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Abstract— We consider a linear impulsive system in an
infinite-dimensional Banach space. It is assumed that the
moments of impulsive action satisfy the averaged dwell-time
condition and the linear operator on the right side of the dif-
ferential equation generates an analytic semigroup in the state
space. Using commutator identities, we prove a comparison
theorem that reduces the problem of asymptotic stability of the
original system to the study of a simpler system with constant
dwell-times. An illustrative example of a linear impulsive system
of parabolic type in which the continuous and discrete dynamics
are both unstable is given.

I. INTRODUCTION

The study of the stability of hybrid systems [1] plays
an important role in control theory. The class of hybrid
systems usually includes impulsive systems [2], [3] and sys-
tems with switching [4]. Lie algebraic methods for stability
investigations of finite-dimensional switching systems were
previously used in [4]–[8]. For linear impulsive systems with
bounded operators on the right side, the commutator calcu-
lus methods were used in [9]–[11]. The ISS property and
stability of coupled nonlinear impulsive infinite-dimensional
input systems were also studied in [12]–[15].

The aim of this paper is to extend the results of [9] to
a wider class of linear impulsive systems which includes
partial differential equations for which the influence of
impulsive disturbances is not well understood. The main
contribution of this article is the substantiation of the com-
parison principle which reduces the problem of the stability
of a linear impulsive system for which the sequence of
moments of impulsive action satisfies the averaged dwell-
time (ADT) condition to the study of the stability of a linear
impulsive system with constant dwell-time. This problem
is much simpler and can be solved on the basis of the
Lyapunov function method from the class of piecewise time-
differentiable functions.

In order to derive the main result we apply the Hadamard’s
commutator formula from [16], which is extended here to the
case of analytic semi-groups.

The work consists of six sections. In the second section,
we state the problem; in the third section, we prove an
auxiliary result which extends the Hadamar’s formula for
some classes of unbounded operators. In the fourth section,
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the main result is proved, and in the fifth section, some
examples are given. The sixth section contains conclusions.

II. PROBLEM STATEMENT

To state the problem we use the following notation. Z+

denotes non-negative integers. Let X be a Banach space, by
L(X) we denote the set of linear bonded operators from X
to X . By Br(0) we denote the ball of radius r ≥ 0 around
the origin. The commutator of D,C ∈ L(X) is defined by
[D,C] := DC − CD. For symmetric square matrices P,Q
we write P ≺ Q if and only if the matrix Q−P is positive
definite.

We consider the linear impulsive system

ẋ(t) = Ax(t), t ̸= τk, x(τ+0 ) = x0 ∈ D(A),

x(t+) = Bx(t), t = τk,
(1)

where x ∈ X is a state vector, A is a closed densely
defined linear operator with domain D(A) that generates
an analytic semigroup (Tt)t∈R+

⊂ L(X) in the space X .
Assume that B is a closed linear operator from D(B) to
X . Since we are considering classical solutions of (1), we
assume that BD(A) ⊆ D(A). Here, {τk}∞k=0 is a sequence
of moments of impulsive action which is assumed to be
increasing and having a single accumulation point at infinity.
For this sequence, we assume that the ADT condition is
satisfied in the following form: there are constants θ > 0
and χmax ∈ [0, θ) such that for all k ∈ Z+, the following
inequality holds

|τk − τ0 − kθ| ≤ χmax. (2)

We recall the well-known fact that a closed densely defined
linear operator A is a generator of an analytic semigroup
if and only if it is sectorial in the sense of the following
definition. Let RA(λ) be the resolvent of the operator A and
ρ(A) be the resolvent set of the operator A.

Definition 1 ( [17]). A closed linear operator A with D(A) =
X is called sectorial if for some a ∈ R and ϕ ∈ (π2 , π) it
holds that

Σa,ϕ := {λ ∈ C \ {a} | | arg(λ− a)| < ϕ} ⊂ ρ(A),

and there is a positive constant K such that for all λ ∈ Σa,ϕ,
the following inequality holds

∥RA(λ)∥L(X) ≤
K

|λ− a|
. (3)
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III. COMMUTATORS

It is known that linear bounded operators D,C ∈ L(X)
satisfy the identity (Hadamard’s formula from [16])

DetC = etC
∞∑
m=0

tm

m!
{D,Cm}. (4)

Here, {D,Cm}, m ∈ Z+ is a sequence of nested commuta-
tors defined recurrently

{D,C0} := D, {D,Cm+1} := [{D,Cm}, C], m ∈ Z+.

