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Abstract— In a real Hilbert space setting, we investigate the
ergodic convergence properties of the solutions of the classical
Arrow–Hurwicz differential system in view of solving linearly
constrained convex minimization problems. Under the convexity
hypothesis on the objective function of the minimization prob-
lem, we recover the fact that every solution of the Arrow–Hur-
wicz differential system weakly converges in average towards
its asymptotic center. Moreover, it is shown that the primal-
dual gap function relative to an averaged solution obeys the
asymptotic estimate O(1/t) as t → +∞. If, in addition, the
linear operator associated with the constraint function of the
minimization problem is bounded from below, we find that the
primal-dual gap function obeys the refined asymptotic estimate
O(1/t2) as t → +∞. Numerical experiments illustrate our
theoretical findings.

I. INTRODUCTION

Let X and Y be real Hilbert spaces equipped with inner

products 〈 · , · 〉X , 〈 · , · 〉Y and induced norms ‖ · ‖X , ‖ · ‖Y .

Consider the minimization problem

inf {f(x) | Ax = b} (P)

with f : X → R being a convex and continuously differen-

tiable function, A : X → Y a linear and continuous operator,

and b ∈ Y . Let us associate with (P) the Lagrangian

L : X × Y −→ R

(x, λ) 7−→ f(x) + 〈λ,Ax − b〉Y

which, in view of the above assumptions, is a convex-concave

and continuously differentiable bifunction. We recall that a

pair (x̄, λ̄) ∈ X × Y is a saddle point of L if

L(x̄, λ) ≤ L(x̄, λ̄) ≤ L(x, λ̄) ∀(x, λ) ∈ X × Y.

Classically, (x̄, λ̄) ∈ X×Y is a saddle point of L if and on-

ly if x̄ ∈ X is a minimizer of (P), λ̄ ∈ Y is a maximizer of

the Lagrange dual problem associated with (P), viz.,

sup {−f∗(−A∗λ)− 〈λ, b〉Y | λ ∈ Y }, (D)

and the optimal values of (P) and (D) coincide; cf. Ekeland

and Témam [2]. Here, f∗ : X → R ∪ {+∞} denotes the

Fenchel conjugate of f defined by

f∗(u) = sup {〈u, x〉X − f(x) | x ∈ X}

and A∗ : Y → X refers to the adjoint operator of A. Equiv-

alently, (x̄, λ̄) ∈ X ×Y is a saddle point of L if and only if
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(x̄, λ̄) solves the system of primal-dual optimality conditions

(see, e.g., Bauschke and Combettes [3])
{

∇f(x) +A∗λ = 0X

Ax− b = 0Y .

Throughout, we denote by S × M ⊂ X × Y the (possibly

empty) set of saddle points of L. Recall that a saddle point of

L exists whenever (P) admits a minimizer and, for instance,

the constraint qualification

b ∈ sriA(X)

holds1. Here, for a convex set C ⊂ Y , we denote by

sriC =
{

x ∈ C |
⋃

µ>0

µ(C−x) is a closed linear subspace
}

its strong relative interior; cf. Bauschke and Combettes [3].

In turn, problem (P) admits a minimizer whenever b ∈ A(X)
and, for instance, f is coercive, that is, lim‖x‖X→+∞ f(x) =
+∞.

In this work, we reinvestigate the classical Arrow–Hurwicz

differential system
{

ẋ+∇f(x) +A∗λ = 0X

λ̇+ b −Ax = 0Y
(AH)

relative to the convex minimization problem (P). The (AH)

evolution system was originated by Arrow and Hurwicz [5]

(see also Arrow et al. [6]) and is known to be intimately re-

lated to the mini-maximization of the Lagrangian L associ-

ated with (P). Indeed, in view of the above system of primal-

dual optimality conditions, we readily deduce that the zeros

of the operator

T : X × Y −→ X × Y

(x, λ) 7−→ (∇f(x) +A∗λ, b−Ax),

that is, the “generator” of the (AH) dynamics, are precisely

the saddle points of L, i.e.,

T (x̄, λ̄) = (0X , 0Y ) ⇐⇒ (x̄, λ̄) ∈ S ×M.

