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Abstract— We study the model reduction by moment match-
ing problem for linear systems in a closed-loop configuration.
First we show that the moments of a linear system can be
expressed in a form that is independent of the structure of
the signal generator. Then we define a class of reduced-order
models that can replicate the steady-state response of the
original system from input-output data. Finally, we demonstrate
the applicability of the results using two simple numerical
examples.

I. INTRODUCTION

Model reduction consists in the simplification of the dynam-
ics of a complex system to obtain a simpler model that can
approximate the behavior of the original system under given
conditions. The model reduction problem has been widely
studied in the past decades because of its rich mathematical
structure and applicability in diverse areas of science and
engineering [1], for example in the modeling of mechanical
systems, for which rigid-body models are often derived by
ignoring the effects of flexible modes [2]; in large-scale
integrated circuit design, consisting of billions of transistors
[3]; in weather forecast models, using large amounts of atmo-
spheric data [4]; and more recently in disease-modeling, to
better understand the spread of global epidemics [5]. While
most systems encountered in applications are nonlinear,
significant attention has been devoted to the model reduction
of linear systems. Within this context, the Hankel operator
has been used to determine the approximation error between
the reduced-order model and the underlying full-order system
[6], leading to the celebrated balancing realization problem
[7]; whereas H2 and H∞ norms of the error system have
been utilized to compute approximation errors [8]–[11], and
have helped in computing useful reduced-order models. More
recently, the Loewner framework has been used to obtain
reduced-order models for linear time-invariant and linear
time-varying systems [12], [13]. Another class of methods
of particular interest are the so-called moment matching
methods, which allow the construction of reduced-order
models such that the error between the underlying system
and the reduced-order model is zero at some points of the
complex plane [14]–[16]. To the best of our knowledge in all
the above references and the references therein, the system
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to be reduced is considered in open-loop and/or is driven
by user-selected signals. An important yet largely missed
caveat is that small modeling errors in the open-loop do
not necessarily imply small modeling errors in the closed-
loop [17]. While model reduction for systems in closed-
loop with a given controller has been given some attention
in [17]–[20], the above mentioned aspect of reduced-order
modeling has not been extensively studied as its open-
loop counterpart. In particular, moment matching methods
have largely focused on obtaining reduced-order models in
scenarios where full information about the signal generator
is readily available. This is generally the case if the system
under consideration is in an open-loop setting. However, in
closed-loop configuration, the output of the controller may
be the only signal that is measurable.

To deal with the model reduction problem in a closed-
loop architecture, we exploit the ideas in [15], [16], in
which the underlying system is driven by an explicit signal
generator. It is important to note, however, that the definition
of moment utilizing explicit signal generators is dependent
on the structure of the signal generator, and this may not be
known if the input signal is generated by a controller. To deal
with this issue, the goal of this work is to provide a notion
of moment that is independent of the structure of the signal
generator, thus allowing to define moments for systems in
closed-loop with a controller.

The rest of the paper is structured as follows. The steady-
state notion of moments for implicit and explicit signal
generators is briefly summarized in Section II. The signal
generator independent notion of moment is given in Section
III. Reduced-order models using this newly formed definition
are then introduced and their construction illustrated with two
examples in Section IV. Finally, some concluding remarks
are presented in Section V.

Notation: We use standard notation. R≥0 denotes the set
of nonnegative real numbers, R>0 denotes the set R≥0 \ {0},
C<0 denotes the set of complex numbers with negative real
part, and C≥0 denotes the set C \C<0. The symbol I denotes
the identity matrix of appropriate dimensions, σ(A) denotes
the spectrum of the square matrix A, and ∥A∥ denotes the
induced Euclidean matrix norm of the matrix A.

II. PRELIMINARIES

In this section, we first recall the steady-state based descrip-
tion of moment as described in [14], [21]. We then recall the
definition of moment using explicit signal generators given
in [15], [16]. Finally, we introduce a formulation that allows
the extension of the definition of moment to a closed-loop
setting.
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A. The steady-state notion of moment
Consider a continuous-time, single-input, single-output

system described by the equations

ẋ = Ax+Bu,

y = Cx,
(1)

with x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R, A ∈ Rn×n, B ∈
Rn, and C ∈ R1×n. Let the associated transfer function
W (s) = C(sI−A)−1B be minimal, i.e., the triple (C,A,B)
is controllable and observable.

