Opt Time % Opt
1 15 15 6 0.67 100.00 0.68 100.00 0.76 100.00 0.73 100.00 0.94 100.00 0.66 100.00
2 15 15 8 0.93 100.00 0.88 100.00 0.99 100.00 1.03 100.00 0.86 100.00 0.84 100.00
3 20 20 6 1.15 100.00 1.26 100.00 1.31 100.00 1.26 100.00 1.14 100.00 1.15 100.00
4 20 20 8 1.59 100.00 1.59 100.00 1.61 100.00 1.80 100.00 1.62 100.00 1.52 100.00
5 30 30 6 2.74 100.00 2.83 100.00 2.57 100.00 2.78 100.00 2.63 100.00 2.35 100.00
6 30 30 8 3.76 100.00 3.39 100.00 3.86 100.00 3.57 100.00 3.44 100.00 343 100.00
7 50 50 6 7.66 100.00 7.71 100.00 7.33 100.00 8.17 100.00 8.43 100.00 7.84 100.00
8 50 50 8 9.24 100.00 8.71 100.00 9.50 100.00 9.37 100.00 9.81 100.00 11.47 100.00
9 50 100 6 14.94 100.00 14.44 100.00 15.67 100.00 15.44 100.00 15.36 100.00 13.97 100.00
10 50 100 8 18.81 100.00  20.35 100.00 19.47 100.00 19.56 100.00  20.23 100.00  20.17 100.00
11 100 100 6  38.76 100.00  34.62 100.00  30.37 100.00  30.04 100.00  30.63 100.00  29.05 100.00
12 100 100 8 3896 100.00  39.27 100.00  36.07 100.00  38.46 100.00  38.23 100.00  37.62 100.00
13 200 200 6 13525 100.00 121.68 100.00 114.88 100.00 113.75 100.00 116.57 100.00 155.76  100.00
14 200 200 8 15456 100.00 14590 100.00 155.70 100.00  149.52  100.00  143.84 100.00 199.39  100.00
15 200 500 6 281.78 100.00 291.81 100.00 269.64 100.00 297.63 100.00 28248 100.00 289.37  100.00
16 200 500 8 358.61 100.00 34338 100.00 343.97 100.00 352.53 100.00 381.89 100.00 376.48  100.00
17 500 500 6 666.87 100.00 756.40 100.00 716.87 100.00 785.84 100.00  744.14 100.00 650.73  100.00
18 500 500 8 887.78 100.00 934.12 100.00 93590 100.00 1079.55 100.00 877.21 100.00 794.43  100.00
19 500 1000 6 1553.81 100.00 1779.28 100.00 1388.49 100.00 1404.63 100.00 174527 100.00 1651.59 100.00
20 500 1000 8 1782.49 100.00 1797.68 100.00 1771.82 100.00 1778.03 100.00 1771.75 100.00 1816.93 100.00

Remark: Each instance in each case is evaluated five times randomly, and the statistical results are collected and presented.

The B&C algorithm is implemented using Gurobi Optimizer
[22] with default parameter settings in Python 3.7 environ-
ment.

B. Result, Analysis, and Operational Insights

The main results are shown in Table I with the following
statistical metrics
o Time: The arithmetic mean CPU run time in seconds.
e % Opt: Defined as (lower bound value)/(upper bound
value) x 100, where the lower bound is the objective
value of the solution obtained by RLACU. The upper
bound value is the objective value of the solution for the
original ACU. Note that % Opt is also the arithmetic
mean value for the repeated five times experiments. If
% Opt equals 100, the optimality of ACU is achieved.
We can conclude from Table I that ACU can be solved
optimally at scale using the proposed approach. We observe
that the optimal results are not sensitive to parameters P
and C. That is, ACU can be utilized to handle various

co-location requirements and different resource availability.
n X p presents the dimension of decision variables. As the
dimension increases, we witness the growing computational
time. We report the % Opt in Table I and discuss additional
issues on the larger-scale instances. We notice that most of
the optimization time is occupied during the first step and
the number of cuts introduced is relatively stable verified in
Table II. To solve larger-scale optimization problems over
thousands of dimensions, on the one hand, we can allow
more CPU time (i.e., over 1800.00 CPU time in seconds)
on parallel multi-core machines. On the other hand, the
problem in the first step can be accelerated by heuristic
initialization with high-quality feasible solutions for the
commercial solver.

We also conduct empirical analysis on the hyper-
parameters of the algorithm including ¢ and e. For ¢, we select
moderate-sized case 11 to conduct an experiment with P =
[0.1 x n] and C' = 1. Recap that ¢ is an pre-defined integer
and ¢ > 2, we let ¢ range in [2,5, 10, 50, 100, 200, 500]. It
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is shown from Table II that as ¢ increases, the CPU time
rises due to the complexity of the model solved in the first
step. However, for the moderate-sized case 11, these ¢ always
solve the instances optimally. What is more, the change in
the number of customized cuts is not significant. Thus, a
relatively small ¢ such as 10 is enough to produce tight bound
effectively as well as balance the computational complexity
of the mathematical model.

TABLE 11
PARAMETER ANALYSIS ON ¢ FOR ACU. MODERATE-SIZED CASE 11 1S
SELECTED WITH P = [0.1 X n] AND C' = 1.

Metric t=2 t=5 t=10 t=50 t=100 t=200 t =500

Time 2046 2271 31.60 10147 183.67 35593 863.54
% Opt 100.0 100.00 100.00 100.00 100.00 100.00  100.00
Cuts 700 600 600 700 600 600 600

For €, in real world applications for coverage under
uncertainty, a considerable portion of instances are budget
limited. We note for practitioners that under the above
circumstance, a relatively large € (e.g., 0.001) may result in
faster convergence. However, sometimes complete coverage
can be achieved (i.e., the objective value of ACU is zero) and
the values of the bounds are tiny. We suggest that the value
€ is set as O to solve these instances optimally and stably.

V. CONCLUSION AND DISCUSSION

In this paper, we have presented an IP approach for ACU
problem. ACU jointly models angular coverage and coverage
under uncertainty, as well as takes practical constraints such
as co-location and limited budget into consideration. An
exact B&C algorithm coupled with RLT is designed to
solve this problem at scale. The mathematical structure is
detected and problem-specific cutting planes are customized.
With efficient parallel multi-core machines and acceleration
techniques for solvers, our proposed approach may solve
more than thousands of dimensional decision variables. We
also make some analyses on the parameter settings to provide
operational insights for practitioners.

In the future, we propose to integrate more practical
issues in the ACU, including heterogeneous sensors and 3-D
environment. Take an example, in a 3-D environment, both
the pan angle and tilt angle of sensors should be considered.
Our proposed ACU is compact enough for these practical
issues since the discretized tilt angles or heterogeneous set
can be wrapped in the set 7. Also, we suggest the design of
suitable heuristic algorithms [23] to near-optimally solve the
larger-scale ACU problem. Meanwhile, the proposed model
and approach is useful for tackling a series of real world
tasks [24], [25] in the field of location analysis, spatial
optimization, urban operations, wireless communications,
healthcare, etc.
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