
Towards minimal data rate enforcing regular safety properties: An
invariance entropy approach

Mahendra Singh Tomar and Majid Zamani

Abstract— The study of minimal data rate for control using
some notions of entropy has been so far limited to classical
control tasks such as set invariance, state-estimation, or stabi-
lization. In this work, for the first time, we present a study
on sufficient data rates to enforce regular safety properties
over uncertain systems with dynamics described by set valued
maps. Every regular safety property has a set of bad prefixes
which can be modelled by a deterministic finite automaton
(DFA). The main idea is to construct a hybrid system by
taking the product of the deterministic finite automata with
the given system and studying the invariance feedback entropy
(IFE) of controlled invariant sets of the hybrid system. If there
exists a nonempty controlled invariant set for the hybrid system
satisfying a certain property then there exists a coder-controller
with a data rate not less than the IFE that can enforce the
regular safety property over the original control system. We
demonstrate the effectiveness of our results by designing a
coder-controller enforcing a regular safety property over a
linear control system.

I. INTRODUCTION

A networked control system has a large number of devices
distributed spatially. Many such devices exchange infor-
mation over some digital communication channel that can
only transmit a finite number of bits per unit of time. For
efficient utilization of the channel’s transmission capacity,
each device should use a small number of bits/time (data
rate). The smaller the data rate, the more devices can share
the same channel. This gives rise to the study of smallest
data rate needed in the feedback path that permits the
satisfaction of a given control task. Consider the simple
case of one system together with its associated coder and
controller as shown in Fig. 1. Since only a finite number of
bits can be transmitted at any given time, the exact value
of information collected by sensors cannot be transmitted
with complete accuracy. Therefore, only a finite precision of
information is transmitted and thus there is an inexactness in
the information received at the controller/decoder side. The
smaller the number of bits used, the lower is the precision of
information received at the controller side. For control tasks
such as state estimation or set invariance, it has been shown
that the feedback data rate cannot be smaller than a lower
limit which can be identified in terms of some notions of
entropy, see [1],[2].
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For linear control systems and specifications such as
stabilization, observation, and set invariance, it has been
shown that the minimum data rate above which those speci-
fication can be enforced is given by the unstable eigenvalues
of the system matrix (see e.g. [3], [1], [4]). There is an
extensive literature studying limited feedback data rate for
linear control systems, see e.g. [5] and references therein.
Comprehensive reviews of results on data rate limited control
can be found, e.g., in [6], [7], [8], [9], [10], [4].

The control specifications that we consider in this work
are called regular safety properties [11]. A safety property
is a set of infinite words over a finite alphabet, such that
every infinite word that violates the safety property has a
finite bad prefix. A safety property is called regular if its
set of bad prefixes constitutes a regular language. This set
of bad prefixes can be described via a deterministic finite
automata (DFA) that involves a set of accepting-states [11].
If an accepting-state is reached in any finite trace of the DFA,
then the safety property is violated. Verifying a regular safety
property for a system can be reduced to an invariant checking
on the product of the system and a DFA recognizing bad
prefixes of the safety property [11]. By taking the product
of the DFA with a given control system, one obtains a hybrid
control system. Any trajectory of the hybrid system conforms
to some trace of the DFA. If the hybrid system evolves over a
hybrid domain that does not intersect states corresponding to
the accepting-states of the DFA, then closed-loop trajectories
satisfy the regular safety property. Hence, we focus on
controlled invariant sets of the hybrid system that do not
intersect the accepting states of the DFA, and that have non
empty intersection with the initial set of states in the hybrid
domain. Any coder-controller that renders these sets invariant
also enforces the regular safety property over the original
control system.

For uncertain control systems, the necessary state informa-
tion required by any controller, to make a subset of the state
space invariant, is quantified by invariance feedback entropy
(IFE) [12]. In other words, the IFE characterizes the smallest
asymptotic average data rate, from the coder to the controller,
above which the subset can be made invariant over a digital
noiseless channel. In this work, we study IFE of hybrid
controlled invariant sets of products of control systems and
their DFAs. If the IFE is finite, then there exists a coder-
controller with a data rate not less than the IFE such that
the regular safety property can be enforced over the original
control system.

