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Abstract—Privacy protection is gaining increased attention in
distributed optimization and learning. As differential privacy
is becoming a de facto standard for privacy preservation,
recently results have emerged integrating differential privacy
with distributed optimization. However, to ensure differential
privacy (with a finite cumulative privacy budget), all existing
approaches have to sacrifice provable convergence to the optimal
solution. In this paper, we propose a differentially-private
distributed optimization algorithm that can ensure, for the first
time, both ε-differential privacy and optimality, even on the
infinite time horizon. Numerical simulation results confirm the
effectiveness of the proposed approach.

I. INTRODUCTION

The problem of optimizing a global objective function
through the cooperation of multiple agents has gained in-
creased attention in recent years. In the problem, each agent
only has access to a local objective function, and can only
communicate with its local neighbors. The agents cooperate
to minimize the summation of all individual agents’ local
objective functions. Such a distributed optimization problem
can be formulated in the following general form:

min
θ∈Rd

F (θ) ,
1

m

m∑
i=1

fi(θ), (1)

where m is the number of agents, θ ∈ Rd is a decision
variable common to all agents, while fi : Rd → R is a local
objective function private to agent i.

Plenty of approaches have been reported to solve the above
distributed optimization problem since the seminal work of
[2], with some of the commonly used approaches including
gradient methods (e.g., [3], [4], [5], [6], [7], [8]), distributed
alternating direction method of multipliers (e.g., [9], [10]),
and distributed Newton methods (e.g., [11]). Among these
approaches, gradient-based approaches are gaining increased
traction due to their efficiency in both computation complex-
ity and storage requirement, which is particularly appealing
for agents with limited computational or storage capabilities.

Despite the enormous success of gradient based distributed
optimization algorithms, they all explicitly share optimization
variables and/or gradient estimates in every iteration, which
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becomes a problem in applications involving sensitive data.
For example, in the rendezvous problem where a group of
agents uses distributed optimization to cooperatively find
an optimal assembly point, participating agents may want
to keep their initial positions private, which is particularly
important in unfriendly environments [10]. In sensor network
based localization, the positions of sensor agents should be
kept private in sensitive environments as well [10], [12].
In fact, without an effective privacy mechanism in place,
the results in [10], [12], [13] show that a participating
agent’s sensitive information, such as position, can be easily
inferred by an adversary or other participating agents in
distributed-optimization based rendezvous and localization.
Another example underscoring the importance of privacy
protection in distributed optimization is machine learning
where exchanged data may contain sensitive information such
as medical records or salary information [14]. In fact, recently
[15] shows that without a privacy mechanism in place, an
adversary can use shared information to precisely recover the
raw data used for training (pixel-wise accurate for images and
token-wise matching for texts).

To address the pressing need for privacy protection in
distributed optimization, one approach resorts to partially
homomorphic encryption, which has been employed in both
our own prior results [10], [16] and others [17], [18]. How-
ever, such approaches incur heavy communication and com-
putation overhead. Another approach employs the structural
properties of distributed optimization to inject temporally or
spatially correlated uncertainties (see [14], [19], [20] as well
as our own results [21]). However, since the uncertainties
injected by these approaches are correlated, their enabled
privacy is usually restricted. Time-varying random stepsizes
[22] and quantization errors [23] can also be exploited to
achieve a certain level of privacy protection in distributed
optimization. As Differential Privacy (DP) is immune to ar-
bitrary post-processing (including, e.g., statistical inferences),
and can provide strong privacy protection for a participating
agent even when all its neighbors are compromised [24],
it is gradually becoming a de facto standard for privacy
protection. In fact, as DP has achieved remarkable successes
in various applications [25], [26], [27], [28], results have
emerged incorporating DP-noise into distributed optimiza-
tion. For example, approaches have been proposed to obscure
shared information in distributed optimization by injecting
DP-noise to exchanged messages [12], [29], [30], [31], or
objective functions [32]. However, while obscuring informa-
tion, directly incorporating persistent DP-noise into existing
algorithms also unavoidably compromises the accuracy of
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optimization, leading to a fundamental trade-off between pri-
vacy and accuracy. In fact, recently the investigation in [15]
indicates that directly incorporating DP-noise can achieve
reasonable privacy protection “only when the noise variance
is large enough to degrade accuracy [15].”

We propose to tailor gradient methods for differentially-
private distributed optimization. More specifically, motivated
by the observation that inter-agent coupling becomes unnec-
essary after convergence, we propose to gradually weaken
coupling strength in distributed optimization to attenuate DP-
noise that is added to every shared message. We judiciously
design the weakening factor sequence such that the consensus
and convergence to an optimal solution are ensured even in
the presence of persistent DP-noise. To our knowledge, this is
the first time that both differential privacy and provable opti-
mality are ensured simultaneously in distributed optimization.

Notations: We use Rd to denote the Euclidean space of
dimension d. We write Id for the identity matrix of dimension
d, and 1d for the d-dimensional column vector will all entries
equal to 1; in both cases we suppress the dimension when
clear from the context. For a vector x, xi denotes its ith
element. We use 〈·, ·〉 to denote the inner product. We write
‖A‖ for the matrix norm induced by the vector norm ‖ · ‖,
unless stated otherwise. We let AT denote the transpose of
a matrix A. A matrix is column-stochastic when its entries
are nonnegative and elements in every column add up to
one. A square matrix A is said to be doubly-stochastic when
both A and AT are column-stochastic. For two vectors u
and v with the same dimension, we use u ≤ v to represent
the relationship that every element of the vector u − v is
nonpositive. Often, we abbreviate almost surely by a.s.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. On distributed optimization

We describe the interaction among agents using a weight
matrix W = {wij}, where wij > 0 if agent j and agent
i can directly communicate with each other, and wij = 0
otherwise. For an agent i ∈ [m], its neighbor set Ni is defined
as the collection of agents j such that wij > 0. We define
wii , −

∑
j∈Ni wij for all i ∈ [m]. Furthermore, We make

the following assumption:

Assumption 1. The matrix W = {wij} ∈ Rm×m is symmet-
ric and satisfies 1TW = 0T , W1 = 0, ‖I+W − 11T

m ‖ < 1.