Moreover, the operator T is maximally monotone; cf. Rock-

afellar [7]. As a consequence, S ×M can be interpreted as

the set of zeros of the maximally monotone operator T and,

as such, it is a closed and convex subset of X×Y ; see, e.g.,

Peypouquet and Sorin [8].

1We remark that, in the finite-dimensional case, the condition amounts to
b ∈ A(X) which is commonly referred to as Slater assumption; see, e.g.,
Hiriart-Urruty and Lemaréchal [4].
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Preliminary facts. As previously emphasized by Rockafel-

lar [9], the general theory for semi-groups of nonlinear con-

tractions generated by maximally monotone operators (see,

e.g., Crandall and Pazy [10], Brézis [11]) applies to the (AH)

differential system. These results, dating back to the works of

Kato [12] and Kōmura [13] (see also Browder [14]), imply

that the Cauchy problem associated with (AH) is well posed

and that its solutions (x, λ), (y, η) : [0,+∞) → X × Y are

“non-expansive” in the sense that

t 7−→ ‖x(t)− y(t)‖2X + ‖λ(t)− η(t)‖2Y

is non-increasing. As a direct consequence, every zero of the

operator T (and thus, every saddle point of the bifunction L)

is stable in the sense of Lyapunov. Moreover, the solutions of

(AH) remain bounded if and only if the set S ×M contains

at least one element. In this case, the solutions (x(t), λ(t))
of (AH) weakly converge in average, as t → +∞, towards

an element of S×M (see Baillon and Brézis [15]), i.e., there

exists (x̄, λ̄) ∈ S ×M such that

1

t

∫ t

0

(x(τ), λ(τ)) dτ ⇀ (x̄, λ̄) as t → +∞.

If, on the other hand, the weak sequential cluster points of

(x(t), λ(t))≥0 belong to S×M , then (x(t), λ(t)) converges

weakly, as t → +∞, towards some element of S ×M ; we

refer to Brézis [11] (see also Pazy [16]) for more details on

the asymptotic behavior of evolution equations governed by

maximally monotone operators.

Contributions. The mini-maximizing properties of the so-

lutions (x, λ) : [0,+∞) → X × Y of (AH) with respect to

the convex minimization problem (P) and its associated La-

grange dual problem (D) are classically measured in terms

of the “primal-dual gap function”

t 7−→ L(x(t), · )− L( · , λ(t))

relative to the set S×M . Whenever f is convex, we observe

that the solutions (x(t), λ(t)) of (AH) may fail to converge

as t → +∞ even if the set S ×M is comprised of a single

element. In consequence, it is natural to first study the aver-

age behavior of the solutions of (AH). Utilizing the notion of

the Cesàro average (σ, ω) : (0,+∞) → X×Y of a solution

(x, λ) of (AH), viz.,

(σ(t), ω(t)) =
1

t

∫ t

0

(x(τ), λ(τ)) dτ ,

we find that the solutions of (AH) obey in average, for any

(ξ, η) ∈ S ×M , the asymptotic estimate

L(σ(t), η)− L(ξ, ω(t)) = O
(1

t

)

as t → +∞.

In this case, the Cesàro average (σ(t), ω(t)) of a solution of

(AH) weakly converges, as t → +∞, towards a saddle point

of L. This result is in line with the work by Nemirovski and

Yudin [17] on the classical Arrow–Hurwicz method. If, fur-

ther, the linear operator A is bounded from below, we find

that the solutions of (AH) obey in average, for any (ξ, η) ∈
S ×M , the refined asymptotic estimate

L(σ(t), η)− L(ξ, ω(t)) = O
( 1

t2

)

as t → +∞.

Numerical experiments support our theoretical findings.