We consider uncertain control systems with dynamics
described by set valued maps. First, we show that the IFE of
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Fig. 1. Coder-controller feedback loop.

a given controlled invariant set of the hybrid system is lower
bounded by the IFE of the projection of the hybrid controlled
invariant set onto the original control system. For the case
of discrete time linear control systems (dtLCS), this lower
bound can be expressed in terms of the unstable eigenvalues
of the systems matrices. Then we present the relationship
between the invariance feedback entropy of the constructed
hybrid system and the smallest feedback data rate enforcing
the regular safety property over the original system. For the
particular case of invariance as a regular safety property, the
minimal data rate for the original system is equal to the
invariance feedback entropy of the hybrid system. We also
show that the lower bound is tight for the case of invariance
as a regular safety property. This result can be potentially
helpful to analyze hybrid systems by focussing on parts of
the DFA describing the bad prefixes. Further, we discuss a
class of regular safety properties (identified by the structure
of the DFA describing bad prefixes) such that, for dtLCS,
the smallest required data rate is upper bounded in terms
of the unstable eigenvalues of the system matrix. Finally,
we present a two dimensional linear system and describe a
coder-controller that enforces a given regular safety property
and operates at a data rate equal to the derived upper bound.

II. PRELIMINARIES
A. Notation

We use R and Z to denote sets of real numbers and
integers, respectively. Restriction of such a set is denoted
with subscript annotation, e.g., Z≥0 denotes the non-negative
integers. By [k1; k2] we denote the set of integers {j ∈ Z |
k1 ≤ j ≤ k2}. For a finite set A, we use #A to denote
the number of elements of A. We denote the closed and
right half-open intervals in Z by [a; b] and [a; b), respectively.
The restriction of a map F : A → B to a subset M ⊆ A
is denoted by F |M . The notation F : A ⇒ B denotes a
set-valued map, i.e., for a ∈ A, F (a) ⊆ B. We use BA

to denote the set of all functions f : A → B. For a set
B, a sequence α = {α(t)}nt=0 ∈ B[0;n] and τ ≤ n, the
concatenation of A ⊆ B to a sub-sequence α|[0;τ ] is denoted
by α|[0;τ ]A. For x ∈ Rn and W ⊂ Rn by x+W we denote
the set {x + w | w ∈ W}. We use spec(A) to denote the
multiset of eigenvalues of a matrix A and it is such that if
any eigenvalue has algebraic multiplicity a then it appears
a times in spec(A). A cover of a set Q is a collection of
subsets of Q such that the union of the sets in the collection
contains Q. An underline, e.g., X , denotes that the quantity
belongs to the hybrid domain.

First we recall the definition of invariance feedback en-
tropy and the associated terms. Then, we describe determin-

istic finite automata (DFA) which are used together with a
given control system to define hybrid systems.

B. Invariance Feedback Entropy
We define a system as a triple

Σ = (X,U, F ),

where X and U are nonempty sets and F : X × U ⇒ X is
a set-valued transition map such that for all xt ∈ X , ut ∈ U
we have xt+1 ∈ F (xt, ut) ̸= ∅.

Given a nonempty set Q ⊆ X , a cover A of Q and a
map G : A → U , the tuple (A, G) is called an invariant
cover (A, G) of Σ and Q if A is finite and for all A ∈
A we have F (A,G(A)) ⊆ Q. Here, F (A,G(A)) refers to
∪x∈AF (x,G(A)). An invariant cover immediately provides
a coder-controller scheme that keeps the trajectories starting
in the set Q confined within it and operates at a data rate of
log2 #A bits/sec.

For τ ∈ Z>0, let S ⊆ A[0;τ) be a set of sequences in A
of lengths τ . For α ∈ S and t ∈ [0; τ − 1) define

PS(α|[0;t]) := {A ∈ A | α|[0;t]A = α̂|[0;t+1],

for some α̂ ∈ S}, (1)

as the set of immediate successor cover elements A of α|[0;t]
in S and for t = τ − 1

PS(α|[0;t]) :={A ∈ A | A = α̂(0), for some α̂ ∈ S},

as the set of the first elements α̂(0) of the members α̂ of S. A
set S ⊆ A[0;τ) is called (τ,Q)-spanning in (A, G) if PS(α)
with α ∈ S covers Q and for every α ∈ S, t ∈ [0; τ − 1),

F (α(t), G(α(t))) ⊆
⋃

A′∈PS(α|[0;t])

A′. (2)

For every (τ,Q)-spanning set S, we define an expansion
number N(S) as

N(S) := max
α∈S

τ−1∏
t=0

#PS(α|[0;t]).