The optimization problem (1) can be reformulated as the
following equivalent multi-agent optimization problem:

min
x∈Rmd

f(x) ,
1

m

m∑
i=1

fi(xi) s.t. x1 = x2 = · · · = xm, (2)

where xi ∈ Rd is agent i’s decision variable and we define
x = [xT1 , x

T
2 , . . . , x

T
m]T ∈ Rmd.

We make the following assumption on objective functions:

Assumption 2. Problem (1) has an optimal solution θ∗. The
objective function F (·) is convex and each fi(·) has Lipschitz
continuous gradients over Rd, i.e., for some L > 0,

‖∇fi(u)−∇fi(v)‖ ≤ L‖u−v‖, ∀i ∈ [m] and ∀u, v ∈ Rd.

Under Assumption 2, problem (2) has an optimal solution
x∗ = [(θ∗)T , (θ∗)T , . . . , (θ∗)T ]T ∈ Rmd.

In the analysis, we use the following results:

Lemma 1 ([33], Lemma 11, page 50). Let {vk}, {uk}, {αk},
and {βk} be random nonnegative scalar sequences such that∑∞
k=0 α

k <∞ and
∑∞
k=0 β

k <∞ a.s. and

E
[
vk+1|Fk

]
≤ (1 + αk)vk − uk + βk, ∀k ≥ 0 a.s.

where Fk = {v`, u`, α`, β`; 0 ≤ ` ≤ k}. Then
∑∞
k=0 u

k <
∞ and limk→∞ vk = v for a random variable v ≥ 0 a.s.

Lemma 2. Let {vk},{αk}, and {pk} be random nonnegative
scalar sequences, and {qk} be a deterministic nonnegative
scalar sequence satisfying

∑∞
k=0 α

k < ∞ a.s.,
∑∞
k=0 q

k =
∞,

∑∞
k=0 p

k <∞ a.s., and the following inequality

E
[
vk+1|Fk

]
≤ (1 + αk − qk)vk + pk, ∀k ≥ 0 a.s.

where Fk = {v`, α`, p`; 0 ≤ ` ≤ k}. Then,
∑∞
k=0 q

kvk <∞
and limk→∞ vk = 0 hold a.s.

Lemma 3. Consider the problem minz∈Rd φ(z), where
φ : Rd → R is a continuous function. Assume that the
optimal solution set Z∗ of the problem is nonempty. Let {zk}
be a random sequence such that for any optimal solution
z∗ ∈ Z∗, E

[
‖zk+1 − z∗‖2|Fk

]
≤ (1 + αk)‖zk − z∗‖2 −

ηk
(
φ(zk)− φ(z∗)

)
+ βk holds a.s. for all k ≥ 0, where

Fk = {z`, α`, β`, ` = 0, 1, . . . , k}, {αk} and {βk} are
random nonnegative scalar sequences satisfying

∑∞
k=0 α

k <
∞,

∑∞
k=0 β

k < ∞ a.s. , while {ηk} is a deterministic
nonnegative scalar sequence with

∑∞
k=0 η

k = ∞. Then,
{zk} converges a.s. to some solution z∗ ∈ Z∗.

Lemma 4. Let {vk} be a nonnegative sequence, and {αk}
and {βk} be positive sequences satisfying

∑∞
k=0 α

k = ∞,
limk→∞ αk = 0, and limk→∞

βk

αk
= 0. If there exists a

K ≥ 0 such that vk+1 ≤ (1 − αk)vk + βk holds for all
k ≥ K, then we always have vk ≤ C βk

αk
for all k, where C

is some constant.

The proofs of Lemmas 2-4 are available in an extended
version [1].

B. On differential privacy

We consider Laplace noise for DP. For a constant ν >
0, Lap(ν) denotes the Laplace distribution with probability
density function 1

2ν e
− |x|ν . This distribution has mean zero

and variance 2ν2. We represent the distributed optimization
problem P in (1) by four parameters (X ,S, F,GW ), where
X = Rn is the domain of optimization, S ⊆ {Rn 7→ R}
is a set of objective functions, with fi ∈ S, and F (x) ,
1
m

∑m
i=1 fi(x), and GW is the induced graph by matrix W .

We define adjacency as follows:

Definition 1. Two distributed optimization problems P and
P ′ are adjacent if the following conditions hold:
• X = X ′, S = S ′, and GW = G′W , i.e., the domain of

optimization, the set of individual objective functions,
and the communication graphs are identical;
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• there exists an i ∈ [m] such that fi 6= f ′i but fj = f ′j
for all j ∈ [m], j 6= i.

It can be seen that two distributed optimization problems
are adjacent if and only if one agent changes its individual
objective function while all others parameters are identical.

Given a distributed optimization problem P , we rep-
resent an execution of such an algorithm as A, which
is an infinite sequence of the optimization variables, i.e.,
A = {x0, x1, · · · }. We consider adversaries that can observe
all communicated messages in the network. Therefore, the
observation part of an execution is the infinite sequence
of shared messages, which is represented by O. Given a
distributed optimization problem P and an initial state x0, we
define the observation mapping as RP,x0(A) , O. Given P ,
observation sequence O, and an initial state x0, R−1

P,x0(O)
is the set of executions A that can generate observation O.