II. BASIC PROPERTIES

Let X×Y be endowed with the Hilbertian product struc-

ture 〈 · , · 〉 = 〈 · , · 〉X + 〈 · , · 〉Y and associated norm ‖ · ‖.

Throughout, we presuppose that

(A1) f : X → R is convex and continuously differentiable;

(A2) ∇f : X → X is Lipschitz continuous on the bounded

subsets of X ;

(A3) A : X → Y is linear and continuous, and b ∈ Y .

Consider the Arrow–Hurwicz differential system

{

ẋ+∇f(x) +A∗λ = 0X

λ̇+ b −Ax = 0Y
(AH)

with initial data (x0, λ0) ∈ X × Y . Following Haraux [18],

we say that (x, λ) : [0,+∞) → X × Y is a (classical) solu-

tion of (AH) if (x, λ) ∈ C1([0,+∞);X×Y ) and (x, λ) sat-

isfies (AH) on [0,+∞) with (x(0), λ(0)) = (x0, λ0).

The following “descent property” of the solutions of (AH)

is readily obtained as a consequence of the monotonicity of

the operator T , that is, for any (x, λ), (y, η) ∈ X × Y , we

have

〈T (x, λ) − T (y, η), (x, λ)− (y, η)〉 ≥ 0.

The arguments we use to prove the following result rely es-

sentially on Aubin and Cellina [19] (see also Brézis [11]).

Theorem II.1. For any (x0, λ0) ∈ X × Y there exists a

unique solution (x, λ) : [0,+∞) → X × Y of (AH). More-

over,

(i) t 7→ ‖(ẋ(t), λ̇(t))‖ is non-increasing and

‖(ẋ(t), λ̇(t))‖ ≤ ‖T (x0, λ0)‖ ∀t ≥ 0;

(ii) limt→+∞‖(ẋ(t), λ̇(t))‖ exists;

(iii) (ẋ, λ̇) ∈ L∞([0,+∞);X × Y ).

Remark II.2. We remark that the assertions of Theorem II.1

remain valid even in the case when f : X → R ∪ {+∞} is

a proper convex lower semi-continuous function. Under this

assumption, the (AH) dynamics generalize to the evolution

system
{

ẋ+ ∂f(x) +A∗λ ∋ 0X

λ̇+ b−Ax = 0Y

with ∂f denoting the convex subdifferential of f . The exis-

tence and uniqueness of the (strong) solutions of the above

evolution system then follow from the general theory for se-

mi-groups of contractions generated by maximally monotone

operators; we refer to Brézis [11] (see also Pazy [16]) for a

detailed study of the subject.
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In what follows, let S ×M denote the (possibly empty)

set of saddle points of the Lagrangian

L : X × Y −→ R

(x, λ) 7−→ f(x) + 〈λ,Ax − b〉Y

associated with the convex minimization problem (P). Given

the convexity of f , an immediate derivation shows that for

any (x, λ), (y, η) ∈ X × Y , we have

〈T (x, λ), (x, λ) − (y, η)〉 ≥ L(x, η)− L(y, λ). (1)

Anchoring this inequality to the set S×M yields the follow-

ing integrability estimate for the primal-dual gap function; cf.

Niederländer [1, Proposition 2.3].

Proposition II.3. Let S ×M be non-empty and let (x, λ) :
[0,+∞) → X × Y be a solution of (AH) initialized from

(x0, λ0) ∈ X × Y . Then, for any (ξ, η) ∈ S ×M ,

(i) t 7→ ‖(x(t), λ(t)) − (ξ, η)‖ is non-increasing and

1

2
‖(x(t), λ(t)) − (ξ, η)‖2

+

∫ t

0

L(x(τ), η) − L(ξ, λ(τ)) dτ

≤
1

2
‖(x0, λ0)− (ξ, η)‖2 ∀t ≥ 0;

(ii) limt→+∞‖(x(t), λ(t)) − (ξ, η)‖ exists;

(iii) (x, λ) ∈ L∞([0,+∞);X × Y );
(iv) it holds that

∫ ∞

0

L(x(τ), η) − L(ξ, λ(τ)) dτ < +∞.