We define an extension of the operator {B,Am}, m ∈ Z+

for the case of unbounded operators A and B inductively. Let
{B,A0} := A. Let a linear operator {B,Am} with domain
D({B,Am}) be already defined for some m ∈ Z+. We
denote

D̂ := {x ∈ X |Ax ∈ D({B,Am}), {B,Am}x ∈ D(A) }.

Let D̂ ⊇ D(A) and a linear operator with domain D̂ acting
by the rule

D̂ ∋ x 7→ {B,Am}Ax−A{B,Am}x.

be closable and its closure is denoted by {B,Am+1}.
We note that by definition D({B,Am}) ⊇ D(A).

Lemma 1. Assume that , the operators {B,Am} are defined
for all m ∈ Z+, satify the condition {B,Am}D(A) ⊆ D(A)
and

∥{B,Am}RA(λ)∥L(X) ≤
K1η

m

|λ− a|
(5)

for some constants η > 0, K1 > 0 and all λ ∈ Σa,ϕ.
Then for all x ∈ D(A), the following equality holds

BTtx = Tt

∞∑
m=0

tm

m!
{B,Am}x. (6)

Proof: Without loss of generality, we can assume that
a = 0. First of all, using the method of mathematical
induction, we show that for any N ∈ Z+ the identity

BTtx = Tt

N∑
m=0

tm

m!
{B,Am}x

+
1

2πi

∫
Γ

eλtRN+1
A (λ){B,AN+1}RA(λ)x dλ.

(7)

holds for all x ∈ D(A). Here and further we denote,∫
Γ

F (λ)x dλ := lim
R→+∞

∫
ΓR

F (λ)x dλ,

where F : ρ(A) → L(X), Γ = Γ(r, ψ) = Γ1 ∪ Γ2 ∪ Γ3,
ΓR = Γ ∩BR(0), ψ ∈ (π2 , ϕ), r > 0, R > 0,

Γ1 = Γ1(r, ψ) = {λ = −seiψ | s ∈ (−∞,−r]},
Γ2 = Γ2(r, ψ) = {λ = reiα |α ∈ [−ψ,ψ]},
Γ3 = Γ3(r, ψ) = {λ = seiψ | s ∈ (r,∞)},

Indeed, using the Dunford–Taylor formula [17], we obtain

Ttx =
1

2πi

∫
Γ

eλtRA(λ)x dλ. (8)

Since Ttx ∈ D(A) ⊂ D(B) and the operator B is closed,
we have

BTtx =
1

2πi

∫
Γ

eλtBRA(λ)x dλ.

Taking into account the assumption BD(A) ⊆ D(A), we get
for all x ∈ D(A) that

BRA(λ)x−RA(λ)Bx = RA(λ)(λ id −A)BRA(λ)x
−RA(λ)B(λ id −A)RA(λ)x = RA(λ)((λ id −A)B
−B(λ id −A))RA(λ)x = RA(λ)[B,A]RA(λ)x.

Substituting the expression for BRA(λ)x into (8), we get

BTtx =
1

2πi

∫
Γ

eλtRA(λ)Bxdλ

+
1

2πi

∫
Γ

eλtRA(λ)[B,A]RA(λ)x dλ

=
1

2πi

∫
Γ

eλtRA(λ) dλBx

+
1

2πi

∫
Γ

eλtRA(λ)[B,A]RA(λ)x dλ

= TtBx+
1

2πi

∫
Γ

eλtRA(λ)[B,A]RA(λ)x dλ.

Therefore, the formula (7) is proven for N = 0.

Assume that the formula (7) is valid for N = p. Then,
given that D({B,Ap+1}) ⊇ D(A) and {B,Ap+1}D(A) ⊆
D(A) for x ∈ D(A), we get that

{B,Ap+1}RA(λ)x−RA(λ){B,Ap+1}x
= RA(λ)(λ id −A){B,Ap+1}RA(λ)x
−RA(λ){B,Ap+1}(λ id −A)RA(λ)x

= RA(λ){B,Ap+2}RA(λ)x.