Definition 2. (ε-DP [34]). For a given ε > 0, an iterative
algorithm for problem (1) is ε-differentially private if for any
two adjacent P and P ′, any set of observation sequences
Os ⊆ O (with O denoting the set of all possible observation
sequences), and any initial state x0, we always have

P[R−1
P,x0 (Os)] ≤ eεP[R−1

P′,x0 (Os)], (3)

where the probability P is taken over the randomness over
iteration processes.

III. THE PROPOSED ALGORITHM

To achieve DP, independent DP-noise should be injected
in every shared message, and, hence, constantly affects
the algorithm through inter-agent interactions, leading to
significant reduction in optimization accuracy. Motivated by
this observation, we propose to gradually weaken inter-agent
interactions to reduce the influence of DP-noise on opti-
mization accuracy. Interestingly, we prove that by judiciously
designing the interaction weakening mechanism, we can still
ensure convergence to a common optimal solution.

Algorithm 1: Differentially private distributed
optimization

Parameters: Stepsize λk and weakening factor γk.
Every agent i maintains one state xki , which is initialized

with a random vector in Rd.
for k = 1, 2, . . . do

a) Every agent j adds persistent DP-noise ζkj to its state xkj ,
and then sends the obscured state xkj +ζkj to agent i ∈ Nj .

b) After receiving xkj + ζkj from all j ∈ Ni, agent i updates
its state as follows:

xk+1
i = xki +

∑
j∈Ni

γkwij(x
k
j + ζkj − xki )− λk∇fi(xki ).

(4)
c) end

The sequence {γk} diminishes with time and is used
to suppress the influence of persistent DP-noise ζkj on the
convergence point of the iterates. As will be shown later,

the stepsize sequence {λk} and attenuation sequence {γk}
can be designed judiciously to guarantee the almost sure
convergence of all {xki } to a common optimal solution θ∗.
The DP-noise processes {ζki }, i ∈ [m] have zero-mean and
γk-bounded (conditional) variances, as specified below:

Assumption 3. For every i ∈ [m] and every k, conditional
on the state xki , the random noise ζki satisfies E

[
ζki | xki

]
= 0

and E
[
‖ζki ‖2 | xki

]
= (σki )2 for all k ≥ 0, and

∞∑
k=0

(γk)2 max
i∈[m]

(σki )2 <∞, (5)

where {γk} is the attenuation sequence from Algorithm 1.
The initial random vectors satisfy E

[
‖x0

i ‖2
]
<∞, ∀i ∈ [m].

Remark 1. Given that γk decreases with time, (5) can be
satisfied even when {σki } increases with time. For example,
under γk = O( 1

k0.9 ), an increasing {σki } with increasing rate
no faster than O(k0.3) still satisfies the summable condition
in (5). Allowing {σki } to increase with time is key to enabling
the strong ε-DP, as elaborated later in Theorem 2.

IV. CONVERGENCE ANALYSIS

We first extend Lemma 1 to deal with random vectors:

Lemma 5. Let {vk} ⊂ Rd and {uk} ⊂ Rp be random
nonnegative vector sequences, and {ak} and {bk} be random
nonnegative scalar sequences such that E

[
vk+1|Fk

]
≤

(V k+ak11T )vk+bk1−Hkuk holds a.s. for all k ≥ 0, where
{V k} and {Hk} are random sequences of nonnegative ma-
trices and E

[
vk+1|Fk

]
denotes the conditional expectation

given v`,u`, a`, b`, V `, H` for ` = 0, 1, . . . , k. Assume that
{ak} and {bk} satisfy

∑∞
k=0 a

k < ∞ and
∑∞
k=0 b

k < ∞
a.s., and that there exists a (deterministic) vector π > 0
such that πTV k ≤ πT and πTHk ≥ 0 hold a.s. for
all k ≥ 0. Then, 1) {πTvk} converges to some random
variable πTv ≥ 0 a.s.; 2) {vk} is bounded a.s., and 3)∑∞
k=0 π

THkuk <∞ holds a.s.

Proof. See proof in our extended version [1].

Based on Lemma 3 and Lemma 5, we can prove the
following general convergence results:

Lemma 6. Assume that problem (1) has a solution. Suppose
that a distributed algorithm generates sequences {xki } ⊆ Rd
such that a.s. we have for any optimal solution θ∗,[

E
[
‖x̄k+1 − θ∗‖2|Fk

]
E
[∑m

i=1 ‖x
k+1
i − x̄k+1‖2|Fk

] ]
≤
([

1 γk

m
0 1− κγk

]
+ ak11T

)[
‖x̄k − θ∗‖2∑m
i=1 ‖xki − x̄k‖2

]
+ bk1− ck

[
F (x̄k)− F (θ∗)

0

]
, ∀k ≥ 0

(6)
where x̄k = 1

m

∑m
i=1 x

k
i , Fk = {x`i , i ∈ [m], 0 ≤ ` ≤ k},

the random nonnegative scalar sequences {ak}, {bk} satisfy∑∞
k=0 a

k < ∞ and
∑∞
k=0 b

k < ∞ a.s., the deterministic
nonnegative sequences {ck} and {γk} satisfy

∑∞
k=0 c

k =∞
and

∑∞
k=0 γ

k =∞, and the scalar κ > 0 satisfies κγk < 1
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for all k ≥ 0. Then, we have limk→∞ ‖xki − x̄k‖ = 0 a.s. for
all i, and there is a solution θ̃∗ such that limk→∞ ‖x̄k−θ̃∗‖ =
0 a.s.

Proof. See Appendix A.