Remark II.4. Proposition II.3(iii) states that the solutions of

(AH) remain bounded whenever the set of saddle points S×
M of the Lagrangian L is non-empty. Conversely, it can be

shown that S × M is non-empty whenever (AH) admits a

bounded solution; see Pazy [16, Theorem 8.7].

III. WEAK ERGODIC CONVERGENCE

In this section, we focus on the convergence properties of

the solutions of (AH). As we shall see, one can not, in gen-

eral, deduce the convergence of the solutions of (AH) even

though the set S ×M may be reduced to a singleton. It is

thus natural to first study the average of a solution of (AH)

as it is better behaved than the solution itself. To this end, let

the Cesàro average of a solution (x, λ) : [0,+∞) → X × Y
of (AH) be defined by

(σ, ω) : (0,+∞) −→ X × Y

t 7−→
1

t

∫ t

0

(x(τ), λ(τ)) dτ .

The following theorem asserts that the solutions of (AH)

weakly converge in average towards a saddle point of L. The

technique we use to prove the weak ergodic convergence re-

lies on the Opial–Passty lemma; cf. Lemma A.1.

Theorem III.1. Let S × M be non-empty and let (σ, ω) :
(0,+∞) → X × Y be the Cesàro average of a solution of

(AH). Then the following assertions hold:

(i) for all (ξ, η) ∈ S ×M , it holds that

L(σ(t), η) − L(ξ, ω(t)) = O
(1

t

)

as t → +∞;

(ii) ∀tn → +∞ such that (σ(tn), ω(tn)) ⇀ (σ̄, ω̄) weakly

in X × Y , it holds that (σ̄, ω̄) ∈ S ×M .

Moreover, there exists an element (σ̄, ω̄) ∈ S×M such that

(σ(t), ω(t)) ⇀ (σ̄, ω̄) weakly in X × Y as t → +∞.

Proof. (i) Let (ξ, η) ∈ S × M and recall from Proposition

II.3(i) that for any t ≥ 0, we have

1

2
‖(x(t), λ(t)) − (ξ, η)‖2

+

∫ t

0

L(x(τ), η) − L(ξ, λ(τ)) dτ

≤
1

2
‖(x(0), λ(0)) − (ξ, η)‖2.

Successively dividing by t > 0 and taking into account that

‖(x(t), λ(t)) − (ξ, η)‖2 ≥ 0 yields

1

t

∫ t

0

L(x(τ), η) − L(ξ, λ(τ)) dτ ≤
C

t
,

where C = ‖(x(0), λ(0))−(ξ, η)‖2/2. Applying Jensen’s in-

equality, as L( · , η) and −L(ξ, · ) are both convex, we get

L(σ(t), η)− L(ξ, ω(t)) ≤
C

t
.

Multiplying the above inequality by t > 0 and subsequently

passing to the upper limit as t → +∞ entails

lim sup
t→+∞

t
(

L(σ(t), η) − L(ξ, ω(t))
)

< +∞.

(ii) Using similar arguments as above, we observe that for

any (ξ, η) ∈ X × Y there exists a constant C ≥ 0 such that

for any t > 0,

L(σ(t), η)− L(ξ, ω(t)) ≤
C

t
.

Passing to the upper limit as t → +∞ gives

lim sup
t→+∞

(

L(σ(t), η) − L(ξ, ω(t))
)

≤ 0.