Note that a (τ,Q)-spanning set also provides a coder-
controller scheme to enforce invariance of the set Q.
This scheme is τ periodic and requires a data rate
(1\τ) log2(N(S)) that can be lower than log2 #A.

For a given invariant cover (A, G), we denote by
rinv(τ,A, G,Σ) the smallest expansion number possible for
any (τ,Q)-spanning set in (A, G), i.e.,

rinv(τ,A, G,Σ) := min{N(S) | S is
(τ,Q)-spanning in (A, G)}.

Then the entropy of the invariant cover (A, G) is given by

h(A, G) := lim
τ→∞

1

τ
log2 rinv(τ,A, G,Σ),

where the existence of the limit follows from the subaddi-
tivity of log2 rinv(·,A, G,Σ) [12]. The invariance feedback
entropy (IFE) of Σ and Q is defined as

hinv(Q,Σ) := inf
(A,G)

h(A, G),
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where the infimum is taken over all invariant covers (A, G)
of Σ and Q, using the convention that inf ∅ = ∞.

The data rate theorem in [13] shows that the invariance
feedback entropy tightly lower bounds the data rate amongst
the set of coder-controllers that can make the set Q invariant.

Next, we formally define dtLCS and DFA describing bad
prefixes of some safety property. Then, we introduce the
definition of a hybrid system and its controlled invariant sets
called HCI sets. A nonempty HCI set identifies a set of initial
states such that trajectories of the original control system,
starting from this set, satisfy the regular safety property.

C. Some definitions

Definition 1 (dtLCS): A discrete-time linear control sys-
tem (dtLCS) is a system Σ = (X,U, F ) with X = Rn,
U = Rm, and F given as

∀x∈X∀u∈U F (x, u) = Ax+Bu+W, (3)

where A ∈ Rn×n, B ∈ Rn×m and the disturbance set W ⊂
Rn is Lebesgue measurable.

Definition 2 (DFA): A deterministic finite automaton is a
tuple A = (Q, q0,Π, δ, Acc) where Q is a finite set of states,
q0 ∈ Q is the initial state with q0 /∈ Acc, Π is a finite set of
alphabet, δ : Q×Π → Q is a transition map, and Acc ⊆ Q
denotes the accepting states.

In this work we focus on regular safety properties whose
set of bad prefixes can be described by a DFA.

We also consider a labeling function L : X → Π that
assigns to every state in X an element of the set of alphabet
of the DFA. The set of alphabet Π = {σ1, . . . , σM} together
with the labeling function L provide a partition of the state
set X = ∪M

j=1Xj , where Xj = L−1(σj).
Definition 3 (Hybrid system): Consider a system Σ =

(X,U, F ), a DFA A = (Q, q0,Π, Acc), and a labeling
function L : X → Π. The product of Σ and A is a hybrid
system defined as

Σp := (X,U, F ), (4)

where X := {(q, q′, x) ∈ Q × Q × X | (q, L(x), q′) ∈ δ},
and for (q, q′, x) ∈ X , the transition map F : X × U ⇒ X
is defined as

F
(
(q, q′, x), u

)
:= {(q′, q̂, x′) ∈ X | x′ ∈ F (x, u)}. (5)

We use π to denote the projection of A ⊂ X on X: π(A) :=
{x ∈ X | (q1, q2, x) ∈ A, for some q1, q2 ∈ Q}. Next we
define a set Acc := {(q, q′, x) ∈ X | q′ ∈ Acc} using the set
of accepting states Acc of the DFA. The set Acc is used to
describe the satisfaction of the regular safety property by a
state sequence of the hybrid system Σp as formalized below.

Consider a state sequence ξ
x
= (x(0), . . . , x(k), . . .) of

Σp with x(k) = (q1(k), q2(k), x(k)). We say ξ
x

satisfies
a regular safety property As (with a bad prefix DFA A),
denoted by ξ

x
|= As, if q1(0) = q0 and x(k) /∈ Acc for all

k ∈ Z≥0.
Note that if ξ

x
|= As, then the corresponding state

sequence (x(0), . . . , x(k), . . .) of Σ also satisfies the safety
property As.

Definition 4 (HCI set): A set Q ⊆ X\Acc is a hybrid
controlled invariant (HCI) set for Σp if ∀x ∈ Q, ∃u ∈ U

such that F (x, u) ⊆ Q. By I∗ we denote the maximal HCI
set, i.e., I∗ ⊇ Q′ if Q′ is an HCI set for Σp.

