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Abstract— Many multiagent system applications necessitate
each agent to separately visit a specific location in space at
a particular moment in time (i.e., spatiotemporal points). To
this end, we propose a finite-time distributed control protocol
over directed acyclic graphs that addresses the problem of
multiagent placement at spatiotemporal points. In particular,
we demonstrate that the proposed protocol can drive the
trajectories of agents to their spatiotemporal points at different
user-defined times by employing methods ranging from time
transformation to input-to-state stability and Lyapunov stabil-
ity. To show the efficacy of the proposed protocol, we also give
two illustrative numerical examples.

I. INTRODUCTION

Multiagent systems are essential in scientific, civilian,
and military applications such as collaborative surveillance,
reconnaissance, and control of underwater, ground, aerial,
and space teams. With growing interest, significant research
has advanced distributed control protocols that are based on
local, agent-to-agent information exchange (e.g., see [1]–[3]
for the seminal books on the topic). Specifically, consen-
sus [4]–[6] and bipartite consensus [7]–[9] are two widely
studied “leaderless” problems (i.e., all agents perform a task
without an external command), in which the trajectories
of agents converge to an agreement point or disagreement
points. On the other hand, pinning [10]–[12] and containment
[13]–[15] are two widely studied “leader-follower” problems,
in which the trajectories of agents synchronize with an
external command for the former problem and the trajectories
of agents converge to the convex hull spanned by external
commands for the latter problem (i.e., agents that know
the external commands are referred to as leaders or root
agents). The current state-of-the-art literature also extends
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leaderless and leader-follower problems to formation control,
coverage control, flocking, axial alignment, and distributed
optimization, to name but a few examples.

The shared feature of all the above problems is that agents
achieve a task at the same time, either asymptotically or
in finite time. Yet, many multiagent system applications
such as environmental monitoring, information gathering
and resource extraction, transportation and delivery, and
task assignment, necessitate each agent to separately visit a
specific location in space at a particular moment in time (i.e.,
spatiotemporal points). As an example, consider a scenario
with two agents, where the first agent is required to visit
a spatial point p1 at a time T1 and the second agent is
required to visit another spatial point p2 at a time T2 (within
this setting, both these spatial points and their corresponding
times are available to one of these agents that is the leader
or the root agent). To address this problem, a distributed
control protocol is needed since the root agent possesses
the information on the multiagent task. However, none of
the existing distributed control protocols given in the above
paragraph can be used since T1 does not necessarily equal
T2, which means that these agents do not perform this task
simultaneously (e.g., T1 < T2).

To this end, this paper introduces a new and novel finite-
time distributed control protocol over directed acyclic graphs
to address the problem of multiagent placement to spa-
tiotemporal points. First, the conditions at the user-defined
times are defined to make the problem feasible. Next, it
is demonstrated that the proposed protocol can drive the
trajectories of agents to their spatiotemporal points at differ-
ent used-defined times by employing methods ranging from
time transformation to input-to-state stability and Lyapunov
stability. Then, it is shown that the control signals of each
agent are bounded and continuous. In what follows, Section
II rigorously define the considered problem, Section III
presents our main system-theoretical results, and Section IV
presents two illustrative numerical examples. Conclusions are
then summarized in Section V.

II. PROBLEM FORMULATION

In this section, we first state the fairly standard mathemat-
ical and graph-theoretical notation used in this paper and we
then rigorously define the problem of multiagent placement
to spatiotemporal points.
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A. Notation

Throughout this paper, R represents the set of real num-
bers, R+ represents the set of positive real numbers, R+

represents the set of nonnegative real numbers, and “≜”
represents the equality by definition. Furthermore, G =
(V, E) represents a fixed, connected, and directed graph with
V = {v1, . . . , vp} and E ⊂ V × V respectively being a
nonempty finite set of n nodes and a set of edges. We also
say that an edge is rooted at node vj and is ended at node
vi when vi gets information from vj (i ∼ j is used to
represent this neighboring relation). In addition, a directed
path from node vi to node vj is a sequence of successive
edges in the form (vi, vp), (vp, vq), . . . , (vr, vj). A directed
graph G has a spanning tree when there is a directed path
to every other node from the root nodes in the graph G.
For the main results of this paper, we consider a fixed,
connected, and directed acyclic graph G that models agent-
to-agent information exchange, where we make the standard
spanning tree assumption.