Using Lemma 6, we are in position to establish conver-
gence of Algorithm 1:

Theorem 1. Under Assumption 1, Assumption 2, and As-
sumption 3, Algorithm 1 converges to a solution of prob-
lem (1) a.s. when positive sequences {γk} and {λk} satisfy∑∞
k=0 γ

k =∞,
∑∞
k=0 λ

k =∞, and
∑∞
k=0

(λk)2

γk
<∞.

Proof. See Appendix B.

Remark 2. Communication imperfections can be modeled as
channel noises [35], [36], which can be regarded as the DP-
noise here. Therefore, Algorithm 1 can also counteract such
communication imperfections in distributed optimization.

Remark 3. Because the evolution of xki to the optimal
solution satisfies the conditions in Lemma 6, we can leverage
Lemma 6 to examine the convergence speed. From Lemma
4, the relationship in (9) implies that

∑m
i=1 ‖xki − x̄k‖2

decreases to zero no slower than O((λ
k

γk
)2), and hence we

have xki converging to x̄k no slower than O(λ
k

γk
) (note βk

is on the order of (λk)2

γk
from the proof of Theorem 1).

Moreover, when F is strongly convex, (11) implies that x̄k

converges to θ∗ no slower than O((λ
k

γk
)0.5) using Lemma

4. Therefore, the convergence of every xki to θ∗, which is
equivalent to the combination of the convergence of xki to
x̄k and the convergence of x̄k to θ∗, should be no slower
than O((λ

k

γk
)0.5).

V. PRIVACY ANALYSIS

Similar to [34], we define the sensitivity of an algorithm
to problem (1) as follows:

Definition 3. At iteration k, any initial state x0 and any
adjacent problems P and P ′, the sensitivity of an algorithm
is

∆k , sup
O∈O

 sup
x∈R−1

P,x0
(O), x′∈R−1

P′,x0
(O)

‖xk − x′k‖1

 . (7)

Lemma 7. At each iteration k, if each agent adds a noise
vector ζki ∈ Rp consisting of p independent Laplace noises
with parameter νk such that

∑T
k=1

∆k

νk
≤ ε, then Algorithm 1

is ε-differentially private for iterations from k = 1 to k = T .

Proof. The lemma can be obtained following the same line
of reasoning of Lemma 2 in [34].

Since the change of an objective function from fi to f ′i can
be arbitrary in Definition 1, additional restrictions have to be
imposed to ensure rigorous DP. Different from [34] which
restricts all gradients to be uniformly bounded, we impose
the following condition:

Assumption 4. In Definition 1, the different objective func-
tions fi and f ′i have similar behaviors around θ∗, the solution
of P . More specifically, there exits some δ > 0 such that for
all v and v′ in Bδ(θ

∗) , {u : u ∈ Rd, ‖u − θ∗‖ < δ}, we
have ∇fi(v) = ∇f ′i(v′).

Remark 4. Assumption 4 is necessary for ensuring DP under
guaranteed convergence. This is because DP aims to make
observations statistically indistinguishable while guaranteed
convergence means that the state will stop changing and
remain time-invariant after a transient period. Hence, to
make the observations of P and P ′ the same after their states
converge and remain at their respective converging points, we
have to make the converging points of P and P ′ the same.

Theorem 2. Under Assumptions 1, 2, 4, if nonnegative
sequences {λk} and {γk} satisfy the conditions in Theorem
1, and all elements of ζki are drawn independently from
Laplace distribution Lap(νk) with (σki )2 = 2(νk)2 satisfying
Assumption 3, then all agents in Algorithm 1 will converge
a.s. to an optimal solution. Moreover,

1) For any finite number of iterations T ,
Algorithm 1 is ε-differentially private with
the cumulative privacy budget bounded by
ε ≤

∑T
k=1

Cςk

νk
where ςk ,

∑k−1
p=1(Πk−1

q=p(1 −
w̄γq))λp−1 + λk−1, w̄ , mini∈[m]{|wii|}, and
C , maxi∈[m],0≤k≤T−1{‖∇fi(xki ) − ∇f ′i(x′i

k
)‖1}

(note that C is always finite since the algorithm ensures
convergence in both P and P ′);

2) The cumulative privacy budget is finite for T →∞ when
the sequence {λ

k

νk
} is summable.

Proof. Since the Laplace noise satisfies Assumption 3, the
convergence results follow naturally from Theorem 1.

To prove the statements on privacy, we first analyze the
sensitivity of the algorithm. Given two adjacent distributed
optimization problems P and P ′, for any given fixed ob-
servation O and initial state x0, the sensitivity depends on
‖xk − x′k‖1 according to Definition 3. Since in P and P ′,
there is only one objective function that is different, we
represent this different objective function as the ith one, i.e.,
fi in P and f ′i in P ′, without loss of generality.

Because the initial conditions, objective functions, and
observations of P and P ′ are identical for j 6= i, we have
xkj = x′j

k for all j 6= i and k. Therefore, ‖xk − x′k‖1 is
always equal to ‖xki − x′i

k‖1.
According to Algorithm 1, we can arrive at

xk+1
i − x′i

k+1
= (1 + wiiγ

k)(xki − x′i
k
)− λk(gki − g′i

k
),

where we have represented ∇fi(xki ) and ∇f ′i(x′i
k
) as gki and

g′i
k, respectively, for notational simplicity. Note that we have

also used the definition wii , −
∑
j∈Ni wij and the fact that

the observations xkj + ζkj and x′j
k

+ ζ ′j
k are the same.