In the next section we show that the invariance feedback
entropy of any hybrid controlled invariant set is lower
bounded by the IFE of the projection of the set onto the
original control system.

III. RELATION BETWEEN ENTROPIES OF Σ AND Σp

The following theorem establishes that any finite average
feedback data rate which can be used to make a hybrid set
controlled invariant is also sufficient to render the projection
of the set invariant.

Theorem 1: Consider a system Σ = (X,U, F ), a regular
safety property As with a bad prefix DFA A, the hybrid
system Σp as in (4) and a nonempty compact HCI set Q.
The invariance feedback entropy of Σp and Q satisfies

hinv(Q,Σp) ≥ hinv(π(Q),Σ). (6)

Further, let Σ be a dtLCS, Q̂ := π(Q), and Rn = E1 ⊕ E2,
where E1 is an A invariant subspace of Rn with E1 ̸= {0},
and ⊕ stands for the direct sum. Let π1 : Rn → E1 be the
projection onto E1 along E2, and µ1(π1(W )) < µ1(π1(Q̂)),
also let n1 denote the dimension of the linear space E1 and
µ1 denote the n1-dimensional Lebesgue measure. Then one
gets

hinv(Q,Σp) ≥

log2

(
|detA|E1

| µ1(π1(Q̂))

(µ1(π1(Q̂))1/n1 − µ1(π1(W ))1/n1)n1

)
.

(7)
Proof: If hinv(Q,Σp) = ∞, the inequality (6) holds in-

dependently of the left-hand-side. Subsequently, we assume
that hinv(Q,Σp) < ∞. From finiteness of hinv(Q,Σp) and
[13, Lemma 3] we know that an invariant cover of Σp and
Q exists. We pick ε ∈ R>0 and an invariant cover (A2, G2)
of Σp and Q, so that h(A2, G2) ≤ hinv(Q,Σp) + ε.

Consider A1 := {π(A) | A ∈ A2}. In [13, Lemma 9],
let M = π, Q1 = π(Q), Q2 = Q, X1 = X = π(X),
X2 = X , r = identity map, U1 = U2 = U , F1 = F ,
F2 = F , Σ1 = Σ, and Σ2 = Σp. We observe that conditions
1− 3 in [13, Lemma 9] hold, while condition 4 holds with
the equality. Thus, there exists a map G∗

1 : A1 → U such
that (A1, G

∗
1) is an invariant cover of Σ and π(Q), and

h(A1, G
∗
1) ≤ h(A2, G2). By our choice of (A2, G2), we

have h(A2, G2) ≤ hinv(Q,Σp) + ε and by the definition
of invariance feedback entropy we have hinv(π(Q),Σ) ≤
h(A1, G

∗
1). Hence we get hinv(π(Q),Σ) ≤ hinv(Q,Σp)+ ε.

Since ε is arbitrary, we obtain (6).
Since Q is compact, its projection π(Q) = Q̂ is also

compact. Thus, [13, Thm. 7] together with (6) satisfies the
inequality in (7).

In the following section, we describe the coder-controller.
After that we elaborate on the significance of the study of
IFE of the hybrid system Σp in the context of the smallest
data rate needed to enforce the regular safety property over
the original system Σ.

7453



IV. THE CODER-CONTROLLER

We consider the definition of coder-controllers as intro-
duced in [13, Section V.A]. Consider the Fig. 1 with the
coder located at the sensor side. A coder-controller is a triple
C = (S, γ, δ) where S is the coding alphabet, and γ and δ
are compatible coder and controller function, respectively.
At any time step t the coder encodes the current state of
the system and transmits a symbol st ∈ S generated by
the coder function γ : ∪t∈Z≥0

X [0;t] → S. The symbol is
transmitted over a discrete noiseless channel to the controller
which generates a control input determined by the controller
function δ : ∪t∈S≥0

S[0;t] → U . Let Zτ denote the set
of all possible symbol sequences of length τ generated in
closed loop by the coder-controller. For any symbol sequence
ζ ∈ Zτ , by Z(ζ) we denote the set of all possible successor
symbols, i.e., Z(ζ) := {s ∈ S | ∃ζ̂ ∈ Zτ+1, ζ̂ = ζs}. The
transmission data rate of a coder-controller C is defined by

R(C) := lim sup
τ→∞

max
ζ∈Zτ

1

τ

τ−1∑
t=0

log2 #Z(ζ|[0;t)),

as the asymptotic worst-case average number of bits to
identify a successor symbol.