Definition 1: The 0-moment of system (1) at si ∈
C \σ(A) is the complex number η0(si) = C(siI −A)−1B.
The k-moment of system (1) at si ∈ C \σ(A) is the complex
number

ηk(si) =
(−1)k

k!

[
dk

dsk
(
C(sI −A)−1B

)]
s=si

.

Remark 1: The k-moment of system (1) at si coincides
with the k-th coefficient of the Laurent series expansion of
W in a neighborhood of si, provided that it exists [21].

Remark 2: The reduced-order models obtained from this
notion of moment is such that the resulting transfer function
and its derivatives take the same values as W and its
derivatives at all si.
The notion of moment for system (1) can also be described
in terms of a Sylvester equation, as outlined below.

Lemma 1: [14] Consider system (1), let si ∈ C
be such that si /∈ σ(A), for all i = 1, · · · , n. Then
there exists a one-to-one relation between the moments
η0(s1), · · · , ηk1−1(s1), · · · , η0(sη), · · · , ηkη−1(sη) and the
matrix CΠ , where Π is the unique solution of the Sylvester
equation

AΠ+BL = ΠS, (2)

with S ∈ Rν×ν a non-derogatory matrix with characteristic
polynomial

p(s) =

η∏
i=1

(s− si)
ki , (3)

with ν =
∑η

i=1 ki, and the pair (L, S) is observable.

This formulation allows a relationship to be established,
through the Sylvester equation, between the moments of a
system and its steady-state output response, as outlined next.

Theorem 1: [14] Consider system (1). Let si ∈ C be
such that si /∈ σ(A), for all i = 1, · · · , n, and assume that
σ(A) ⊂ C<0. Let S ∈ Rν×ν be any non-derogatory matrix
with characteristic polynomial as defined in (3). Consider the
interconnection of system (1) with the signal generator

ω̇ = Sω,

u = Lω,
(4)

such that the pair (L, S) is observable and
the triple (L, S, ω(0)) is minimal. Then there
exists a one-to-one relation between the moments

η0(s1), · · · , ηk1−1(s1), · · · , η0(sη), · · · , ηkη−1(sη) and the
steady-state output of the interconnected system (1) and (4).

The reduced-order models obtained from this notion of
moment is such that the steady-state output response of the
reduced model is equal to the steady-state output response
of system (1). This interpretation allows the model reduction
problem to be transformed from a problem of interpolation
of points to a problem of interpolation of signals.

B. Moment of a system driven by explicit signal generators
In several applications, such as those arising in modern

power electronics, a differential representation of the signal
generator is not available. Instead, the signal generator is
usually described explicitly by the equations

ω(t) = Λ(t, t0)ω0,

u = Lω,
(5)

with Λ(t, t0) ∈ Rν×ν such that Λ(t0, t0) = I , and L ∈ R1×ν

[16]. Such a representation describes a very general class of
signal generators and includes the implicit representation (4).

For this class of signal generators, the results described in
Section II-A cannot be readily used [16], and the steady-state
notion of moment needs to be redefined.

Consider system (1) driven by the signal generator (5). To
establish the existence of the steady-state output response of
system (1), the following hypotheses are introduced on the
class of input signals given by (5).

Assumption 1: The vector-valued function ω in (5) has a
strictly proper Laplace transform with non-negative poles.

Assumption 2: The matrix-valued function Λ is non-
singular for all t ≥ t0.

In addition, assume that there exists a set T ⊂ R≥0 in
which Λ is differentiable with respect to t, and consider the
time-varying system described by the equation

ż(t) = G(t)T z(t), (6)

with G(t) = −Λ̇(t, t0)Λ(t, t0)
−1, and let Φ(t, t0) be the

transition matrix of system (6).
Assumption 3: The function G is piecewise continuous

with respect to t. Moreover, there exists a T ≥ t0 and a
polynomial p such that ∥Φ(t, t0)T ∥ ≤ p(t) for all t ≥ T .

