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Abstract— This work combines a path planning scheme used
for the evacuation of humans in indoor environments with the
real-time estimation of spatially varying fields using adaptive
methods. When a hazardous environment is known, then one
possible trajectory planning scheme uses level-set methods to
guide a human to safety (escape exit) while at the same time
minimizes the accumulated amount of the hazardous field
modelled as the hazardous substance inhaled. When the field
representing the spatial distribution of the hazardous substance
in unknown, then an arrested adaptive estimate of the spatial
field is proposed in the level-set guidance. The human evacuee
viewed as a mobile agent, obtains spatial field measurements
and process them in an adaptive learning scheme to obtain an
estimate of the spatial field. When a planning period is added
to the traveling period, the adaptive scheme obtains the most
recent spatial field estimate (arrested adaptation) and uses it
as a time-invariant spatial field for trajectory planning.

I. INTRODUCTION

The problem at hand is to guide a human starting from
the interior of an indoor environment to the boundary of this
environment. While this problem can leverage established
results on trajectory planning with collision avoidance, the
problem is exacerbated by the accumulated effects of a
hazardous spatial field in the indoor environment. Such
accumulated effects represent the total amount of a harmful
substance, for example carbon monoxide, found in a human’s
lungs. While both the instantaneous levels of this harmful
substance and the accumulated amount greatly affect a
human’s health, we concentrate on the accumulated amount
as the singular feature for escape to safety.

Due to human inhaling of harmful substances during the
inhale-exhale cycle, the amount inhaled at each time is added
to the amount already present in the lungs. If the total amount
exceeds a prescribed safety level, the escaping human may
faint or, worse yet, may expire. If the field representing the
spatial distribution of the harmful substance in the indoor
environment is known, then an optimal solution to trajectory
planning with guaranteed levels of the accumulated amount
be below certain levels has been addressed in [1], [2].
This is an extension of the Zermelo navigation problem
[3] with additional constraints. However, such an optimal
escape policy is open-loop. As an alternate, an exhaustive
search over all paths to safety examining also the accumu-
lated amount associated with them may provide the set of
acceptable paths, but that too may prove computationally
prohibitive. A combination of earlier works on navigation
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functions via artificial potential fields may partially address
this problem by using the spatial field as the potential field.
A form of reactive navigation for avoiding regions of large
instantaneous values of a spatial field has been presented in
[4]. This of course would only minimize the instantaneous
exposure to the harmful field and may not ensure that the
accumulated effects fall below a prescribed threshold.

A somewhat suboptimal but feasible policy leverages
trajectory planning using level-sets [5], [6], [7], [8], [9]
to ensure that a human evacuee will reach safety and at
the safety, the accumulated effects fall below the harmful
threshold [10], [11]. The problem in this case is that the
field is no longer known.

Estimating unknown spatial fields requires multiple static
sensors. The number of measurements n required depends
on the number of unknown parameters that are assumed in
a series expansion of the unknown spatial field parametriza-
tion. Further, to ensure a certain identifiability condition is
ensured, the spatial location of the sensing devices must not
coincide with the zeros of the regressor (spatial) functions.
Using a mobile sensor with prescribed path and leveraging
observability properties with subspace identification-based
eigenvalue estimation of a regressor matrix has been exam-
ined in detail in [12], [13]. An alternative to this is to employ
adaptive estimation of the unknown parameters combined
with a single mobile measurement [14]. The sensor motion,
as demonstrated in [15], ensures parameter convergence,
and hence functional convergence of the adaptive learning
scheme. This relies on the fact that the outer product of the
regressor vector evaluated at a single spatial point is rank-
one matrix, but this rank-one matrix with mobile measure-
ments can result in the sought-after persistence of excitation
condition [16] when integrated over a time interval. Thus,
the motion of a single measurement guarantees functional
convergence for any spatial field of approximation order n!