From the data rate theorem [13], we have
hinv(Q,Σ) = inf

C∈Ĉ(Q)
R(C),

where Ĉ(Q) is the set of all such coder-controllers that can
make a nonempty set Q ⊆ X invariant for system Σ.

Significance of invariance feedback entropy of the
hybrid system: Consider the maximal hybrid controlled
invariant set I∗ and an HCI set Q ⊆ I∗. Let X0 :=
{(q, q′, x) ∈ X | q = q0} denote the initial set of states
in the hybrid domain and let I∗0 := I∗ ∩ X0. Since I∗ is
an HCI set, for all x = π(x), x ∈ I∗0, there exists a set
of control sequences ω ∈ U [0;∞) that enforces the regular
safety property on the system Σ. Note that the regular safety
property is enforceable only for the states in the set π(I∗0).

By Q
0
:= Q∩X0 we denote the subset of Q included in

the initial set of states in the hybrid domain. Let C̃(π(Q
0
)) be

the set of all such coder-controllers that can enforce the given
regular safety property for the set of initial states π(Q

0
) for

the system Σ. Further, let

Rm(π(Q
0
)) := inf

C∈C̃(π(Q
0
))
R(C) (8)

denote the smallest data rate amongst the coder-controllers
in C̃(π(Q

0
)). We observe that Rm(π(Q

0
)) ≤ Rm(π(I∗0))

because π(Q
0
) ⊆ π(I∗0).

Any coder-controller that renders the trajectories starting
from Q

0
invariant in Q also enforces the regular safety

property over the system Σ for the set of initial states π(Q
0
).

Therefore, we have

Rm(π(Q
0
)) ≤ hinv(Q,Σp), (9)

i.e., the invariance feedback entropy of the HCI set Q for
the hybrid system gives a value of the data rate which is
sufficient to enforce the regular safety property for the set of
initial states π(Q

0
) of the system Σ.

q0

s s/υ

s υ

Q
X

υ q1

Fig. 2. Bad prefix DFA for invariance as a particular case of regular safety
property. Here the labelling function is: L(Q) = s and L(X\Q) = υ.

Remark 1: Consider the case Q = Q
0
. For any hybrid

state x0 = (q0, q
′, x) ∈ Q

0
and any u ∈ U , if the next

state x1 ∈ F (x0, u) is inside Q
0

then from the definition of
F in (5) we get q′ = q0. Thus, Q = Q

0
⊆ {(q0, q0, x) ∈

X0}. This implies that enforcing the regular safety property
is equivalent to enforcing invariance of Q. Therefore

Rm(π(Q
0
)) = hinv(Q,Σp).

The condition I∗ = I∗0 holds for invariance as the
particular case of regular safety property as discussed further
in the next section.

V. INVARIANTS AS REGULAR SAFETY PROPERTY

The following theorem shows that the lower bound in (6)
is tight for invariance.

Theorem 2: Consider a system Σ = (X,U, F ), a subset
Q of X , a labeling function L : X → {s, υ}, L(Q) = s,
L(X\Q) = υ and invariance as a regular safety property
with the bad prefix DFA A = (Q, q0,Π, δ, Acc) as shown in
Fig. 2. Here Q = {q0, q1}, Π = {s, v}, and Acc = {q1}.
For any nonempty HCI set Q the following relation holds

hinv(Q,Σp) = hinv(π(Q),Σ). (10)
Further, if Σ is a dtLCS as in (3) with W = {0} and the

set π(Q) is compact then we have
hinv(Q,Σp) = H(A),

where
H(A) =

∑
|λ| > 1,

λ ∈ spec(A)

log2 |λ| . (11)