Assumption 1 is a standard condition required for the
existence of a well-defined steady-state response for system
(1) driven by the signal generator (5) [15], [16], [22].
Assumption 2 is required to obtain a unique solution, ω,
from (5). Finally, Assumption 3 guarantees that the norm
of z in system (6) does not diverge exponentially [23].
This allows the steady-state response of system (1) driven
by the signal generator (5), denoted by1 xs, to be written
as xs(t) = Π(t)ω(t) for all t ≥ 0 and for some matrix-
valued function Π. In addition, the piecewise continuity of
G guarantees that the steady-state response is unique. This
allows the definition of the steady-state notion of moment
for systems driven by explicit signal generators, as outlined
in the next statement.

1xs(t) ∈ Rn is the steady-state response of x(t) ∈ Rn if for any initial
condition, x(t0), limt→∞ x(t) = xs(t).
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Theorem 2: [15], [16] Consider the interconnection of
system (1) and the signal generator (5). Suppose that As-
sumptions 2 and 3 hold, σ(A) ⊂ C<0 and Λ(t, t0) is
differentiable almost everywhere. Let Π, defined as

Π(t) =

(
eA(t−t0)Π(t0) +∫ t

t0

eA(t−τ)BLΛ(τ, t0)dτ

)
Λ(t, t0)

−1

(7)

denote a family of matrix-valued functions parameterized in
Π(t0) ∈ Rn×ν . Then there exists a unique Π∞ such that for
any Π(t0), limt→∞ Π(t) − Π∞(t) = 0, where Π∞ is the
solution of equation (7) with Π(t0) = Π∞(t0). Moreover,
if x(t0) = Π∞(t0)ω(t0), then x(t) − Π∞(t)ω(t) = 0 for
all t ≥ t0, and the set M∞ = {(x, ω) ∈ Rn+ν |x(t) =
Π∞(t)ω(t) } is attractive.

Remark 3: The definition of the function Π∞ can be given
as in (7) or, alternatively, as the unique solution of

Π̇(t) = AΠ(t) +BL−Π(t)Λ̇(t, t0)Λ(t, t0)
−1, (8)

with the initial condition Π(t0) = Π∞(t0) [15], [16].
Moreover, when the system is driven by an explicit signal
generator, the matrix Π∞ is a function of time, unlike when
we have an implicit model of the signal generator.

Definition 2: [15], [16] Consider the interconnection of
system (1) and the signal generator (5). Suppose that As-
sumptions 1, 2, and 3 hold, and that σ(A) ⊂ C<0. The
function CΠ∞ ω, where Π∞ is the solution of equation (7)
with Π(t0) = Π∞(t0), is defined as the moment of system
(1) at Λ.

Thus, using the integral-matrix equation (7), or the differ-
ential equation (8), the steady-state notion of moment has
been extended to a class of input signals originating from
signal generators that do not necessarily have a differential
or implicit representation. Finally, note that the frameworks
discussed in II-A and II-B are readily applicable to the multi-
input, multi-output case [14].

C. Problem Formulation
The results described in Section II-B require the knowl-

edge of the matrix-valued function Λ and of the matrix L
for constructing the input signal u. However, both of these
quantities may not be known a-priori. This is the case, for
example, if the system to be reduced operates in a closed-
loop setting. It is, therefore, more realistic to model the
control signal u as the direct output, ω, of an explicit signal
generator, such as the one described in (5). In addition,
to accommodate multiple-input, multiple-output systems, we
need to adjust the frameworks presented so far, as discussed
briefly at the end of Section II-B. For these reasons, consider
the following formulation.

Consider a continuous-time, multiple-input, multiple-
output system described by the equations

ẋ = Ax+Bu,

y = Cx,
(9)

with x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp, A ∈ Rn×n,
B ∈ Rn×m, and C ∈ Rp×n. In addition, consider the signal
generator

ω(t) = Λ(t, t0)ω0,

u(t) = ω(t),
(10)

with ω(t) ∈ Rm, ω0 ∈ Rm, and Λ(t, t0) ∈ Rm×m. Note
that the signal generator (10) is a restriction of the signal
generator (5) with L = I ∈ Rm×m. The output of the
signal generator (10) models the control input that a system
would receive in closed-loop operation. Although the signal
generator (10) still depends on Λ, the moment of the system
can be expressed in a form that is independent of Λ, as
will be shown in the next section. Finally, we note here that
Assumptions 1, 2, and 3 readily extend to the multiple-input,
multiple-output case.