Expressing {B,Ap+1}RA(λ)x from here and substituting
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into the formula (7) for N = p, we get

BTtx = Tt

p∑
m=0

tm

m!
{B,Am}x

+
1

2πi

∫
Γ

eλtRp+1
A (λ){B,Ap+1}RA(λ)x dλ

= Tt

p∑
m=0

tm

m!
{B,Am}x+

1

2πi

∫
Γ

eλtRp+2
A (λ){B,Ap+1}x dλ

+
1

2πi

∫
Γ

eλtRp+2
A (λ){B,Ap+2}RA(λ)x dλ

= Tt

p∑
m=0

tm

m!
{B,Am}x+

1

2πi

∫
Γ

eλtRp+2
A (λ) dλ{B,Ap+1}x

+
1

2πi

∫
Γ

eλtRp+2
A (λ){B,Ap+2}RA(λ)x dλ.

(9)
Using the identity (5.22) from [17]:

Rp+2
A (λ) =

(−1)p+1

(p+ 1)!

dp+1

dλp+1
RA(λ)

and applying integration by parts p + 1 times (taking into
account that |eλt| → 0 as Reλ→ −∞ and (3)), we obtain

1

2πi

∫
Γ

eλtRp+2
A (λ) dλ

=
1

2πi

(−1)p+1

(p+ 1)!

∫
Γ

eλt
dp+1

dλp+1
RA(λ) dλ

=
1

2πi

(−1)p+1

(p+ 1)!
(−1)p+1

∫
Γ

dp+1

dλp+1
(eλt)RA(λ) dλ

=
1

2πi

tp+1

(p+ 1)!

∫
Γ

eλtRA(λ) dλ =
tp+1

(p+ 1)!
Tt.

which completes the proof of (7).

We now show that (7) implies (6). To do this, we estimate

the integral in (7) taking (3) and (5) into account:∥∥∥ ∫
ΓR

eλtRN+1
A (λ){B,AN+1}RA(λ) dλ

∥∥∥
≤

R∫
r

K1K
N+1ηN+1 exp(tsRe e−iψ)

|se−iψ|N+2
|d(se−iψ)|

+

ψ∫
−ψ

K1K
N+1ηN+1 exp(trRe eiα)

|reiα|N+2
|d(reiα)|

+

R∫
r

K1K
N+1ηN+1 exp(tsRe eiψ)

|seiψ|N+2
|d(seiψ)|

≤ 2

∞∫
r

K1K
N+1ηN+1 exp(ts cos(ψ))

sN+1
ds

+

ψ∫
−ψ

K1K
N+1ηN+1 exp(tr cosα)

rN+1
dα

= K1K
N+1ηN+1

(
2

∞∫
r

exp(ts cos(ψ))

sN+1
ds

+

ψ∫
−ψ

exp(tr cosα)

rN+1
dα

)
Applying the change of variables y = −st cos(ψ), we find

∞∫
r

exp(ts cos(ψ))

sN+1
ds

= (t| cos(ψ)|)N
∞∫

rt| cos(ψ)|

exp(−y)
yN+1

dy

≤ (t| cos(ψ)|)N e
−rt| cos(ψ)|

N
(rt| cos(ψ)|)−N

=
r−Ne−rt| cos(ψ)|

N
.

Using also the estimate

ψ∫
−ψ

exp(tr cosα)

rN+1
dα ≤ 2ψert

rN+1
,

we get ∥∥∥ ∫
ΓR

eλtRN+1
A (λ){B,AN+1}RA(λ) dλ

∥∥∥
≤ K1Kη(Kηr

−1)N
(
2
e−rt| cos(ψ)|

N
+

2ψert

r

)
Let r > Kη. Then,∥∥∥ ∫

ΓR

eλtRN+1
A (λ){B,AN+1}RA(λ) dλ

∥∥∥ → 0
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as N → ∞ uniformly in R ≥ R0, where R0 is a sufficiently
large positive number. Therefore, in the formula (7), one can
pass to the limit N → ∞ and obtain the formula (6). The
lemma is proven.

IV. MAIN RESULT

Along with the original impulsive system (1), consider
the following impulsive system with constant dwell-time
(comparison system)

ż(t) = Az(t), t ̸= kθ, z(0+) = z0 ∈ D(A),

z(t+) = Bz(t) +

∞∑
m=1

(χmax + χk+1)
m

m!
{B,Am}z(t), t = kθ,

(10)
where z ∈ D(A) and χk := τk − τ0 − kθ ≤ χmax, see (2).