Proof: The set X can be partitioned into 3 subsets:
X = {(q0, q0,m) | m ∈ Q} ∪ {(q0, q1, p) | p ∈ X\Q} ∪
{(q1, q1, p) | p ∈ X}. Let the maximal hybrid controlled
invariant set be I∗ ⊆ {(q0, q0,m) | m ∈ Q}. Now consider
an HCI set Q ⊆ I∗. From the controlled invariance of the set
Q for Σp, we get the controlled invariance of π(Q) for Σ. We
assume hinv(π(Q),Σ) to be finite and then from [13, Lemma
3] one gets the existence of an invariant cover of (Σ, π(Q)).
For ε > 0, consider an invariant cover (A, G) of (Σ, π(Q))
such that h(A, G) ≤ hinv(π(Q),Σ) + ε. Let A := {{q0} ×
{q0} × A | A ∈ A} and for A ∈ A let G(A) := G(π(A)).
Since Q = {q0} × {q0} × π(Q), one gets that A covers Q.
Now we show that (A, G) is an invariant cover of (Σp, Q).
For A ∈ A, from (5) we have F (A,G(A)) = {(q0, q, x′) ∈
X | x′ ∈ F (π(A), G(π(A)))} and from (A, G) being an
invariant cover we have F (π(A), G(π(A))) ⊆ π(Q). Since
L(π(Q)) = s and δ(q0, s) = q0, for every (q0, q, x) ∈
F (A,G(A)) we get q = q0. Thus F (A,G(A)) ⊆ Q and
(A, G) is an invariant cover of (Σp, Q).

Consider a (τ, π(Q))-spanning set S in (A, G) of Σ such
that it has the smallest expansion number, i.e., N (S) =
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q0

a0

q1

a1

q2

a2

qi

ai

qN

aN

qN+1

b0 b1 b2 bi−1 bi bN−1

¬(a0 ∨ b0)
¬(a1 ∨ b1)

¬(a2 ∨ b2) ¬(ai ∨ bi)

¬aN

true

Fig. 3. Bad prefix DFA for a regular safety property. Here ¬(ai ∨ bi)
denotes the set Rn\(ai ∪ bi).

rinv(τ,A, G,Σ). Define a set S ⊆ A[0;τ) as S := {α ∈
A[0;τ) | ∃α ∈ S s.t. α(t) = {q0} × {q0} × α(t)∀t ∈ [0; τ)}.
We show that S is (τ,Q)-spanning in (A, G) for Σp. Since
Q = {q0} × {q0} × π(Q) and {α(0) | α ∈ S} covers π(Q),
we obtain that {α(0) | α ∈ S} covers Q.

To show (2), observe that for all α ∈ S and t ∈
[0; τ − 2], we have F (α(t), G(α(t))) ⊆ π(Q) and, hence,
L(F (α(t), G(α(t)))) = L(π(Q)) = s and δ(q0, L(x)) = q0
for every x ∈ F (α(t), G(α(t))). Now consider α ∈ S and
α ∈ S such that α(t) = {q0}×{q0}×α(t) for all t ∈ [0; τ).
Then
F (α(t),G(α(t))) = F (α(t), G(α(t)))

={(q0, δ(q0, L(x)), x) ∈ X | x ∈ F (α(t), G(α(t)))}
={(q0, q0, x) ∈ X | x ∈ F (α(t), G(α(t)))}
(2)
⊆{(q0, q0, x) ∈ X | x ∈ ∪A∈PS(α|[0;t])A)}
= ∪A∈PS(α|[0;t]) A.

Thus, S is a (τ,Q)-spanning set in (A, G) for Σp. Note that
#PS(α|[0;t]) = #PS(α|[0;t]) for all t ∈ [0; τ − 1]. Therefore,

N (S) = N (S)

rinv(τ,A, G,Σp) ≤ N (S) = rinv(τ,A, G,Σ)

h(A, G) ≤ h(A, G) ≤ hinv(π(Q),Σ) + ε

hinv(Q,Σp) ≤ hinv(π(Q),Σ) + ε.

Since ε is arbitrary, we get

hinv(Q,Σp) ≤ hinv(π(Q),Σ).

This together with (6) gives hinv(Q,Σp) = hinv(π(Q),Σ).
For the case of Σ being a dtLCS with W = {0} and the set
π(Q) being compact and controlled invariant, from the result
on invariance entropy for deterministic systems (see [4, Thm.
3.1]), we have hinv(π(Q),Σ) = H(A).

Corollary 1: Consider a system Σ = (X,U, F ) and a bad
prefix DFA A = (Q, q0,Π, δ, Acc). Then for any HCI set Q
of the form Q = {(q, q, x) ∈ X} with a given q ∈ Q\Acc,
the equality in (10) holds.

Proof: The proof is similar to that of Theorem 2 with
q0 replaced by q.