III. DEFINITION OF MOMENT IN CLOSED-LOOP

In this section, we extend the definition of moment of system
(9) to the case in which the signal generator is described by
(10), but Λ is not known, i.e., u is the only measured signal.
To this end, we begin by showing that the moment of the
system can be expressed in a form that is agnostic of the
structure of the signal generator (10). More precisely, we
show that the moment of the system, denoted by a matrix-
valued function Π, can be expressed independently of Λ
using the following result.

Theorem 3: Consider the interconnection of system (9)
and the signal generator (10). Suppose that Assumptions 2
and 3 hold, and σ(A) ⊂ C<0. Let Π, defined as

˙︷ ︸︸ ︷
Π(t)u(t) =

(
AΠ(t) +B

)
u(t), (11)

be a family of matrix-valued functions parameterized in
Π(t0) ∈ Rn×m. Then there exists a unique Π∞ such that
for any Π(t0), limt→∞(Π(t)−Π∞(t))u(t) = 0, where Π∞
is the solution of equation (11) with Π(t0) = Π∞(t0). In
addition, if x(t0) = Π∞(t0)ω0, then x(t) = Π∞(t)u(t) for
all t ≥ t0, and the set M∞ = {(x, u) ∈ Rn+m |x(t) =
Π∞(t)u(t)} is attractive.

Proof: Since Assumption 2 holds, equation (7) with the
signal generator (10) can be written as

Π(t)Λ(t, t0) = eA(t−t0)Π(t0) +

∫ t

t0

eA(t−τ)BΛ(τ, t0)dτ.

Multiplying both sides by ω0 yields

Π(t)ω(t) = eA(t−t0)Π(t0)ω0 +

∫ t

t0

eA(t−τ)Bω(τ)dτ,

and using the relation u(t) = ω(t) yields

Π(t)u(t) = eA(t−t0)Π(t0)ω0 +

∫ t

t0

eA(t−τ)Bu(τ)dτ. (12)
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Let T ⊂ R≥0 be a set in which Πu is differentiable.
Differentiating both sides of (12) over T yields

˙︷ ︸︸ ︷
Π(t)u(t) = AeA(t−t0)Π(t0)ω0 +

d

dt

(∫ t

t0

eA(t−τ)Bu(τ)dτ

)
= AeA(t−t0)Π(t0)ω0 +Bu(t) +

A

∫ t

t0

eA(t−τ)Bu(τ)dτ

= A
(
eA(t−t0)Π(t0)ω0 +

∫ t

t0

eA(t−τ)Bu(τ)dτ
)
+

Bu(t)

= AΠ(t)u(t) +Bu(t)

=
(
AΠ(t) +B

)
u(t).

Let Π1 and Π2 be the solutions of (11) with initial conditions
Π1(t0) and Π2(t0), respectively, and define the error E(t) =
Π1(t)u(t)−Π2(t)u(t). Then,

Ė(t) =
˙︷ ︸︸ ︷

Π1(t)u(t)−
˙︷ ︸︸ ︷

Π2(t)u(t)

=
(
AΠ1(t) +B

)
u(t)−

(
AΠ2(t) +B

)
u(t)

= A
(
Π1(t)u(t)−Π2(t)u(t)

)
= AE(t),

which leads to

E(t) = eA(t−t0)E(t0).

Since σ(A) ⊂ C<0, E converges to zero. This implies
that for a given u, there exists a unique solution Π∞ to
which all solutions of (11) converge. More precisely, for
any Π(t0), there exists a Π∞(t0) such that limt→∞(Π(t)−
Π∞(t))u(t) = 0.

By Assumption 2, the unique solution of system (9) with
input u defined by (10) is

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Bu(τ)dτ.

Let x(t0) = Π∞(t0)ω0. Thus, x(t) can be written as

x(t) = eA(t−t0)Π∞(t0)ω0 +

∫ t

t0

eA(t−τ)Bu(τ)dτ.

From (12), we see that x(t) = Π∞(t)u(t) for all t ≥ t0.
The attractivity of Π∞(t) and the invariance of x(t) =
Π∞(t)u(t) imply that the set M∞ is attractive.

Corollary 3.1: Suppose that Assumptions 1, 2, and 3 hold.
Then the function Π∞u is the steady-state response xs of x,
i.e., for any x(t0) and ω0, limt→∞ x(t)−Π∞(t)u(t) = 0.