Attempting to combine the level-set guidance over a
known spatial field with guaranteed accumulated levels be-
low a threshold with the adaptive learning using mobile mea-
surements leads to a bottleneck since the level-set guidance
requires known time-invariant fields. This paper provides a
solution to this difficulty by employing arrested adaptation
of the spatial field. This is implemented as follows. In a
given cycle, one has a planning stage where the agent uses
the most recent adaptive estimate of the spatial field, which
is time-invariant, and implements the level-set guidance to
define the path to take. During this time, the agent does not
move but continues to obtain spatial field measurements. At
the next stage, which is termed the travelling stage, the agent

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 5189



implements the navigation based on the arrested adaptive
estimate of the spatial field. If computing is negligible
meaning that there is no need for he planning stage, then the
cycle duration consists of only the traveling stage. Spatial
information is based on the arrested adaptive estimate of
the spatial field that is obtained at the beginning of the
cycle. In such a case, one has a hybrid adaptation-plus-
guidance whereby the mobile sensor is obtaining information
throughout the duration of a given cycle, but uses the arrested
estimate of the field at the beginning of the cycle.

The problem is formulated with the parametrization of
the unknown spatial field given in Section II. The adaptive
estimation of spatial fields with a single mobile agent is
summarized in Section III. The inclusion of planning and
travelling stages over a given time cycle for the human
evacuation using arrested adaptive estimates of the unknown
spatial field combined with the earlier development of a
level-set path planning are given in Section IV. Demonstra-
tion of the adaptive learning scheme over a large domain
representing a typical indoor environment is presented in
Section V with conclusions following in Section VI.

II. MATHEMATICAL FORMULATION

The unknown spatial field, assumed for now time-
invariant, is denoted by x(θ), where the spatial variable
belongs to a bounded domain θ ∈ Ω ⊂ R

d , d = 1,2,3.
The one-dimensional case with d = 1 does not provide any
interesting attributes for the field-dependent guidance over
spatial fields. The two-dimensional spatial field with d = 2
represents the most interesting case as most of the cases
of evacuation in enclosed domains assume a 2D spatial
field representing hazardous fields such as carbon monoxide
concentrations. This is because the 3D spatial field exhibits
axisymmetry around the face of an evacuee; spatial gradients
in the vertical direction are negligible around an evacuee’s
face with the length of a face being around 20cm compared
to a typical room height of about 3m.

The spatial field measurements provided by a mobile sen-
sor are modelled as a pointwise-in-space sensor distribution
with a time-varying centroid θs(t).1 This is assumed to be
the inhaled amount of the hazardous substance by a human
evacuee. Thus the measurement readout from the mobile
sensor is precisely the value of the spatial function x(θ) at
the sensor location and is given by

y(t;θs(t)) =
∫

Ω
δ(θ−θs(t))x(θ)dθ = x(θs(t)). (1)

As was noted in [15], the sensor readouts are time varying,
despite the fact that the spatial field x(θ) is time-invariant.
This is due to the time-varying sensor centroid θs(t).

Given an agent initial position θs(t0) in the spatial domain
Ω, the problem at hand is to

1) move to a desired location θd at the boundary of Ω
representing safety in the smallest possible time, and

1The assumption that the human barycenter coincides with the sensing
information is not conservative despite the fact that the nose is about 20−30
cm from the barycenter.

2) reach the desired location θd by minimizing the accu-
mulated measurements.

The first goal can easily be achieved by harnessing
established results on path-planning guidance over known
environments, even by incorporating obstacle avoidance. If
the field has no effects on the ability of an agent to move
within the spatial domain, then a simple path from θs(t0) to
θd is easily obtained. Figure 1 depicts an indoor environment
and for a constant speed, various paths result in different
escape times that are proportional to the distance travelled.

The difficulty arises when exposure to the field has neg-
ative effects on the ability of the mobile agent to traverse
within Ω. In particular, if the instantaneous measurements
(1) have negative effects on the agent, and if the spatial field
is known, then an obstacle-avoidance scheme can be used,
where the large values of the field to be avoided are viewed
as the obstacles to be avoided. The spatial field assumes
the role of the artificial potential (navigation function) and
the navigation schemes in [17], [18] address this problem.
However, when the accumulated measurements have negative
effects on the agent, then a new guidance must be used.