Hence, the sensitivity ∆k satisfies

∆k+1 ≤ (1− |wii|γk)∆k + λk‖gki − g′i
k‖1.

which, implies the first statement by iteration using Lemma
7.
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For the infinity horizon result in the second statement, we
exploit the fact that our algorithm ensures convergence in
both P and P ′. This means that ‖gki − g′i

k‖1 = 0 will be
satisfied when k is large enough under Assumption 4 (see
Remark 3 for convergence rate analysis). Furthermore, the
ensured convergence also means that ‖gki − g′i

k‖1 is always
bounded. Hence, there always exists some constant C such
that the sequence {‖gki − g′i

k‖1} is upper bounded by the
sequence {Cγk}.

Therefore, according to Lemma 4, there always exists a
constant C̄ such that ∆k ≤ C̄λk holds. Using Lemma 7, we
can easily obtain ε ≤

∑T
k=1

C̄λk

νk
. Hence, ε will be finite even

when T tends to infinity if the sequence {λ
k

νk
} is summable,

i.e.,
∑∞
k=0

λk

νk
<∞.

Different from [34] which has to use a summable stepsize
to ensure a finite privacy budget ε when k → ∞, here we
ensure a finite ε even when the stepsize sequence is non-
summable. Allowing stepsize sequences to be non-summable
is key to avoiding optimization errors in [34] and achieve
almost sure convergence. To our knowledge, this is the first
time that almost-sure convergence is achieved under ε-DP for
an infinite number of iterations.

Remark 5. In Theorem 2, to ensure that the cumulative
privacy budget is finite when k → ∞, the Laplace noise
parameter νk has to increase with time since {λk} is non-
summable. An increasing νk will make the relative level
between noise ζki and signal xki increase with time. However,
since the increase in νk is outweighed by the decrease
of γk (see Assumption 3), the actual noise fed into the
algorithm, i.e., γkLap(νk), still decays with time, which
makes it possible for Algorithm 1 to ensure a.s. convergence
to an optimal solution. Moreover, according to Theorem 1,
such a.s. convergence is not affected by scaling νk by any
constant coefficient 1

ε > 0 so as to achieve any desired level
of ε-DP, as long as the Laplace noise parameter νk (with
associated variance (σki )2 = 2(νk)2) satisfies Assumption 3.

VI. NUMERICAL EXPERIMENTS

We evaluate the performance of the proposed algorithm
using a canonical distributed estimation problem where a net-
work of m sensors collectively estimate an unknown param-
eter θ ∈ Rd. More specifically, we assume that each sensor
i has a noisy measurement of the parameter, zi = Miθ+wi,
where Mi ∈ Rs×d is the measurement matrix of agent i and
wi is Gaussian measurement noise of unit variance. Then the
maximum likelihood estimation of parameter θ can be solved
using the optimization problem formulated as (1), with each
fi(θ) given as fi(θ) = ‖zi −Miθ‖2 + ς‖θ‖2 where ς is a
regularization parameter [5].

We consider m = 5 sensors interacting on a randomly
generated connected graph. In the evaluation, we set s = 3
and d = 2. To evaluate the performance of the proposed
Algorithm, we injected Laplace based DP-noise with pa-
rameter νk = 1 + 0.1k0.3 in every message shared in all
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Fig. 1. Comparison of Algorithm 1 with existing distributed gradient descent
algorithm (DGD) in [3] (under the same noise) and the differential-privacy
approach for decentralized optimization PDOP in [12] (under the same
privacy budget) using the distributed estimation problem

iterations. We set the stepsize λk and diminishing sequence
γk as λk = 0.02

1+0.1k and γk = 1
1+0.1k0.9 , respectively,

which satisfy the conditions in Theorem 1 and Theorem
2. In the evaluation, we ran our algorithm for 100 times
and calculated the average as well as the variance of the
optimization error as a function of the iteration index. The
result is given by the blue curve and error bars in Fig. 1.
For comparison, we also ran the existing distributed gradient
descent (DGD) approach in [3] under the same noise, and
the differential-privacy approach for distributed optimization
(PDOP) in [12] under the same privacy budget. Note that
PDOP uses geometrically decreasing stepsizes (which are
summable) to ensure a finite privacy budget, but the fast
decreasing stepsize also leads to optimization errors. The
evolution of the average optimization error and variance of
the DGD and PDOP approaches are given by the red and
black curves/error bars in Fig. 1, respectively. It is clear that
the proposed algorithm has a comparable convergence speed
but much better optimization accuracy.

VII. CONCLUSIONS AND DISCUSSIONS

Although DP is becoming the de facto standard for
publicly sharing information, its direct incorporation into
distributed optimization leads to a trade-off between privacy
and optimization accuracy. This paper proposes a distributed
optimization algorithm that ensures both ε-DP and opti-
mization accuracy. The simultaneous achievement of both
provable convergence to the optimal solution and rigorous
ε-DP with guaranteed finite cumulative privacy budget, to
our knowledge, has not been reported before in distributed
optimization. Numerical simulation results confirm the effec-
tiveness of the algorithm.

It is worth noting that our simultaneous achievement of
both provable convergence to the optimal solution and ε-DP
does not contradict the fundamental theory and limitations of
DP in [24]. Firstly, according to the DP theory, conventional
query mechanisms on a dataset can achieve ε-DP only by
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sacrificing query accuracies. However, the distributed opti-
mization algorithm does not correspond to a simple query
mechanism on the optimal solution. Instead, what are queried
in every iteration of distributed optimization are individual
objective functions (gradients), and revealing the precise op-
timal solution is not equivalent to revealing accurate objective
functions (the actual query target). In fact, in the language
of machine learning, distributed optimization can be viewed
as the empirical risk minimization problem. On pages 216-
218 of [24], the authors explicitly state that “the constraint of
privacy is not necessarily at odds with the goals of machine
learning, both of which aim to extract information from the
distribution from which the data was drawn, rather than from
individual data points”. Secondly, the achievement of ε-DP
does incur utility cost. More specifically, in order to reduce
ε to enhance privacy, we can use a faster-increasing {νk}
according to Theorem 2, which requires {γk} to decrease
faster according to Assumption 3. Given that the convergence
speed is determined by O((λ

k

γk
)0.5) according to Remark 3,

a faster decreasing {γk} corresponds to a stronger privacy
level but a slower convergence speed.