Suppose now that (σ(tn), ω(tn)) ⇀ (σ̄, ω̄) weakly in X×Y ,

as n → +∞, for a sequence tn → +∞. Substituting t by

tn in the above inequality then yields

0 ≥ lim sup
n→+∞

(

L(σ(tn), η)− L(ξ, ω(tn))
)

≥ lim inf
n→+∞

L(σ(tn), η) + lim inf
n→+∞

(−L(ξ, ω(tn)))

≥ L(σ̄, η)− L(ξ, ω̄),

thanks to the weak lower semi-continuity of L( · , η) as well

as −L(ξ, · ) (noticing that L( · , η) and −L(ξ, · ) are both

convex and lower semi-continuous); see, e.g., Bauschke and

Combettes [3, Theorem 9.1]. The above inequalities being

true for any (ξ, η) ∈ X × Y , we infer that (σ̄, ω̄) ∈ S ×M .

The weak convergence of (σ(t), ω(t)) as t → +∞ is now

an immediate consequence of the Opial–Passty lemma, cf.
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Lemma A.1, applied to the set S ×M together with Propo-

sition II.3(ii).

Remark III.2. We note that the weak ergodic convergence of

the solutions of (AH) may also be deduced using the maxi-

mal monotonicity of the operator T ; cf. Baillon and Brézis

[15].

As an immediate consequence of the previous result, we

infer that the asymptotic behavior of the average of a solution

of (AH) is characterized according to the following cases:

Corollary III.3. Let (σ, ω) : (0,+∞) → X × Y be the Ce-

sàro average of a solution of (AH). Then the following asser-

tions hold:

(i) If S×M is non-empty, then there exists (σ̄, ω̄) ∈ S×M
such that (σ(t), ω(t)) ⇀ (σ̄, ω̄) weakly in X × Y as

t → +∞;

(ii) If S×M is empty, then limt→+∞‖(σ(t), ω(t))‖ = +∞.

Proof. (i) This is precisely the assertion of Theorem III.1.

(ii) Suppose, to the contrary, that there exists a sequence

tn → +∞ such that

sup {‖(σ(tn), ω(tn))‖ | n ∈ N} < +∞.

Then (σ(t), ω(t))t>0 admits at least one weak sequential

cluster point, that is, there exist (σ̄, ω̄) ∈ X × Y and a sub-

sequence of tn → +∞ (again denoted by tn → +∞) such

that (σ(tn), ω(tn)) ⇀ (σ̄, ω̄) weakly in X×Y as n → +∞.

Following the derivations in the proof of Theorem III.1(ii),

we know that for any (ξ, η) ∈ X × Y ,

lim sup
n→+∞

(

L(σ(tn), η)− L(ξ, ω(tn))
)

≤ 0.

Using again that L( · , η) and −L(ξ, · ) are both weakly lower

semi-continuous, we obtain

L(σ̄, η)− L(ξ, ω̄) ≤ 0,

implying that (σ̄, ω̄) ∈ S ×M .

Let us conclude this section with a classical localization re-

sult of the weak limit of the average of a solution of (AH).

To this end, we introduce the notion of the asymptotic center

of a bounded solution (x, λ) : [0,+∞) → X × Y of (AH);

cf. Edelstein [20]. Given (y, η) ∈ X × Y , consider

φ(y, η) = lim sup
t→+∞

‖(x(t), λ(t)) − (y, η)‖2

such that φ is continuous, strictly convex (in fact, 2-strongly

convex) and coercive, that is, lim‖(y,η)‖→+∞ φ(y, η) = +∞.

As a consequence, φ admits a unique minimizer, denoted by

ac(x, λ), which is called the asymptotic center or “shadow

limit” of (x, λ); see, e.g., Aubin and Cellina [19].

Following Brézis [21], the next result localizes the weak

limit of the average of a solution of (AH) as the asymptotic

center of the solution itself. We provide its proof for com-

pleteness.

Proposition III.4. Let S×M be non-empty and let (σ̄, ω̄) ∈
S×M be such that (σ(t), ω(t)) ⇀ (σ̄, ω̄) weakly in X ×Y
as t → +∞. Then (σ̄, ω̄) is the asymptotic center ac(x, λ).