The accumulated amount of the hazardous material is
given by the sum of all measured values (1) along a specific
path to safety. It represents for example the amount of the
hazardous material inhaled by an agent during an indoor
evacuation. The accumulated amount up to time t is

z(t) =
∫ t

0
y(τ;θs(τ))dτ. (2)

The above equation is derived from the line integral proposed
in [10], [11] which uses a given path r

J(r) =
1
2

∫
r
x(r)ds

and includes the 50% scaling factor to account for the inhale-
exhale cycle. For a constant speed υ, the line integral [19]
simplifies to

J(t) =
υ
2

∫ t

0
y(τ;θs(τ))dτ.

Absorbing the scaling factor and the speed to a constant, it
simplifies to the proposed cost in (2).

The second problem of minimizing the accumulated cost at
the free final time t f is equivalent to selecting a path within
the indoor environment Ω to reach the desired safety exit
in minimum time t f while ensuring that the accumulated
amount at the final time t f is below a prescribed threshold
with z(t f )< zthreshold.

The optimal guidance problem when the field is known
and time-invariant has been solved in [1] and subsequently
extended to known time-varying spatial fields in [2]. In
both cases the navigation solution resulted in an open-loop
controller which, in evacuation cases, makes it difficult to
implement. A closed-loop approach utilizing level-set path-
planning was presented for known time-invariant and known
time-varying spatial fields in [10], [11]. An extension incor-
porated non-zero accumulated amounts (i.e., z(0) 6= 0) due
to delays in decision making in [20] and which accounted
for the psychological effects of freezing before making a
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decision to escape the contaminated indoor environments.
In the remainder of the paper, we make some assumptions

on agent speed and the desired position.
Assumption 1 (indoor environment geometry): For the

evacuation problem of a mobile agent in an indoor
environment, it is assumed that
• The agent can move freely within the spatial domain Ω

with a constant speed υ.
• The initial position of an agent θs(0) can be anywhere

in the interior of the spatial domain, i.e., θs(0)∈Ω\∂Ω.
• There is only one safety exit at the boundary ∂Ω with

known coordinates θd = (ξd ,ζd) ∈ ∂Ω, see Figure 1.

A. Unknown spatial field modeling and parametrization

The spatial field is assumed to admit the parametrization

x(θ) =
n

∑
i=1

αiφi(θ), θ ∈Ω, (3)

where αi > 0, i= 1, . . . ,n are unknown constant coefficients
and φi(θ) are known spatial functions defined over the
domain Ω. The summation limit n is not known but an
upper bound is available. In such a case, one may have an
overparameterized expansion

x(θ) =
np

∑
i=1

αiφi(θ)
︸ ︷︷ ︸

true

+
n

∑
i=np+1

αiφi(θ)

︸ ︷︷ ︸
overparameterization

.

The true values αi = 0, for i= np+1, . . . ,n and the adaptive
learning scheme ought to produce the estimates α̂i = αi, for
i= 1, . . . ,np and α̂i = 0, for i= np+1, . . . ,n.

Using the parametrization (3), the spatial field measure-
ments (1) obtained by the mobile agent are also given by

y(t;θs(t)) = x(θ)
∣∣∣
θ=θs(t)

=
n

∑
i=1

αiφi(θs(t)),

written compactly as

y(t;θs(t)) = ΦT (θs(t))α, (4)

where

α =




α1
...

αn


 , Φ(θs(t)) =




φ1(θs(t))
...

φn(θs(t))


 .