APPENDIX

A. Proof of Lemma 6

Let θ∗ be an arbitrary but fixed optimal solution of problem
(1). Then, we have F (x̄k) − F (θ∗) ≥ 0 for all k. Hence,
by letting vk =

[
‖x̄k − θ∗‖2,

∑m
i=1 ‖xki − x̄k‖2

]T
, from

relation (6) it follows a.s. that for all k ≥ 0,

E
[
vk+1|Fk

]
≤
([

1 γk

m
0 1− κγk

]
+ ak11T

)
vk+bk1. (8)

Consider the vector π = [1, 1
mκ ]T and note

πT
[

1 γk

m
0 1− κγk

]
= πT . Thus, relation (8) satisfies

all conditions of Lemma 5. So it follows that limk→∞ πTvk

exists a.s., and that the sequences {‖x̄k − θ∗‖2} and
{
∑m
i=1 ‖xki − x̄k‖2} are bounded a.s. From (8) we have the

following relation a.s. for the second element of vk:

E

[
m∑
i=1

‖xk+1
i − x̄k+1‖2|Fk

]
≤(1+ak−κγk)

m∑
i=1

‖xki −x̄k‖2+βk

(9)
where βk = ak

(
‖x̄k − θ∗‖2 +

∑m
i=1 ‖xki − x̄k‖2

)
. Since∑∞

k=0 a
k < ∞ a.s. by our assumption, and the sequences

{‖x̄k − θ∗‖2} and {
∑m
i=1 ‖xki − x̄k‖2} are bounded a.s.,

it follows that
∑∞
k=0 β

k < ∞ a.s. Thus, the preceding
relation satisfies the conditions of Lemma 2 with vk =∑m
i=1 ‖xki − x̄k‖2, qk = κγk, and pk = βk due to our

assumptions
∑∞
k=0 b

k < ∞ a.s. and
∑∞
k=0 γ

k = ∞. So
one yields a.s.

∞∑
k=0

κγk
m∑
i=1

‖xki − x̄k‖2 <∞, lim
k→∞

m∑
i=1

‖xki − x̄k‖2 = 0.

(10)

It remains to show that ‖x̄k − θ∗‖2 → 0 a.s. For this, we
consider relation (6) and focus on the first element of vk, for
which we obtain a.s. for all k ≥ 0:

E
[
‖x̄k+1 − θ∗‖2|Fk

]
≤ (1 + ak)‖x̄k − θ∗‖2

+

(
γk

m
+ ak

) m∑
i=1

‖xki − x̄k‖2 + bk − ck(F (x̄k)− F (θ∗)).

(11)
The preceding relation satisfies Lemma 3 with φ = F ,
z∗ = θ∗, zk = x̄k, αk = ak, ηk = ck, and βk = (γ

k

m +
ak)
∑m
i=1 ‖xki−x̄k‖2+bk. By our assumptions, the sequences

{ak} and {bk} are summable a.s., and
∑∞
k=0 c

k = ∞. In
view of (10), it follows that

∑∞
k=0 β

k < ∞ a.s. Hence, all
the conditions of Lemma 3 are satisfied and, consequently,
{x̄k} converges a.s. to some optimal solution.

B. Proof of Theorem 1

The basic idea is to apply Lemma 6 to the quantities
E
[
‖x̄k+1 − θ∗‖2|Fk

]
and E

[∑m
i=1 ‖x

k+1
i − x̄k+1‖2|Fk

]
.

We divide the proof into two parts to analyze ‖x̄k+1 − θ∗‖2
and

∑m
i=1 ‖x

k+1
i − x̄k+1‖2, respectively.

Part I: We first analyze ‖x̄k+1− θ∗‖2. For the sake of no-
tational simplicity, we represent ∇fi(xki ) as gki . Stacking xki
and gki into augmented vectors (xk)T =

[
(xk1)T , · · · , (xkm)T

]
and (gk)T =

[
(gk1 )T , · · · , (gkm)T

]
, respectively, we have

xk+1 = (I + γkW ⊗ Id)xk + γkζkw − λkgk, (12)

where ⊗ denotes the Kronecker product, and (ζkw)T =[
(ζkw1)T , · · · , (ζkwm)T

]
with ζkwi ,

∑
j∈Ni wijζ

k
j .

From (12) we obtain the dynamics of x̄k = 1
m

∑m
i=1 x

k
i :

x̄k+1 = x̄k + γk ζ̄kw −
λk

m

m∑
i=1

gki , (13)

where ζ̄kw = 1
m

∑m
i=1 ζ

k
wi = 1

m

∑m
i=1

∑
j∈Ni wijζ

k
j =

−
∑m
i=1 wiiζ

k
i

m (note wii , −
∑
j∈Ni wij).

Using (13), we relate x̄k to an optimal solution:
x̄k+1 − θ∗ = x̄k − θ∗ − 1

m

∑m
i=1

(
λkgki + γkwiiζ

k
i

)
,

which further implies
∥∥x̄k+1θ∗

∥∥2 ≤∥∥x̄k−θ∗∥∥2 2
m

∑m
i=1

〈
λkgki + γkwiiζ

k
i , x̄

k−θ∗
〉

+
2
m2

∥∥∑m
i=1 λ

kgki
∥∥2

+ 2
m2

∥∥∑m
i=1 γ

kwiiζ
k
i

∥∥2
.