Proof. Let (σ̄, ω̄) ∈ S × M be such that (σ(t), ω(t)) ⇀
(σ̄, ω̄) weakly in X×Y as t → +∞. Given (ξ, η) ∈ X×Y ,

we have for any t ≥ 0,

‖(x(t), λ(t)) − (σ̄, ω̄)‖2 = ‖(x(t), λ(t)) − (ξ, η)‖2

+2〈(x(t), λ(t)) − (ξ, η), (ξ, η) − (σ̄, ω̄)〉

+ ‖(ξ, η)− (σ̄, ω̄)‖2.

Integrating this equality over [0, t] and subsequently dividing

by t > 0 gives

1

t

∫ t

0

‖(x(τ), λ(τ)) − (σ̄, ω̄)‖2 dτ

=
1

t

∫ t

0

‖(x(τ), λ(τ)) − (ξ, η)‖2 dτ

+2〈(σ(t), ω(t))− (ξ, η), (ξ, η) − (σ̄, ω̄)〉

+ ‖(ξ, η)− (σ̄, ω̄)‖2.

(2)

Since (σ̄, ω̄) ∈ S × M , it follows from Proposition II.3(ii)

that

lim
t→+∞

‖(x(t), λ(t)) − (σ̄, ω̄)‖2 exists.

Moreover, in view of the classical Cesàro property, we read-

ily obtain

φ(σ̄, ω̄) = lim
t→+∞

1

t

∫ t

0

‖(x(τ), λ(τ)) − (σ̄, ω̄)‖2 dτ .

Owing to the fact (σ(t), ω(t)) ⇀ (σ̄, ω̄) weakly in X×Y as

t → +∞, taking the upper limit in equation (2) yields

φ(σ̄, ω̄) + ‖(ξ, η)− (σ̄, ω̄)‖2

= lim sup
t→+∞

1

t

∫ t

0

‖(x(τ), λ(τ)) − (ξ, η)‖2 dτ

≤ lim sup
t→+∞

‖(x(t), λ(t)) − (ξ, η)‖2

= φ(ξ, η).

The preceding derivations being true for any (ξ, η) ∈ X×Y ,

we conclude the result.

IV. REFINED ERGODIC ESTIMATES

In this section, we refine some of our previous results by

further exploiting the structure of the linear and continuous

operator A. In particular, let us assume that A : X → Y is

bounded from below2, i.e.,

∃β > 0 ∀x ∈ X, ‖Ax‖Y ≥ β‖x‖X .

The following proposition provides a refined asymptotic

estimate on the primal-dual gap function.

Proposition IV.1. Let S×M be non-empty, let A : X → Y
be bounded from below, and let (σ, ω) : (0,+∞) → X × Y
be the Cesàro average of a solution of (AH). Then, for any

(ξ, η) ∈ S ×M , it holds that

L(σ(t), η) − L(ξ, ω(t)) = O
( 1

t2

)

as t → +∞;

‖σ(t)− ξ‖X = O
(1

t

)

as t → +∞.

2We recall that A : X → Y is bounded from below if and only if it is
injective with closed range; see, e.g., Brézis [22].
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Proof. Let (ξ, η) ∈ S×M . Since A is bounded from below

there exists β > 0 such that for any t > 0,

β‖σ(t)− ξ‖X ≤ ‖A(σ(t) − ξ)‖Y

=
1

t

∥

∥

∥

∫ t

0

A(x(τ) − ξ) dτ
∥

∥

∥

Y
.

Using (AH) together with Aξ = b, we obtain

β‖σ(t)− ξ‖X ≤
1

t

∥

∥

∥

∫ t

0

λ̇(τ) dτ
∥

∥

∥

Y

=
1

t
‖λ(t)− λ0‖Y .

Observing that λ remains bounded, cf. Proposition II.3(iii),

there exists C ≥ 0 such that for any t > 0,

β‖σ(t) − ξ‖X ≤
C

t
.