The observations from the mobile agent (4) must be
provided to a learning scheme to estimate the unknowns
αi, i = 1, . . . ,n. When static sensors are used, identifiability
conditions require a minimum of n pointwise measurements
to uniquely determine the unknown coefficients. Use of an
adaptive scheme that produces the adaptive estimates α̂i(t),
of the coefficients αi, i = 1, . . . ,n, imposes a persistence of
excitation condition [16], which requires an associated inte-
gral involving the outer product of regressor vectors Φ(θs(t))
evaluated at the current position θs(t) of the mobile agent
to have rank n. However, a single mobile agent, obtaining
measurements (4), can induce the sought-after persistence of
excitation by the appropriate motion within the domain Ω!

When a spatial gradient-based guidance scheme is used,
the motion of the mobile agent within the spatial domain

0 10 20 30 40 50 60
0

5

10

15

20

25

30

Fig. 1: Different escape paths result in different flight dis-
tances and associated escape times.

Ω provides a necessary condition for persistence of ex-
citation (and hence parameter convergence in the sense
limt→∞ α̂i(t) = αi, ∀i). When agent dynamics are used, then
any agent guidance that satisfies the persistence of excitation
becomes a necessary and sufficient condition for adaptive
parameter convergence, see [15].
Problem statement: The guidance problem is to start at a
given initial position θs(t0) within the spatial domain Ω
in an unknown spatial field x(θ) and use the mobile agent
measurements (4) to estimate the unknown spatial field x(θ)
and subsequently use the adaptive estimate x̂(t,θ) of the
spatial field at each time to guide the agent towards the
safety exit while minimizing the accumulated exposure to
the unknown hazardous field with z(t f )< zthreshold.

The above problem produces nested problems with in-
creasing complexity. Parts of these tasks were addressed in
earlier works in some form. The first one implements an
adaptive learning scheme to estimate the coefficients αi in
(3) using any admissible guidance. Admissible guidance is
any guidance that ensures adaptive learning in the sense
limt→ x̂(t,θ) = x(θ) for all θ ∈ Ω. This was addressed in
[15]. The next one builds upon the first one and additionally
requires that one selects from the set of admissible guidances
the one that guarantees that at some future time the agent
reaches a desired position. The next level imposes the upper
limit on the accumulated amount and selects from the ad-
missible guidance set the one that ensures adaptive learning
with convergence in the desired position and arriving at the
accumulated amount falling below the threshold. The most
complex case is when the guidance is selected to ensure
adaptive learning and the adaptive learning is used to select
the guidance that places the mobile agent at the desired
location and ensuring z(t f )< zthreshold.

III. ADAPTIVE ESTIMATION OF SPATIAL FIELDS VIA

MOBILE SENSING AGENTS

The adaptive scheme (learning) when no desired final
position is imposed and the mobile agent is free to roam Ω
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simply to be able to learn the spatial field is studied in [15].
This is summarized here to make the paper self-contained.

The adaptive estimate of the spatial field is given by

x̂(t,θ) =
n

∑
i=1

α̂i(t)φi(θ), θ ∈Ω, (5)

where α̂i(t) are the adaptive estimates of the unknown αi,
i= 1, . . . ,n. The associated state estimation error is given by

e(t,θ) = x̂(t,θ)− x(θ)

=
n

∑
i=1

α̂i(t)φi(θ)−
n

∑
i=1

αiφi(θ)

=
n

∑
i=1

α̃i(t)φi(θ),

(6)

where α̃i(t) = α̂i(t)−αi, i= 1, . . . ,n are the parameter errors.
To generate the update laws for the adaptive estimates

α̂i(t), one defines the output estimation error as the differ-
ence of the measured output (4) and the estimated state at
the current sensor location θs(t)

ε(t;θs(t)) = e(t,θs(t)) = x̂(t,θs(t))− x(θs(t))

= ŷ(t;θs(t))− y(t;θs(t))

= ΦT (θs(t))α̂(t)−ΦT (θs(t))α

= ΦT (θs(t))α̃(t),

(7)

where the parameter vector is

α̃(t) = α̂(t)−α =
[

α̂1(t)−α1 . . . α̂n(t)−αn
]T

.