B. Multiagent Placement to Spatiotemporal Points

For the purpose of defining the problem of multiagent
placement to spatiotemporal points, consider a multiagent
system with n agents over a fixed, connected, and directed
acyclic graph G. Consider also n spatiotemporal points
(pi, Ti) that each agent must visit, where Ti represents a
nonidentical user-defined time for each agent. In addition,
consider that the root agent(s) generates a command that
is bounded and the time rate change of this command is
also bounded (see Figure 1 for such an exemplary command
generated through spline interpolation).

Note that the spatiotemporal points are available only to
the root agent(s) because of the operation’s security since
root agent(s) generally constitute a sufficiently small portion
of the entire multiagent system. Note also that the user-
defined time Ti is available to the corresponding agent i
before executing the proposed protocol below. If this is not
desired, one can use the theory of multiplex networks [12] to
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Fig. 1. Through spline interpolation, we generate a command signal c(t)
(black line) for the purpose of connecting the initial command signal c(0)
(gray dot with white fill) with given spatiotemporal points (pi, Ti) (gray
dots with gray fills) such that c(Ti) = (pi, Ti), where i = 1, . . . , 8.
Compared with a single high-degree polynomial fit to all spatiotemporal
points at once, spline interpolation does not result in over-fitting.

add another graph layer to locally distribute the user-defined
times Ti. In this case, the added graph layer needs to have the
leader-follower nullspace control structure [16] blended with
the finite-time approach [17] so that the local distribution of
these user-defined times can be completed before the min-
imum user-defined time Tmin ≜ min{T1, . . . , Tn}. Finally,
one needs to complete generating the command signal c(t)
before executing the proposed protocol below.

Next, the results of this paper apply to the scalar dynamics
of each agent given by

ẋi(t) = ui(t), xi(0) = xi0. (1)

In (1), the state and the control signal of an agent are
respectively represented by xi(t) ∈ R and ui(t) ∈ R, i =
1, . . . , n. Furthermore, the proposed multiagent placement
control protocol has the form given by

ui(t) =

{
− α

Ti−tfi(xi(t), x̂j(t), c(t)), t < Ti,

0, t ≥ Ti,
(2)

fi(·) =
∑
i∼j

(xi(t)− x̂j(t)) + ki(xi(t)− c(t)), (3)

with α ∈ R+ being a gain chosen before this protocol’s
execution and ki = 1 for the root agent(s) and otherwise
ki = 0. Moreover, x̂i(t) ∈ R represents the virtual state of
an agent satisfying

˙̂xi(t) =

{
− α

Ti−t f̂i(x̂i(t), x̂j(t), c(t)), t < Ti,

−β1sgn
(
f̂i(·)

)
− β2f̂i(·), t ≥ Ti,

(4)

f̂i(·) =
∑
i∼j

(x̂i(t)− x̂j(t)) + ki(x̂i(t)− c(t)), (5)

with β1 ∈ R+ and β2 ∈ R+ being the gains that are
also chosen before this protocol’s execution. Considering the
proposed multiagent placement control protocol given above,
one may use heterogeneous gains αi ∈ R+, β1i ∈ R+, and
β2i ∈ R+ as desired, where the main results of this paper
only experience minor modifications in this case.

At this point, we can proceed to define the multiagent
placement problem:

i) The state xi(t) of agent i approaches its spatiotemporal
point (pi, Ti) at the user-defined time Ti; that is,

lim
t→Ti

(
xi(t)− (pi, Ti)

)
= 0, i = 1, . . . , n. (6)

ii) The state xi(t) of agent i stays at its spatial point
(pi, Ti) over t ∈ [Ti,∞); that is,

xi(t)− (pi, Ti) = 0, t ≥ Ti, i = 1, . . . , n. (7)

iii) All closed-loop signals including the control signals of
agents remain bounded for all time.

iv) The control signals of agents remain continuous at their
switching instants.

Although i) and ii) provide a mathematical definition of the
multiagent placement problem, iii) and iv) are also necessary
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to ensure the well-posedness of the problem. The next
section demonstrates that the proposed protocol can solve
the problem when the following assumptions are met.

Assumption 1. The user-defined time Ti of node vi is
greater than the user-defined times of its neighbors in which
this node receives information.

Assumption 2. The condition given by

α(di + ki)− 1 (8)

is positive for each agent with di being the degree of node
i and β1 > ¯̇c, |ċ(t)| ≤ ¯̇c.

Assumption 3. The condition given by

lim
t→Ti

ċ(t) = 0 (9)

holds at each switching instant.