Remark 4: The differential equation (11) or the integral
equation (12) play the role of the Sylvester equation (2)
when system (9) is driven by an implicit signal generator
(4). To see this, note that for an implicit signal generator (4)
represented as (10), we have

ω̇(t) = Sω(t) =⇒ u̇(t) = Su(t).

Using this result in (11), we have(
AΠ(t) +B

)
u(t) =

˙︷ ︸︸ ︷
Π(t)u(t)

=Π̇(t)u(t) + Π(t)u̇(t)

=Π̇(t)u(t) + Π(t)Su(t),

which can be written as(
AΠ(t) +B −Π(t)S

)
u(t) = Π̇(t)u(t). (13)

From Remark 3, we know that Π is a constant when the
system is driven by an implicit signal generator, implying
Π̇ = 0. Using this in (13) we have, for any u(t),

AΠ+B −ΠS = 0,

which is indeed the Sylvester equation (2).
Definition 3: Consider the interconnection of system (9)

and the signal generator (10). Suppose that Assumptions 1,
2, and 3 hold, and σ(A) ⊂ C<0. The function CΠ∞u, where
Π∞ is the solution of equation (11) with Π(t0) = Π∞(t0),
is the moment of system (9) at u.

Corollary 3.2: Consider the interconnection of system (9)
and the signal generator (10). Suppose that Assumptions 1,
2, and 3 hold, and σ(A) ⊂ C<0. Then the moment of system
(9) at u coincides with the steady-state output response of
the interconnected system.

Proof: Since Assumptions 1, 2, and 3 hold, and σ(A) ⊂
C<0, the steady-state response of system (9) is well-defined.
In addition, the relation xs(t) = Π∞(t)u(t), where Π∞ is
the unique solution of equation (11) with Π(t0) = Π∞(t0),
holds for all t. Furthermore, by Theorem 3, the set M∞
is attractive, and the steady-state output response of the
interconnected system is CΠ∞u, which by definition is the
moment of the system.

IV. REDUCED-ORDER MODELING

In this section, we introduce reduced-order models achieving
moment matching by utilizing the notion of moment pre-
sented in Section III.

Definition 4: Consider the interconnection of system (9)
and the signal generator (10). Suppose that Assumptions 1,
2, and 3 hold, and σ(A) ⊂ C<0. Then the system described
by the equations

ξ(t) = F (t, t0)ξ0 +

∫ t

t0

G(t− τ)u(τ)dτ,

ψ(t) = H(t)ξ(t),

(14)

with ξ(t) ∈ Rρ, ψ(t) ∈ Rp, F (t, t0) ∈ Rρ×ρ, G(t) ∈ Rρ×m

is a model of system (9) at (10) if there exists a unique
solution P∞ of the integral equation

P (t)u(t) = F (t, t0)P (t0)ω0 +

∫ t

t0

G(t− τ)u(τ)dτ, (15)

or of the differential equation
˙︷ ︸︸ ︷

P (t)u(t) = Ḟ (t, t0)P (t0)ω0 +G(0)u(t) +∫ t

t0

Ġ(t− τ)u(τ)dτ,
(16)
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Fig. 1. Time histories of (a) the output of the full-order model (solid blue line) and the output of the reduced-order model (dashed orange line); (b) the
error between the output of the full-order model and the output of the reduced-order model; and (c) the control input u, for Example 1. Note that the error
plot has a different time-scale in order to highlight the transient behavior of the reduced-order model.

with P (t0) = P∞(t0), such that for any P (t0),
limt→∞(P (t)− P∞(t))u(t) = 0 and

CΠ∞(t) = H(t)P∞(t), (17)

where Π∞ is the unique solution of equation (11) with
Π(t0) = Π∞(t0). Furthermore, the system (14) is a reduced-
order model of system (9) at (10) if ρ < n.

Remark 5: To guarantee the existence of the reduced-
order model (14), the following conditions need to be satis-
fied. First, the reduced-order model has to be asymptotically
stable [24]. This guarantees the existence of the moment of
system (14), i.e., the existence of the matrix-valued function
P∞. Second, the matrix-valued function P∞ needs to have
full column rank, m, for all t ∈ R≥0. This ensures that (17)
has a solution. As a consequence of this rank condition, we
obtain ρ ≥ m, that is the reduced-order model has to have
minimum order m.