The main theorem reduces the problem of stability of the
initial impulsive system (1) to the study of the comparison
system (10).

Theorem 1. Let the linear operator A be sectorial, the
linear operator B be closed, and for all m ∈ Z+ the
linear operators {B,Am} be defined as above and such that
{B,Am}D(A) ⊆ D(A). Assume that inequality (5) holds
and {B,Am}Tθ−χmax ∈ L(X) for all m ∈ Z+ as well as

2e · χmax lim sup
m→∞

∥{B,Am}Tθ−χmax
∥1/m

m
< 1. (11)

Then, the asymptotic stability of the linear impulsive
system (10) implies the asymptotic stability of the linear
impulsive system (1).

Proof: Let x0 ∈ D(A). Then, x(τ1) = Tτ1−τ0x0.
Therefore, applying the Lemma 1 and the semigroup prop-
erty, we obtain

x(τ+1 ) = BTτ1−τ0x0 = BTτ1−τ0−θ+χmaxTθ−χmaxx0

= Tτ1−τ0−θ+χmax

∞∑
m=0

(χ1 + χmax)
m

m!
{B,Am}Tθ−χmax

x0.

Let

z0 :=

∞∑
m=0

(χ1 + χmax)
m

m!
{B,Am}Tθ−χmaxx0.

Then, using the semigroup property, we have

x(τ2) = Tτ2−τ1x(τ
+
1 ) = Tτ2−τ1Tτ1−τ0−θ+χmaxz0

= Tχ2+χmaxTθz0.

Applying the Lemma 1 again, we get

x(τ+2 ) = BTχ2+χmaxTθz0

= Tχ2+χmax

∞∑
m=0

(χ2 + χmax)
m

m!
{B,Am}Tθz0.

We denote by ẑ(t) the solution to the Cauchy problem for the
linear impulsive system (10) with the initial condition ẑ(0) =
z0. Then, x(τ+2 ) = Tχ2+χmax ẑ(θ

+). Using the method of
mathematical induction, we prove that

x(τ+k ) = Tχk+χmax
ẑ((k − 1)θ+), k ≥ 2. (12)

For k = 2, this has already been proven. Let (12) be valid
for k = p. Then,

x(τ+p+1) = Bx(τp+1) = BTτp+1−τpx(τ
+
p )

= BTτp+1−τpTχp+χmax
ẑ((p− 1)θ+)

= BTχp+1+χmax
Tθ ẑ((p− 1)θ+)

= Tχp+1+χmax

∞∑
m=0

(χp+1+χmax)
m

m!
{B,Am}Tθ ẑ((p− 1)θ+)

= Tχp+1+χmax
ẑ(pθ+).

Therefore, (12) is valid for k = p+ 1.
From the definition of z0 by the triangle inequality for

norms we estimate

∥z0∥ ≤
∞∑
m=0

(2χmax)
m

m!
∥{B,Am}Tθ−χmax

∥∥x0∥ =: µ∥x0∥.

The convergence of the series on the right-hand side follows
from the Cauchy criterion, the Stirling formula, and the
condition (11). For the dwell-time, the estimate τk+1− τk ≤
θ + 2χmax, k ∈ Z+ follows from (2). We denote

M := sup{∥Tt∥ | t ∈ [0, θ + 2χmax]}.

Then, (12) implies the estimate

∥x(t)∥ = ∥Tt−τkx(τ
+
k )∥ ≤ ∥Tt−τk∥∥x(τ

+
k )∥

≤M∥Tχk+χmax
ẑ((k − 1)θ+)∥

≤M∥Tχk+χmax
∥ · ∥ẑ((k − 1)θ+)∥

for t ∈ (τk, τk+1]. Since 0 ≤ χk + χmax ≤ 2χmax, we have
∥Tχk+χmax

∥ ≤M , and therefore,

∥x(t)∥ ≤M2∥ẑ((k − 1)θ+)∥.

Let ε > 0. Then, it follows from the stability of the linear
impulse system (10) that for some δ = δ(ε) for all k ∈ Z+

the inequality ∥z(t)∥ < ε(µM2)−1 holds. Then, ∥x(t)∥ < ε
is satisfied for all t ≥ 0 which proves the stability of the
original linear impulsive system (1).

The asymptotic stability of the linear impulsive system
(10) implies that for any ε > 0 there exists k0(ε) ∈ Z+ such
that

∥ẑ(kθ+)∥ < εM−2, k ≥ k0(ε).