Assumption 1 can be easily satisfied for a given fixed,
connected, and directed acyclic graph G. To clarify this,
consider the graph G in Figure 2, where nodes 1, 2, and
3 are root agents, and the graph clearly meets the spanning
tree assumption. Now, examine three specific cases a), b),
and c) as highlighted in the figure. For the agents in case a),
Assumption 1 dictates that their user-defined times should
be chosen as T6 > T4 > T1. For the agents in case b), the
assumption requires T7 > T5 > T2 and T7 > T3, with the
selection of T3 being independent of T2 and T5. In case c),
Assumption 1 further necessitates that T12 > T10 > T9 and
T12 > T11 > T9 with the selection of T11 not affecting T10

as long as both exceed T9. In addition, T9 must be greater
than both T7 and T8. A similar reasoning applies to all other
agents in this graph G. Assumption 2 can also be easily
satisfied not only for α but also for β1. This is because the
root node(s) generate the bounded command signal c(t) with
a bounded time rate of change before executing the proposed
protocol. As a result, they are aware of the upper bound ¯̇c or a
conservative estimate of it, which can be used to determine
β1. Note that Assumptions 1 and 2 are needed to address
i), ii), and iii) in the next section. Finally, Assumption 3 is
necessary to address iv) as jumps in the control signals of
agents occur when it is not satisfied. The constraint

ċ(Ti) = 0 (10)

must be considered when applying the spline interpolation
approach to ensure this assumption is met. For instance, this
constraint is incorporated in Figure 1, where Assumption 3
is satisfied for all points i = 1, . . . , 8.

III. SYSTEM-THEORETICAL RESULTS

This section presents several theorems to demonstrate that
the proposed protocol given in the previous section can
drive the trajectories of agents to their spatiotemporal points
at different user-defined times. While the proofs of these
theorems will be reported elsewhere, it is worth mentioning
that the time transformation method [17] is used in the proofs
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Fig. 2. A fixed, connected, and directed acyclic graph with nodes 1, 2, and
3 being root agents, where this graph satisfies the spanning tree assumption.

of Theorems 1 and 4; input-to-state stability is used in the
proofs of Theorems 1, 4, and 5; Lyapunov stability is used
in the proof of Theorem 3; and an analysis predicated on the
initial conditions of each agent at their switching instants is
used in the proof of Theorem 2.

The first main result of this paper is now introduced, which
shows how the proposed control protocol for multiagent
placement solves problem i).

Theorem 1. Consider a multiagent system over a fixed,
connected, and directed acyclic graph G, where the dynamics
of each agent satisfies (1). Consider also the multiagent
placement control protocol given by (2), (3), (4), and (5).
If the user-defined times satisfy Assumption 1, then i) holds.

The second main result of this paper is now introduced,
which shows how the proposed control protocol for multia-
gent placement solves problem ii).

Theorem 2. Consider a multiagent system over a fixed,
connected, and directed graph G, where the dynamics of each
agent satisfies (1). Consider also the multiagent placement
control protocol given by (2), (3), (4), and (5). If the user-
defined times satisfy Assumption 1, then ii) holds.

The third main result of this paper is now introduced,
which shows how the proposed control protocol for mul-
tiagent placement solves problem iii). To this end, the
boundedness of all state and virtual state signals is first
shown in Theorem 3, and the boundedness of the control
and virtual control signals (i.e., the right side of (4)) is then
shown in Theorem 4.

Theorem 3. Consider a multiagent system over a fixed,
connected, and directed graph G, where the dynamics of each
agent satisfies (1). Consider also the multiagent placement
control protocol given by (2), (3), (4), and (5). If the user-
defined times satisfies Assumption 1 and the gain β1 satisfies
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the condition in Assumption 2, then the state xi(t) and the
virtual state x̂i(t) of agent i are bounded, and

x̂i(t)− c(t) = 0, t ≥ Ti, i = 1, . . . , n. (11)

Theorem 4. Consider a multiagent system over a fixed,
connected, and directed graph G, where the dynamics of each
agent satisfies (1). Consider also the multiagent placement
control protocol given by (2), (3), (4), and (5). If the user-
defined times satisfy Assumption 1 and the gain α satisfies
the condition in Assumption 2, then the control signal ui(t)
and the virtual control signal ûi(t) (i.e., the right side of (4))
are bounded.