Next we consider the bad prefix DFA shown in Fig. 3. For
regular safety properties of this particular structure, we show
that the smallest required feedback data rate for a dtLCS is
upper bounded in terms of the unstable eigenvalues.

For the DFA, the set of alphabet Π is {ai | 0 ≤ i ≤ N}∪
{bi | 0 ≤ i ≤ N − 1} ∪ {c} with ai ̸= c, bi ̸= c and ai ̸= bi.
Each σ ∈ Π denotes a subset of X and Π is a partition of X

with compact ai’s and bi’s. The labelling function L : X →
Π is given as L(x) = σ if x ∈ σ. For a hybrid state set
X , let Xi,i and Xi,i+1 denote the subsets of X that do not
involve the accepting state qN+1, i.e., Xi,i := {(qi, qi, x) |
x ∈ ai},∀i ∈ [0;N ], and Xi,i+1 := {(qi, qi+1, x) | x ∈ bi},
∀i ∈ [0;N − 1].

Consider an HCI set Q and its subset Q
0
:= {(q, q′, x) ∈

Q | q = q0}. Let J be the largest subset of [0;N ] such that
for all k ∈ J , we have Xk,k ∩Q ̸= ∅. By Qm

k,k
, we denote

the maximal HCI subset of Xk,k ∩Q.
For the proof of the next result, we need the following

lemma [4, Proposition 1.11].
Lemma 1: For a dtLCS Σ with W = {0}, if Q is

a controlled invariant set, then also cl(Q) is controlled
invariant.

Proposition 1: Consider a system Σ = (X,U, F ), where
F is single-valued and for which the regular safety property,
corresponding to the bad prefix DFA in Figure 3, can be
enforced. Let Q be an HCI set. Then

hinv(Q,Σp) ≤ max
k∈J

hinv(π(Q
m

k,k
),Σ).

For a dtLCS Σ with W = {0}, we have Rm(π(Q
0
)) ≤

H(A), where Rm(π(Q
0
)) and H(A) are defined in (8)

and (11), respectively. Further if I∗ ⊆ X0,0, then we have
Rm(π(I∗0)) = H(A).

Proof: Let k̂ = maxJ . Then we have Qm

k̂,k̂
= X k̂,k̂∩Q.

Observe that since Q is controlled invariant, for all x ∈
X k̂,k̂ ∩ Q there exists u ∈ U such that F (x, u) ∈ Q. Now
by the structure of X and k̂ being the largest member of J ,
we get F (x, u) ∈ X k̂,k̂ ∩ Q, i.e., X k̂,k̂ ∩ Q is also an HCI
set.

If k̂ = 0, then Q ⊆ X0,0 and thus from Corollary 1 we
have hinv(Q,Σp) = hinv(π(Q),Σ).

Now we consider k̂ > 0. For k ∈ J , k < k̂, by the struc-
ture of X we know that for every x ∈

(
(Xk,k ∩Q)\Qm

k,k

)
one has F (x, u) ∈ Xk,k+1 for all u ∈ U . Also by the
structure of X and for every x ∈ Xk,k+1, one has F (x, u) ∈
(Xk+1,k+1 ∪Xk+1,k+2) for all u ∈ U . Thus we know that

no trajectory stays in
(
(Xk,k ∩Q)\Qm

k,k

)
or Xk,k+1 for

more than one time instant. Therefore, these sets do not play
any role in the invariance feedback entropy which involves
a long horizon average of base 2 logarithm of the number of
possible successors as identified by PS(·) which is defined
in (1). This together with [14, Proposition 1] result in

hinv(Q,Σp) ≤ max
k∈J

hinv(Q
m

k,k
,Σp).

This can be rewritten using Corollary 1 as

hinv(Q,Σp) ≤ max
k∈J

hinv(π(Q
m

k,k
),Σ).

Now we consider Σ to be a dtLCS with W = {0}. Then
from Lemma 1 and for all k ∈ J , the subsets Qm

k,k
are closed

and, thus, compact. Therefore, we obtain hinv(π(Q
m

k,k
),Σ) =

H(A) for all k ∈ J and from (9) one gets Rm(π(Q
0
)) ≤

H(A).
If I∗ ⊆ X0,0, then I∗ = I∗0 and thus from Remark 1

and Corollary 1, we have Rm(π(I∗0)) = hinv(I
∗,Σp) =

hinv(π(I
∗),Σ) = H(A).
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Fig. 4. For the case study, the subfigures (1) and (2) show the DFA and
the directed graph, respectively.