Taking the conditional expectation, given Fk =
{x0, . . . , xk}, and using the assumption that the noise ζki
is with zero mean and variance (σki )2 conditionally on xki
(see Assumption 3), from the preceding relation we obtain
a.s. for all k ≥ 0,

E
[∥∥x̄k+1−θ∗

∥∥2|Fk
]
≤
∥∥x̄k − θ∗∥∥2− 2λk

m

m∑
i=1

〈
gki , x̄

k − θ∗
〉

+
2

m2
(λk)2

∥∥∥∥∥
m∑
i=1

gki

∥∥∥∥∥
2

+
2

m
(γk)2

m∑
i=1

w2
ii(σ

k
i )2.

(14)
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We next estimate the inner product term, for which we
have

2λk

m

m∑
i=1

〈
gki , x̄

k − θ∗
〉

=
2λk

m

m∑
i=1

〈
gki −∇fi(x̄k), x̄k − θ∗

〉
+

2λk

m

m∑
i=1

〈
∇fi(x̄k), x̄k − θ∗

〉
.

(15)
Recalling that gki = ∇fi(xki ), by the Lipschitz continuous
property of ∇fi(·), we have

λk
〈
gki −∇fi(x̄k), x̄k − θ∗

〉
≥ −Lλk‖xki − x̄k‖‖x̄k − θ∗‖

≥ −γ
k

2
‖xki − x̄k‖2 −

L2(λk)2

2γk
‖x̄k − θ∗‖2.

(16)
By the convexity of F (·), we have

2λk

m

m∑
i=1

〈
∇fi(x̄k), x̄k − θ∗

〉
= 2λk

〈
∇F (x̄k), x̄k − θ∗

〉
≥ 2λk(F (x̄k)− F (θ∗)).

(17)
Combining (15), (16), and (17) leads to

2λk

m

m∑
i=1

〈
gki , x̄

k − θ∗
〉
≥ −γ

k

m

m∑
i=1

‖xki − x̄k‖2

− L2(λk)2

γk
‖x̄k − θ∗‖2 + 2λk(F (x̄k)− F (θ∗)).

(18)

We next estimate the second last term in (14):

1

m2

∥∥∥∥∥
m∑
i=1

gki

∥∥∥∥∥
2

=
1

m2

∥∥∥∥∥
m∑
i=1

(
gki −∇fi(θ∗)

)∥∥∥∥∥
2

≤ L2

m

m∑
i=1

∥∥xki − θ∗∥∥2
=
L2

m
‖xk − x∗‖2.

(19)
Further using the inequality

‖xk − x∗‖2 ≤ ‖xk − 1⊗ x̄k + 1⊗ x̄k − x∗‖2

≤ 2‖xk − 1⊗ x̄k‖2 + 2‖1⊗ x̄k − x∗‖2

≤ 2
m∑
i=1

‖xki − x̄k‖2 + 2m‖x̄k − θ∗‖2,
(20)

we have from (19) that

1

m2

∥∥∥∥∥
m∑
i=1

gki

∥∥∥∥∥
2

≤ 2L2

m

m∑
i=1

‖xki − x̄k‖2 + 2L2‖x̄k − θ∗‖2.

(21)
Substituting (18) and (21) into (14) yields

E
[∥∥x̄k+1− θ∗

∥∥2|Fk
]
≤
∥∥x̄k− θ∗∥∥2

+
γk

m

m∑
i=1

‖xki − x̄k‖2

+ L2(λk)2

(
1

γk
+ 4

)
‖x̄k − θ∗‖2 − 2λk(F (x̄k)− F (θ∗))

+
4L2(λk)2

m

m∑
i=1

‖xki − x̄k‖2 +
2(γk)2

m

m∑
i=1

w2
ii(σ

k
i )2.

(22)

Part II: Next we analyze
∑m
i=1 ‖x

k+1
i − x̄k+1‖2.

Using (12) and (13), we obtain xk+1 − 1 ⊗ x̄k+1 =
(I + γkW ⊗ Id)xk−1⊗ x̄k + γk

(
ζkw − 1

m

∑m
i=1 1⊗ ζkw,i

)
−

λk
(
gk − 1

m

∑m
i=1 1⊗ gki

)
. Noting 1 ⊗ x̄k =

1
m

(
11T ⊗ Id

)
xk,

∑m
i=1 1 ⊗ ζkw,i =

(
11T ⊗ Id

)
ζkw,

and
∑m
i=1 1 ⊗ gki =

(
11T ⊗ Id

)
gk, we can rewrite the

relation as

xk+1 − 1⊗ x̄k+1 = Ŵkx
k + γkΞζkw − λkΞgk, (23)

with Ŵk ,
(
I + γkW − 1

m11T
)
⊗ Id and Ξ ,(

I − 1
m11T

)
⊗ Id.

Since
(
I + γkW − 1

m11T
)
1 = 0 holds and we always

have (A⊗B)(C ⊗D) = (AC)⊗ (BD), it follows that

Ŵk

(
1⊗ x̄k

)
=

((
I + γkW − 11T

m

)
×1
)
⊗
(
Id × x̄k

)
= 0

By subtracting Ŵk

(
1⊗ x̄k

)
= 0 from the right hand side of

(23), we obtain

xk+1 − 1⊗ x̄k+1 = Ŵk

(
xk − 1⊗ x̄k

)
+ γkΞζkw − λkΞgk,

which further leads to

‖xk+1 − 1⊗ x̄k+1‖2

= ‖Ŵk(xk − 1⊗ x̄k)− λkΞgk‖2 + ‖γkΞζkw‖2

+ 2
〈
Ŵk(xk − 1⊗ x̄k)− λkΞgk, γkΞζkw

〉
≤‖Ŵk(xk−1⊗ x̄k)−λkΞgk‖2+m(γk)2

m∑
i=1

∑
j∈Ni

w2
ij‖ζkj ‖2

+ 2
〈
Ŵk(xk − 1⊗ x̄k)− λkΞgk, γkΞζkw

〉
,

where the inequality follows from ‖Ξ‖ = 1 and the definition
ζkwi ,

∑
j∈Ni wijζ

k
j . Taking the conditional expectation with

respect to Fk = {x0, . . . , xk} and using Assumption 3 yield

E
[
‖xk+1 − 1⊗ x̄k+1‖2|Fk

]
≤
(
‖Ŵk(xk−1⊗x̄k)‖+‖λkΞgk‖

)2

+m(γk)2max
j∈[m]