We now describe an approach that allows the simplifica-
tion of the family of reduced-order models (14). To this end,
consider the selection

F (t, t0) = eF̃ (t−t0),

G(t) = eF̃ tG̃,
(18)

for some F̃ and G̃. This allows representing the state-
transition equation of (14) as a linear time-invariant system,
which in turn allows easily enforcing additional constraints.

Corollary 3.3: The system described by the equations
(14), with F (t, t0) and G(t) described by (18), is a model of
the system (9) at (10) if there exists a unique solution P∞
of the differential equation

˙︷ ︸︸ ︷
P (t)u(t) =

(
F̃P (t) + G̃

)
u(t), (19)

with P (t0) = P∞(t0), such that for any P (t0),
limt→∞(P (t)− P∞(t))u(t) = 0 and

CΠ∞(t) = H(t)P∞(t), (20)

where Π∞ is the unique solution of equation (11) with
Π(t0) = Π∞(t0).

We conclude this section with two numerical examples.

Example 1: Consider the interconnection of system (9)
and the signal generator (10). The state-space matrices of
the full-order system are generated using the rss command
in MATLAB, and are given by

A =


−2.6450 0.3960 −0.4228 −0.5738
−0.0344 −2.5707 0.6920 0.1247
−0.5566 −0.0248 −3.3686 −1.0689
−0.5948 0.5815 −0.8918 −3.4373

 ,
B =

[
−0.2298 −1.4617 −2.8823 −0.0475

]T
,

C =
[
−0.4625 −0.5766 −0.8460 −1.8172

]
.

The reduced-order model (18) is chosen with

F̃ =

[
−1 0
0 −2

]
, G̃ =

[
1 1

]T
. (21)

Note that the full-order system is both controllable and
observable. The reference signal to the full-order system is
a combination of sinusoids with two angular frequencies, a
chirp signal, and a square wave signal. The input to the plant
is from a PID controller, which in turn receives as input the
error between the reference signal and the output. Figure 1
shows the time histories of the outputs of the full-order and of
the reduced-order models, respectively. Consistent with the
results presented thus far, the steady-state output responses
of both these models match closely.

Now consider feedback linearizable nonlinear systems
with bounded trajectories. These can be expressed as a linear
system with matched nonlinearities. For such systems, the
modeling perspective presented in the preceding sections is
readily applicable. To demonstrate this, consider the follow-
ing example.

Example 2: The dynamics of a forced Van der Pol oscil-
lator can be described by the differential equation

d2x

dt2
− µ(1− x2)

dx

dt
+ x−A cosγt = 0. (22)

This system can be represented as the interconnection of
system (9) and the signal generator (10) using the state-space
equation [

ẋ
ẍ

]
=

[
0 1
−1 −µ

] [
x
ẋ

]
+

[
0
1

]
u,
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Fig. 2. Time histories of (a) the output of the nonlinear system (solid blue line) and the output of the reduced-order model (dashed orange line); (b) the
error between the output of the nonlinear system and the output of the reduced-order model; and (c) the control input u, for Example 2. Note that the
error plot has a different time-scale in order to highlight the transient behavior of the reduced-order model.

where u = A cosγt + 2µẋ − µx2ẋ. For this example, we
choose A = 1.2 and γ = 2π/10. In addition, we choose
µ = 8.53, which renders (22) chaotic [25]. The output of this
nonlinear system is chosen to be x. Finally, we choose (21)
to be our “reduced-order” model (see also (14)). Note that
our objective in this example is not to obtain a model that
has fewer states than the underlying system, instead it is
to illustrate that the nonlinear system under consideration
can be represented by a linear system with a time-varying
output map. Figure 2 shows the time histories of the outputs
of the nonlinear system and of the reduced-order model,
respectively.

V. CONCLUSION

We have defined the steady-state notion of moment of a
system in a closed-loop setting such that the moment is
independent of the form of the signal generator. We have
then defined a class of reduced-order models, the steady-
state output response of which converges to that of the
underlying system. These results have been illustrated using
two numerical examples. The first example illustrates our
formulation in a linear setting, whereas the second example
exemplifies the applicability of our approach beyond linear
systems. The transient behavior of the reduced-order model
can be improved by strategically exploiting the structure of
the matrices in the state-transition equation of the reduced-
order model. We note that this approach can be very useful
for model reduction in a data-driven setting. Future work
will include exploring a more general notion of moment for
nonlinear systems along with applications to control design.
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