Then, for t > τk+1, the inequality ∥x(t)∥ < ε is satisfied.
The theorem is proven.

Remark. If Tt, t ∈ R is a linear group in L(X) or if the
sequence of moments of impulsive action {τk}∞k=0 which
satisfies the following ADT+ condition:

∃θ > 0, ∃χmax ≥ 0 ∀k ∈ Z+ kθ ≤ τk − τ0 ≤ kθ + χmax,

the asymptotic stability of the original linear impulsive
system (1) follows from the stability of the comparison
system of the form

ż(t) = Az(t), t ̸= kθ, z(0+) = z0 ∈ D(A),

z(t+) = Bz(t) +

∞∑
m=1

χmk+1

m!
{B,Am}z(t), t = kθ.

(13)
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V. EXAMPLE

For ℓ > 0 and µ > 0 we consider the linear impulsive
system of parabolic equations

∂tx(y, t) = µ2∂2yyx(y, t) +Ax(y, t), t ̸= τk,

x(y, t+) = Bx(y, t), t = τk
(14)

in the state space X = L2((0, ℓ);Rn), where x ∈
C([0,∞), L2((0, ℓ);Rn)) ∩ C1((0,∞), L2((0, ℓ);Rn)), y ∈
[0, ℓ], t ∈ R+, A ∈ Rn×n and B ∈ Rn×n. The initial and
boundary conditions are given by

x(y, 0) = x0(y), x(0, t) = x(ℓ, t) = 0, (15)

where x0 ∈ H2(0, ℓ) ∩ H1
0 (0, ℓ). Let D(A) = H2(0, ℓ) ∩

H1
0 (0, ℓ), D(B) = X and

(Ax)(y) := µ2∂2yyx(y) +Ax(y), (Bx)(y) = Bx(y).

It follows from Theorem 1 that for the asymptotic stability
of the linear impulsive system (14)-(15), it suffices to check
the asymptotic stability of the comparison system

∂tz(y, t) = µ2∂2yyz(y, t) +Az(y, t), t ̸= kθ,

z(y, t+) = Bz(y, t) +Gkz(y, t), t = kθ,
(16)

where z ∈ C1(R+, X), y ∈ [0, ℓ], t ∈ R+, Gk ∈ Rn×n,
∥Gk∥ ≤

∑∞
m=1

(2χmax)
m

m! ∥{B,Am}∥ := ω. The initial and
boundary conditions are given by

z(y, 0) = z0(y), z(0, t) = z(ℓ, t) = 0, (17)

where z0 ∈ H2(0, ℓ) ∩ H1
0 (0, ℓ). To study the stability of

the comparison system (16)—(17), we define a candidate
Lyapunov function by

V (t, z) :=

ℓ∫
0

zT (y)P(t)z(y) dy. (18)

Here, P : R+ → Rn×n is a piece-wise continuous and
differentiable on the set R+ \ θZ+ and θ-periodic map with
values P (t) in the set of symmetric positive-definite matrices.

The total derivative of this function along the semiflow
generated by (16)—(17) is

V̇ (t, z) := 2µ2

ℓ∫
0

zT (y)P(t)∂2yyz(y) dy

+

ℓ∫
0

zT (y)(Ṗ(t) +ATP(t) +P(t)A)z(y) dy.

(19)

Applying integration by parts and the Friedrich’s inequality,

we obtain

ℓ∫
0

zT (y)P(t)∂2yyz(y) dy = −
ℓ∫

0

(∂yz(y))
TP(t)∂yz(y) dy

= −
ℓ∫

0

∥P1/2(t)∂yz(y)∥2 dy ≤ −π
2

ℓ2

ℓ∫
0

∥P1/2(t)z(y)∥2 dy

= −π
2

ℓ2

ℓ∫
0

zT (y)P(t)z(y) dy

Therefore,

V̇ (t, z) ≤
ℓ∫

0

zT (y)(Ṗ(t) + (A− π2µ2

ℓ2
id )TP(t)

+P(t)(A− π2µ2

ℓ2
id ))z(y) dy.