(σkj )2CW ,

where CW =
∑m
i=1

∑
j∈Ni w

2
ij . Using the fact ‖Ξ‖ = 1 and

‖Ŵk‖ = ‖I+γkW− 1
m11T ‖ = 1−γk|ν| where −ν is some

non-zero eigenvalue of W (see Assumption 1), we obtain

E
[
‖xk+1 − 1⊗ x̄k+1‖2|Fk

]
≤ (1− γk|ν|)2(1 + ε)‖xk − 1⊗ x̄k‖2

+ (1 + ε−1)(λk)2‖gk‖2 +m(γk)2 max
j∈[m]

(σkj )2CW

(24)

for any ε > 0, where we used (a + b)2 ≤ (1 + ε)a2 + (1 +
ε−1)b2 valid for any scalars a, b, and ε > 0.

We next focus on estimating the term involving the gradi-
ent gk in the preceding inequality. Noting gk = m∇f(xk)
and that f(·) has Lipschitz continuous gradients (with Lips-
chitz constant L

m ), we have

‖gk‖2 = m2‖∇f(xk)−∇f(x∗) +∇f(x∗)‖2

≤ 2m2‖∇f(xk)−∇f(x∗)‖2 + 2m2‖∇f(x∗)‖2

≤ 2L2‖xk − x∗‖2 + 2m2‖∇f(x∗)‖2.
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Since x∗ = 1⊗ θ∗, using the relationship in (20), we obtain

‖gk‖2 ≤ 4L2(‖xk−1⊗x̄k‖2+m‖x̄k−θ∗‖2)+2m2‖∇f(x∗)‖2.

Finally, substituting the preceding relation back in (24) yields

E
[
‖xk+1 − 1⊗ x̄k+1‖2|Fk

]
≤ (1− γk|ν|)2(1 + ε)‖xk − 1⊗ x̄k‖2

+ 4(1 + ε−1)L2(λk)2(‖xk − 1⊗ x̄k‖2 +m‖x̄k − θ∗‖2)

+ 2(1 + ε−1)(λk)2m2‖∇f(x∗)‖2 +m(γk)2 max
j∈[m]

(σkj )2CW .

By letting ε = γk|ν|
1−γk|ν| and consequently 1 + ε = (1 −

γk|ν|)−1 and 1 + ε−1 = (γk|ν|)−1, we arrive at

E
[
‖xk+1 − 1⊗ x̄k+1‖2|Fk

]
≤
(

1− γk|ν|+ 4L2(λk)2

|ν|γk

)
‖xk − 1⊗ x̄k‖2

+
4mL2(λk)2

|ν|γk
‖x̄k − θ∗‖2 +

4(λk)2m2

|ν|γk
‖∇f(x∗)‖2

+m(γk)2 max
j∈[m]

(σkj )2CW .

(25)

By combining (22) and (25), and using As-
sumption 3, we have E

[
‖x̄k+1 − θ∗‖2|Fk

]
and

E
[∑m

i=1 ‖x
k+1
i − x̄k+1‖2|Fk

]
satisfying the

conditions of Lemma 6 with κ = |ν|, ck = 2λk,
ak = max{L2(λk)2

(
1
γk

+ 4
)
, 4mL2(λk)2

|ν|γk }, and

bk = (γk)2 max{ 2
m

∑m
i=1 w

2
ii(σ

k
i )2, 4(λk)2m2

|ν|γk ‖∇f(x∗)‖2 +

mmaxj∈[m](σ
k
j )2CW } where CW =

∑m
i=1

∑
j∈Ni w

2
ij .

REFERENCES

[1] Y. Wang and A. Nedic, “Tailoring gradient methods for differentially-
private distributed optimization,” arXiv preprint arXiv:2202.01113,
2022.

[2] J. N. Tsitsiklis, “Problems in decentralized decision making and
computation.” MIT, Tech. Rep., 1984.

[3] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48–61, 2009.

[4] P. Di Lorenzo and G. Scutari, “NEXT: In-network nonconvex opti-
mization,” IEEE Transactions on Signal and Information Processing
over Networks, vol. 2, no. 2, pp. 120–136, 2016.

[5] J. Xu, S. Zhu, Y. C. Soh, and L. Xie, “Convergence of asynchronous
distributed gradient methods over stochastic networks,” IEEE Trans-
actions on Automatic Control, vol. 63, no. 2, pp. 434–448, 2017.

[6] G. Qu and N. Li, “Harnessing smoothness to accelerate distributed
optimization,” IEEE Transactions on Control of Network Systems,
vol. 5, no. 3, pp. 1245–1260, 2017.

[7] R. Xin and U. A. Khan, “A linear algorithm for optimization over
directed graphs with geometric convergence,” IEEE Control Systems
Letters, vol. 2, no. 3, pp. 315–320, 2018.

[8] S. Pu, W. Shi, J. Xu, and A. Nedić, “Push-pull gradient methods for
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