A Lyapunov-redesign approach can be used here to obtain
the adaptive laws for the adaptive parameter vector α̂(t). The
motion (guidance) of the mobile agent that would provide the
needed persistence of excitation requires additional process
information, in addition to (4).
Assumption 2: The mobile agent can also provide the

spatial gradients of the spatial field at its current sensor
location θs(t) = (ξs(t),ζs(t)), given by

yξ(t;θs(t)) =
∂x(θ)

∂ξ

∣∣∣
ξ=ξs(t)

,

yζ(t;θs(t)) =
∂x(θ)

∂ζ

∣∣∣
ζ=ζs(t)

.

(8)

Lemma 1 ([15]): Assume that the unknown spatial field
x(θ) admits the expansion (3) and further assume that the
sensor can provide spatial gradient information as given in
Assumption 2. The update laws for the adaptive estimate of
x(θ) in (5) are given by

˙̃α(t) = ˙̂α(t) =−γε(t)Φ(θs(t)), (9)

where γ > 0 is a user-defined adaptive gain, and the associ-
ated mobile sensor guidance is

{
ξ̇s(t) =−υsign

(
ε(t)εξ(t)

)
,

ζ̇s(t) =−υsign
(
ε(t)εζ(t)

)
.

(10)

A compact form of the guidance (10) is

θ̇s(t) =−υsign(ε(t)∇ε(t)) , ∇ε(t) = ∇e(t,θ)
∣∣∣
θ=θs(t)

.

The above adaptive scheme is realizable since it requires:

(i) the scalar output estimation error ε(t;θs(t))
(ii) the regressor functions evaluated at the current sensor

location φi(θs(t)), i= 1, . . . ,n
(iii) the scalar gradients of the output estimation error

ε(t;θs(t)) which are the spatial gradients of the es-
timation error e(t,θ) evaluated at the current location

∂e(t,θ)
∂ξ

∣∣∣
ξ=ξs(t)

,
∂e(t,θ)

∂ζ

∣∣∣
ζ=ζs(t)

.

The convergence results are as follows:

• If the following inner product of the regressor vector

ΦT (θs(t))Φ(θs(t))≥ β > 0, (11)

is satisfied uniformly in time, then limt→∞ ε(t) = 0.
• Parameter convergence in the sense limt→∞ α̂(t) =α can

only be established when a persistence of excitation
condition is satisfied. It requires the time integral of the
matrix resulting from the outer product of the regressor
vector Φ(θs(t))ΦT (θs(t)) be uniformly positive definite
over any interval [t, t+T0] despite the fact that the n×n
matrix defined by the outer product Φ(θs(t))ΦT (θs(t))
is singular for each t. The PE condition is

c1In ≥
1
T0

∫ t+T0

t
Φ(θs(τ))ΦT (θs(τ))dτ≥ c0In, (12)

for some positive scalars c0,c1,T0.

The condition (11) required for the convergence of the
output estimation error ε(t;θs(t)) follows from the Lyapunov
analysis with the Lyapunov functional selected as

V = ε2(t)/(2γ).

Its time derivative along (7) is

V̇ =
1
γ

ε(t)
d
dt

(
ΦT (θs(t))α̃(t)

)

=
1
γ

ε(t)
[

ΦT (θs(t)) ˙̃α(t)+
(

d
dt

ΦT (θs(t))
)

α̃(t)
]

= −
(
ΦT (θs(t))Φ(θs(t))

)
ε2(t)+

ε(t)
γ

∇T ε(t)θ̇s(t)

= −
(
ΦT (θs(t))Φ(θs(t))

)
ε2(t)−υ|ε(t)|‖∇ε(t)‖

≤ −
(

ΦT (θs(t))Φ(θs(t))
)

ε2(t).

In order to have V̇ ≤−cV for some c> 0 and subsequently
ensure limt→∞ ε(t) = 0, one must impose (11).