We choose P(t) so that for t ∈ R+ \ θZ+, the equality

Ṗ(t) + (A− π2µ2

ℓ2
id )TP(t) +P(t)(A− π2µ2

ℓ2
id ) = 0

is satisfied. Then,

P(t) = e
2π2µ2(t−kθ)

ℓ2 e−AT (t−kθ)P0e
−A(t−kθ)

for t ∈ (kθ, (k + 1)θ]. Assume that there exists a positive-
definite matrix P0 that satisfies the matrix inequality

e
−2π2µ2θ

ℓ2 ΦTP0Φ+ e
−2π2µ2θ

ℓ2 (2ω∥BP0∥

+ω2∥P0∥)eA
T θeAθ ≺ P0,

(20)

where Φ = BeAθ.

5885



At the moments of jumps t = (k + 1)θ, k ∈ Z+,

V ((k + 1)θ+, z+) =

ℓ∫
0

(Bz(y))TP0(Bz)(y) dy

+2

ℓ∫
0

(Bz(y))TP0(Gkz)(y) dy

+

ℓ∫
0

(Gkz(y))
TP0(Gkz)(y) dy

≤
ℓ∫

0

(z(y))TBTP0Bz(y) dy

+2

ℓ∫
0

∥BTP0∥ω(z(y))T z(y) dy

+

ℓ∫
0

ω2∥P0∥(z(y))T z(y) dy

=

ℓ∫
0

(z(y))T (BTP0B+ (2ω∥BTP0∥+ ω2∥P0∥) id )z(y) dy

<

ℓ∫
0

(z(y))TP(θ)z(y) dy = V ((k + 1)θ, z).

Therefore, V (t, z) is a Lyapunov function for the linear im-
pulsive system (16)-(17), hence this system is asymptotically
stable. From Theorem 1 we obtain sufficient conditions for
the asymptotic stability of the original system (14)-(15):

Proposition 1. Let the sequence of moments of impulsive
action {τk}∞k=0 satisfy the ADT condition (2), Φ = BeAθ,
ω =

∑∞
m=1

(2χmax)
m

m! ∥{B,Am}∥, rσ(Φ) < eπ
2µ2θ/ℓ2 and

for some positive-definite matrix P0 the inequality (20)
holds. Then system (14)–(15) is asymptotically stable.

We consider a numerical example setting ℓ = π, µ = 1,
θ = 1, χmax = 0.1

A =

(
1.2 0.1
0.1 −3

)
, B =

(
0.2 0.1
−0.1 1.5

)
.

In this case, ω ≈ 0.1726 and for the matrix P0 = id , all
conditions of the Proposition 1 are satisfied; therefore, the
linear impulsive system (14) – (15) is asymptotically stable.
We note that in this case the matrix A − π2µ2

ℓ2 id is not a
Hurwitz matrix, and the matrix B is not a Schur matrix
which means that both continuous and discrete dynamics are
unstable. This circumstance as well as non-constant dwell-
time is a significant obstacle to the direct application of the
Lyapunov function method for the initial system (14)—(15).

VI. CONCLUSION

The main theorem allows one to study wide classes
of infinite-dimensional systems, for example, systems of

parabolic partial differential equations, integro-differential
partial differential equations and others. For the comparison
system, the problem of construction of a Lyapunov function
is much simpler than for the original system since dwell-
times are constant. We also note that the obtained stability
conditions have a wide range of applicability since they are
applicable when the continuous and discrete dynamics are
both unstable. It is of interest to extend these results to the
case when the operator A generates a C0 – semigroup as well
as to relax the assumptions about the operators A, B and
the sequence of commutators {B,Am} that we have applied
in Theorem 1.

ACKNOWLEDGMENT

The authors gratefully acknowledge the assistance and
valuable suggestions of Dr. Gunther Dirr.

REFERENCES

[1] A. R. Teel, R. G. Sanfelice, and R. Goebel, “Hybrid control systems,”
in Mathematics of complexity and dynamical systems. Vols. 1–3,
pp. 704–728, Springer, New York, 2012.

[2] A. M. Samoı̆lenko and N. A. Perestyuk, Impulsive differential equa-
tions, vol. 14 of World Scientific Series on Nonlinear Science. Series
A: Monographs and Treatises.

[3] V. Lakshmikantham, D. D. Baı̆nov, and P. S. Simeonov, Theory of
impulsive differential equations, vol. 6 of Series in Modern Applied
Mathematics. World Scientific Publishing Co., Inc., Teaneck, NJ,
1989.

[4] D. Liberzon, Switching in systems and control. Systems & Control:
Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA,
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