VI. CASE STUDY

Consider a dtLCS

Σ : xt+1 ∈ F (xt, ut) = Axt + ut +W, A =

[
1.5 0
0 0.5

]
,

with xt ∈ X = R2, ut ∈ U = [−1, 1]2 and W =
[−0.1, 0.1]2. Also consider the bad prefix DFA as shown
in Fig. 4 with a0 = [−0.25, 0.25] × [5.5, 5.75], b0 =
[−0.5, 0.5] × [2.25, 3.25] and b1 = a2 = [−1, 1] × [−2, 2].
The aforementioned safety property requires that all state
sequences initiating in region a0, should either stay in a0
or reach and stay in region a2 = b1 after spending a
single step in region b0. Also state sequences starting in
b0 should enter in a2 = b1 in the next step and stay
therein afterwards. We observe that the safety property is
enforceable for the set of initial states a0 ∪ b0. The hybrid
system has an HCI set Q = X0,0 ∪X0,1 ∪X1,2 ∪X2,2 with
Qm

0,0
= ∅ and Qm

2,2
= X2,2. From Proposition 1, we have

Rm(a0 ∪ b0) ≤ hinv(π(Q
m

2,2
),Σ), and from [14, Theorem

1] and [13, Theorem 9] we have hinv(π(Q
m

2,2
),Σ) ≤ 1.

Now we describe a coder-controller that enforces the regular
safety property and operates at an average data rate = 1.
We define sets d1 = [0, 1]× [−2, 2], d2 = [−1, 0]× [−2, 2],
and E = R2\(a2 ∪ b0 ∪ a0). The coding alphabet is S =
{a0, b0, d1, d2, E}. For any state sequence {xk}tk=0, t ≥ 0,
the coder function is γ({xk}tk=0) = σ where σ ∈ S is
such that xt ∈ σ. For any symbol sequence {sk}tk=0, the
controller function is δ({sk}tk=0) = G(st) where the map
G : S → U is given by G(a0) = u0 = [0; 0], G(b0) = u0,
G(d1) = u1 = [−0.9; 0.7], G(d2) = u2 = [0.9; 0.7],
and G(E) = u0. Now we construct a directed graph, with
{a0, b0, d1, d2} as the set of nodes, that captures all trajec-
tories generated under the control input map G : S → U ,
i.e., for every trajectory {xt}∞t=0, x0 ∈ R2\E with controls
ut = G(st), st ∋ xt, there exists a path {st}∞t=0 (here st
denotes a node) in the graph such that xt ∈ st for all t ≥ 0.
The graph is shown in Fig. 4(2). For any node s the label for
all its outgoing edges is G(s) and the set of successor nodes
is {ŝ ∈ S\E | (As+BG(s))∩ ŝ ̸= ∅}. From Fig. 4(2), we
observe that after a finite amount of time the system state will
trace the strongly connected component (SCC) constituted by
nodes d1 and d2. Once the state arrives in the SCC, the coder
transmits 1 bit at every time step so that the controller can
identify the set that contains the current state out of the two
possibilities of d1 and d2. Thus, the asymptotic average data
rate of the coder-controller is 1 bit/unit-step.

VII. CONCLUSION
In this work we described sufficient data rate to enforce

a regular safety property over a limited (finite) data rate
channel. The study involves construction of a hybrid system
by taking a product of the given system with the bad prefix
DFA of the regular safety property. For the hybrid system,
the maximal controlled invariant set I∗, that doesn’t include
any accepting states of the DFA, is of special interest. This
set allows enforcing the regular safety property by a coder-
controller that is designed to make the set invariant. The
invariance feedback entropy of I∗ and the hybrid system
provides us with a data rate which is sufficient enough to
enforce the regular safety property over the original system.
As the first main result, we showed that the IFE of an HCI
set is lower bounded by the IFE of the projection of the
set on to the original system. Our second result establishes
that this lower bound is tight for the case of invariance as
a special case of regular safety property. Finally we also
described a particular DFA structure such that, for a linear
deterministic control system, the sum of the logarithm of the
unstable eigenvalues is a sufficient data rate to enforce the
property over a limited data rate channel.

A potential future direction is to study the gap between
the described sufficient data rate and the minimal allowable
data rate for any regular safety property. Another interesting
direction is to study whether this analysis can be extended
to omega regular properties [11].
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