When human dynamics are used [21], [22], similar to
vehicle dynamics for mobile agents, and have the form

θ̇s(t) = F(θs(t),u(t)), (13)

then the guidance, expressed via the controller design u(t),
can ensure that the PE condition (13) is satisfied.
Lemma 2: When the mobile agent motion is dictated by

the dynamics (13), then the guidance u(t) selected to satisfy
(12) results in a necessary and sufficient condition for the
functional convergence

lim
t→∞

x̂(t,θ) = x(θ), ∀θ ∈Ω,
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of the adaptive estimate with adaptation (9).
Remark 1: The guidance based on the control u(t) re-

quires only the regressor functions φi(θ) to search for any
path that ensures (12) is satisfied over any time interval. In
this case the regressor vector Φ(θs(t)) parameterized by the
admissible paths θs(t) is selected such that (12) is satisfied.
This in turn provides the required control signal u(t) for (13).
Remark 2: It is observed that when the guidance (10) is

not used, the adaptive scheme (9) with the controller in (13)
selected to satisfy (12) does not require the availability of
the spatial gradients at the current sensor location in (8).

Now, when a desired final position θd = (ξd ,ζd) is im-
posed for the mobile agent, then the guidance resulting
from the integrated learning and evacuation planning can be
achieved in one of two different ways:

1) assume the availability of the spatial gradients of the
unknown field at the current sensor location (Assump-
tion 2) and incorporate the learning scheme (9) with
the modified guidance
{

ξ̇s(t) =−υsign
(
ε(t)εξ(t)

)
−βξ (ξs(t)−ξd)

ζ̇s(t) =−υsign
(
ε(t)εζ(t)

)
−βζ (ζs(t)−ζd)

(14)

where βξ,βζ > 0 are user-defined velocity gains.
2) do not assume the availability of the spatial gradients

of the unknown field at the current sensor location and
instead design the guidance law u(t) in (13) such that

lim
t→∞

θs(t) = θd , (15)

and at the same time ensure the PE condition (12) is
satisfied.

The first option does not assume any agent motion dy-
namics and implements the learning (9) with the modified
guidance (14). The second option selects the controller u(t)
from the family of controllers that generate candidate paths
within Ω satisfying (12) and also satisfy the regulation (15).

When the final constraint on the limit of the accumulated
amount z(t) is included, the following optimal control prob-
lem formulation

min
∫ t f

0
1dτ s.t.

{
z(t f )≤ zthreshold
θs(t f ) = θd

produces open-loop policies [1], [2]. When the concurrent
estimation of the unknown spatial field is added in order
to produce the appropriate guidance, the problem becomes
computationally intractable.

In order to arrive in closed-loop policies with adaptive
learning, then the above two path-dependent adaptive guid-
ance schemes must be modified.

IV. INTERMITTENT ADAPTIVE ESTIMATION OF SPATIAL

FIELDS VIA MOBILE SENSING AGENTS

In general, an adaptive-based guidance may not be per-
formed as a single stage guidance; rather one has a planning
stage and a learning stage. In the planning stage, the agent is
not moving and uses the most recent estimate of the spatial
field to move to the next way point. In the learning stage,

where the agent is moving, it uses the measurements to
implement the adaptive learning scheme.

We denote by τplan the duration of the planning stage and
by τtravel the duration of the learning stage (and also travel
stage). The entire maneuver has a duration

τcycle = τplan+ τtravel . (16)

During the planning stage, the sensor is immobile and thus
the agent speed is set to zero ξ̇s = 0, ζ̇s = 0. During this
time interval, the agent is using the current estimates of the
spatial field to plan the guidance during the travel stage. The
entire time interval is decomposed into N subintervals, each
of duration τcycle with

ti = (i−1) · τcycle, i= 1, . . . ,N.

Alternatively, if a time interval is not specified, one considers
cycles with duration τcycle. Planning occurs in times t ∈
[ti, ti+τplan) and travel occurs during t ∈ [ti+τplan, ti+τcycle).
The planning stage for t ∈ [ti, ti+τplan) uses the state estimate
from the previous cycle at x̂(ti, θ̂). In other words, while
the state estimate x̂(t,θ) of the time-invariant function x(θ)
is time varying, the planning state uses the recent estimate
frozen at the end of the previous cycle, i.e., use an arrested
adaptation estimate.