Multiplying the above inequality by t > 0 and subsequently

passing to the upper limit as t → +∞ entails

lim sup
t→+∞

t‖σ(t)− ξ‖X < +∞.

On the other hand, we immediately observe from inequal-

ity (1) that for any t > 0,

〈T (σ(t), ω(t)), (σ(t), ω(t)) − (ξ, η)〉

≥ L(σ(t), η) − L(ξ, ω(t)).

Combining this inequality with the basic identity

〈T (σ(t), ω(t)), (σ(t), ω(t)) − (ξ, η)〉

= 〈∇f(σ(t)) −∇f(ξ), σ(t) − ξ〉X ,

we obtain

L(σ(t), η) − L(ξ, ω(t))

≤ 〈∇f(σ(t)) −∇f(ξ), σ(t) − ξ〉X .

Since x is bounded, cf. Proposition II.3(iii), it follows that σ
remains bounded as well. Owing to the fact that ∇f is Lip-

schitz continuous on the bounded subsets of X , there exists

L ≥ 0 such that for any t > 0,

L(σ(t), η)− L(ξ, ω(t)) ≤ L‖σ(t)− ξ‖2X .

Multiplying the previous inequality by t2 > 0 and observing

that t2‖σ(t)− ξ‖2X remains bounded from above, passing to

the upper limit as t → +∞ yields

lim sup
t→+∞

t2
(

L(σ(t), η)− L(ξ, ω(t))
)

< +∞,

concluding the desired estimates.

V. NUMERICAL EXPERIMENTS

In this section, we provide two simple, yet representative,

numerical experiments that allow for a direct exposition of

our main results.

Example 1 (Ergodic convergence). Let X,Y = R. Take f =
0, A = Id and b = 0 so that

L : R× R −→ R

(x, λ) 7−→ λx

with S ×M = {(0, 0)}. In this case, the (AH) differential

system reads
{

ẋ+ λ = 0

λ̇− x = 0.

Clearly, the non-stationary solutions (x(t), λ(t)) of the above

(AH) differential system remain bounded but do not admit

a limit as t → +∞. Figure 1 illustrates the trajectories of a

solution (x(t), λ(t)) of (AH) together with its Cesàro av-

erage (σ(t), ω(t)) as well as the evolution of the quantity

‖(σ(t), ω(t))− (σ̄, ω̄)‖ with (σ̄, ω̄) ∈ S×M . The initial da-

ta of the (AH) solution is chosen as (x0, λ0) = (1, 0).

Example 2 (Refined ergodic estimate). Let X,Y = R
2 and

consider f(x) = (x1+x2)
2/2 with x = (x1, x2). Further, let

A = IdR2 and b = 0R2 so that A is bounded from below and

L : R2 × R
2 −→ R

(x, λ) 7−→ f(x) + 〈λ, x〉

with S × M = {(0R2 , 0R2)}. The trajectories of a solution

component x(t) = (x1(t), x2(t)) of (AH) along with its Ce-

sàro average σ(t) = (σ1(t), σ2(t)) as well as the evolution

of the primal-dual gap function L(σ(t), ω̄)−L(σ̄, ω(t)) with

(σ̄, ω̄) ∈ S ×M are depicted in Figure 2. The initial data is

set to x0 = (−1,−1) and λ0 = (−2, 0).

APPENDIX

For the following classical result, named the Opial–Passty

lemma, the reader is referred to Passty [23].

Lemma A.1 (Opial–Passty). Let X be a real Hilbert space,

let S be a non-empty subset of X , and let x : [0,+∞) → X
be continuous. For any t > 0, set

σ(t) =
1

t

∫ t

0

x(τ) dτ

and assume that

(i) for all ξ ∈ S, limt→+∞‖x(t)− ξ‖X exists;

(ii) ∀tn → +∞ such that σ(tn) ⇀ σ̄ weakly in X , it holds

that σ̄ ∈ S.

Then σ(t) converges weakly, as t → +∞, to some element

σ̄ ∈ S.
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