The boundedness of the control signal ui(t) and the virtual
control signal ûi(t) for agent i, i = 1, . . . , n, is demonstrated
in Theorem 4. If these signals are to be kept from taking large
values as t approaches Ti due to the term “ 1

Ti−t ,” one can
saturate this term over t ∈ [Tsi, Ti) as “ 1

Ti−Tsi
” for some

Tsi < Ti. We refer to [18, Section 4] for details.
Finally, the fourth main result of this paper is now intro-

duced, which shows how the proposed control protocol for
multiagent placement solves problem iv).

Theorem 5. Consider a multiagent system over a fixed,
connected, and directed graph G, where the dynamics of each
agent satisfies (1). Consider also the multiagent placement
control protocol given by (2), (3), (4), and (5). If Assump-
tions 1, 2, and 3 hold, then iv) holds.

IV. ILLUSTRATIVE NUMERICAL EXAMPLES

In this section, two illustrative numerical examples are
presented to demonstrate the efficacy of the multiagent
placement control protocol introduced in Section II.

A. One Dimensional Numerical Example

In the first example, eight agents (i.e., n = 8) are
considered over a fixed, connected, and directed path graph
G, where the first agent is the root agent. The spatiotemporal
points (pi, Ti) are selected as shown in Figure 1 with the
root agent utilizing the generated command depicted in the
same figure. We choose the gains in (2) and (4) as α = 2,
β1 = 4, and β2 = 4, and we randomly select the initial
conditions of all agents from the interval (−1, 1). It should
be noted that Assumptions 1, 2, and 3 hold, and to prevent
the chattering phenomenon in the control signals of agents,
sgn(x) is approximated as tanh(ρx) with ρ = 50. Figures
3 and 4 respectively show the state and control histories of
the multiagent system. Observe that the proposed protocol
achieves i), ii), iii), and iv) as we expect from the system-
theoretical results given in Section III.

B. Two Dimensional Numerical Example

In the second example, it is shown that the proposed
multiagent placement control protocol can be applied to
a multiple-dimensional problem without modification. In
particular, twelve agents (i.e., n = 12) are considered over
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Fig. 3. State histories of the multiagent system.
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Fig. 4. Control histories of the multiagent system.

the fixed, connected, and directed graph G shown in Figure 2,
where the first three agents are as the root agents. We select
the spatiotemporal points (pi, Ti) to be uniformly distributed
along a circle with a 4-unit radius. In addition, we choose the
gains as α = 2, β1 = 5, and β2 = 5, and we randomly select
the initial conditions of all agents from the interval (−1, 1).
It should be noted that Assumptions 1, 2, and 3 hold, and
to prevent the chattering phenomenon in the control signals
of agents, sgn(x) is approximated as tanh(ρx) with ρ = 50.
Figure 5 shows the state histories of the multiagent system,
where Figures 6 and 7 respectively show the control histories
of the multiagent system along x-axis and y-axis. Once again,
observe that the proposed protocol achieves i), ii), iii), and
iv) as we expect from the system-theoretical results given in
Section III.

V. CONCLUSION

We proposed a finite-time distributed control protocol over
directed acyclic graphs to solve the problem of multiagent
placement to spatiotemporal points. To this end, we first
mathematically defined the problem in i), ii), iii), and iv),
and then provided the conditions in Assumptions 1, 2, and 3
to ensure the feasibility of the problem. Section III presented
Theorem 1 to solve i), Theorem 2 to solve ii), Theorems 3
and 4 to solve iii), and Theorem 5 to solve iv) using methods
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Fig. 5. State histories of the multiagent system.
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Fig. 6. Control histories of the multiagent system along x-axis.
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Fig. 7. Control histories of the multiagent system along y-axis.

ranging from time transformation to input-to-state stability
and Lyapunov stability. Finally, to demonstrate the efficacy
of the proposed finite-time distributed control protocol in
driving the trajectories of agents to the given spatiotemporal
points at different user-defined times, we provided two
illustrative numerical examples in Section IV.

While this study introduces a novel finite-time distributed
control protocol for multiagent placement to spatiotemporal

points, future research could focus on several essential direc-
tions. One critical area is generalizing the proposed protocol
from acyclic directed graphs to general directed graphs. To
this end, the first future research direction may involve this
extension as many real-world networks are represented by
general directed graphs that may contain cycles and do not
necessarily have a clear hierarchical structure. The second
future research direction may involve experimentally validat-
ing the proposed protocol in real-world scenarios including
exogenous disturbances and system uncertainties as well as
communication delays and measurement noise. Finally, the
third future research direction may involve the extension of
our results to second or higher-order agent dynamics.
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