The activities in each stage are now summarized.
Planning stage: For t ∈ [ti, ti+τplan), use the arrested estimate
x̂(ti,θ) which is time-invariant. Implement the level-set based
guidance presented in [10], [11]. While the sensor is not
moving, it continues to collect spatial field information and
use it in the adaptation (9) modified to

˙̂α(t) =−γε(t)Φ(θs(ti)), t ∈ [ti, ti+ τplan). (17)

Learning stage: For t ∈ [ti+τplan, ti+τcycle), the mobile agent
uses the prescribed guidance developed at the planning stage
and implements the adaptation

˙̂α(t) =−γε(t)Φ(θs(t)), t ∈ [ti+ τplan, ti+ τcycle). (18)

The above are tabulated in Algorithm 1.
Remark 3: Please note that the adaptation of the vector α

is always active even when the sensor is immobile during
the planning stage. This means that the adaptive estimation
of the spatial field is always updated. However, there are
two differences with a continuously adapted spatial field.
The first one is that the arrested adaptive estimate x̂(ti,θ) =
ΦT (θ)α̂(ti), which is a time-invariant function, is used during
the planning stage and the second one is that during the
planning stage the adaptation uses (17) and not (18).

V. NUMERICAL EXAMPLES

The unknown spatial field is selected as

x(θ) =
3

∑
i=1

2

∑
j=1

αi jgi(ξ)h j(ζ) =
6

∑
i=1
aiφi(θ),

where
a1 = α11 = 2, a2 = α12 = 1, a3 = α21 = 1.75,
a4 = α22 = 2, a5 = α31 = 1.75, a6 = α32 = 1.25,
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Algorithm 1 Arrested adaptation-based evacuation guidance
in [ti, ti+ τcycle[

1: initialize: Select the planning stage τplan and travel
stage τtravel durations. Using the initial estimates of the
parameters α̂(0), set up the initial estimate x̂(0;θ) of
the unknown spatial field. Using the initial agent loca-
tion (ξs(0),ζs(0)) and the desired location (escape exit)
(ξd ,ζd), determine the first path planning for the interval
t ∈ [τplan,τplan+τtravel). Obtain sensor measurements in
both t ∈ [0,τplan) and t ∈ [τplan,τplan+ τtravel) and use
them to implement the adaptive learning (9).

2: iterate: i= 2
3: loop
4: Define next cycle [ti, ti+ τcycle) = [(i−1)τcycle, iτcycle)

with ti = (i−1)τcycle. For each t ∈ [ti, ti+ τcycle) con-
tinue to obtain sensor measurements and implement
the adaptation (17) regardless of the agent motion.

5: In the ith planning stage of duration τplan with t ∈
[ti, ti+ τplan), use the most recent arrested estimate of
the spatial field x̂(ti,θ) to plan the path for t ∈ [ti+
τplan, ti+ τcycle) using the level-set based guidance in
[10], [11]. Continue the adaptation (18).

6: In the ith travel stage of duration τtravel with t ∈ [ti+
τplan, ti + τcycle), implement the level-set based path
planning developed at the most recent planning stage.

7: At the end of the ith cycle ti+1 = ti+τcycle, update the
adaptive estimate of the spatial field using α̂(ti+1)

8: if
√

(ξs(ti+1)−ξd)2 +(ζs(ti+1)−ζd)2 > 0 then
9: i← i+1

10: goto 2
11: else
12: terminate-reached safety exit
13: end if
14: end loop

defined over the spatial domain Ω = [0,Lξ] × [0,Lζ] =
[0,60]× [0,30]m. The regressor functions are given by

gi(ξ) = 50e−(ξ−µξ,i)
2/(2σ2

ξ), µξ,i =
Lξ(2i+1)

10 , σξ =
Lξ
12 ,

h j(ζ) = 40e−(ζ−µζ, j)
2/(2σ2

ζ), µζ, j =
Lζ j
3 , σζ =

Lζ
7 .

The adaptive guidance (14) was implemented with υ = 7m/s,
βξ = 0.3,βζ = 0.8 and the scheme (17), (18) had γ = 0.1. For
initial guess of the adaptive estimates, we used âi(0) = 0.1
and the initial sensor location was ξs(0) = Lξ/5, ζs(0) = Lζ/6

with the desired safety exit at (ξd ,ζd) = (Lξ,
5Lζ

6 ).

A baseline learning scheme uses a straight path with

ξ̇s = υcos(θ), ζ̇s = υsin(θ), θ = tan−1
(

ζd−ζs(0)
ξd−ξs(0)

)
.

It is easily seen that a straight path from (ξs(0),ζs(0)) to
(ξd ,ζd) is 52m long and requires 7.42s to complete. Based
on the selected expression for x(θ), in such a trajectory,
the total accumulated amount is z(7.42) = 18,763.3. The
adaptive guidance scheme requires t = 20.64s to reach safety
and the total distance travelled is 60.9m. The accumulated
amount at the exit in this case is z(20.4) = 68% of the
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Fig. 2: Distance of agent from safety exit; straight-path
trajectory is completed in t = 7.4286s whereas the adaptive
guidance requires t = 20.64s.
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Fig. 3: Accumulated amount using a straight-path trajectory
and the proposed adaptive one; the accumulated amount at
exit is z(7.42) = 1.8763×104 for the straight-path trajectory,
whereas the adaptive case has z(20.64) = 1.7963×104.

straight path case. Table I examines the effects of the travel
duration τtravel with a fixed τcycle = 6s on the accumulated
amount and the time to safety. The nonlinear dependence
of the escape time on the variation of τtravel is due to the
fact that adaptation continues even during the τplan stage.
In this particular case, the best value for τtravel = 4s with
τplan = 2s as it yields the smallest possible accumulated
amount, which is 68% of the straight path case. Figure 2
depicts the distance from safety for both cases. It is observed
that with the fixed path guidance, an escapee reaches safety
in minimum time as expected whereas with the adaptive
guidance reaches after 20s. However, it reaches safety with
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Fig. 4: Fixed path (· · ·) and proposed adaptive path (−−) in
indoor environment.

stage τtravel (s) escape time (s) accumulated amount (%)

1 11.74 0.7157
2 16.30 0.7195
3 15.46 0.7224
4 20.64 0.6832
5 44.70 0.9570

straight path 7.42 1

TABLE I: Effects of the travel duration τtravel in a fixed
cycle τcycle = τplan+ τtravel = 6s on the time to safety, and
the accumulated amount as a percentage of the amount
accumulated using the straight path.

a much smaller amount equal to 68% of the amount for the
fixed path case. Figure 3 depicts the accumulated amount up
to time t and thus for the fixed path guidance it reports an
amount of z(7.4286) = 1.8763×104 concentration units. The
corresponding amount for the adaptive guidance is roughly
68% of that quantity reported at t = 20.64s. A top-view of
the two trajectories over the spatial distribution of the spatial
field are depicted in Figure 4.

VI. CONCLUSIONS

A scheme combining field-dependent guidance of an
evacuee in indoor contaminated environments and adaptive
learning of a spatial field with a mobile sensor was presented.
The earlier level-set based guidance for human evacuation
over harmful environments described by spatial functions
assumed that the spatial field was constant in time and
known. To utilize such a field-dependent guidance, the time-
varying estimate of the spatial field was frozen in time at
a particular time instance within the planning cycle via an
arrested adaptive scheme in order to utilize the level-set
based planning. This ensured that the accumulated amount of
the substance over the duration of the evacuation was below
a prescribed threshold. Numerical results depicting aspects
of the field-dependent guidance were included.

An immediate extension involves the inclusion of multiple
safety exits at the indoor environment boundary along with
a decision to switch to a different safety exit mid-flight by
continuously assessing the projected accumulated amounts.
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