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Abstract— This paper presents a linear-programming based
algorithm to perform data-driven stabilizing control of linear
positive systems. A set of state-input-transition observations is
collected up to magnitude-bounded noise. A state feedback con-
troller and dual linear copositive Lyapunov function are created
such that the set of all data-consistent plants is contained within
the set of all stabilized systems. This containment is certified
through the use of the Extended Farkas Lemma and solved
via Linear Programming. Sign patterns and sparsity structure
for the controller may be imposed using linear constraints. The
complexity of this algorithm scales in a polynomial manner with
the number of states and inputs. Effectiveness is demonstrated
on example systems.

I. INTRODUCTION

This paper performs Data-Driven Control (DDC) of Pos-
itive Linear Time Invariant (LTI) Continuous-Time Sys-
tems (CTSs) and Discrete-Time Systems (DTSs) by finding
full-state-feedback stabilizing controllers. These controllers,
which stabilize all possible plants that are consistent with
observed data, are formulated as the solution to a Linear
Program (LP).

Positive systems are a class of dynamical systems whose
state and output responses to positive (nonnegative) initial
conditions and inputs remain positive (nonnegative) for all
time [1], [2], [3], [4]. Instances of positive systems include
population models [5], chemical networks [6], radio commu-
nications [7], queuing [8], and Markov chains [9]. Full-state-
feedback stabilization of known LTI positive systems can be
accomplished by solving an LP to find control (dual) linear
copositive Lyapunov functions [10]. Alternatively, one can
perform stabilization by formulating a Semidefinite Program
(SDP) to find a quadratic Lyapunov function [11], [12].

The peak-to-peak (L∞ → L∞ for a CTS or ℓ∞ →
ℓ∞ for a DTS) gain of an extended positive plant can be
calculated and regulated using an LP [13], [14], [15], [16],
which has also been derived using stability radius formulas
[17]. Analysis and stabilization results can be extended to
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uncertain and switched positive systems [18], as well as time-
delay positive systems [19]. The tutorial in [20] is a survey
of topics about stabilization and performance regulation for
positive linear systems.

DDC is a method that synthesizes controllers for a class
of data-consistent plants without first performing a possibly
expensive and inaccurate system identification step [21],
[22]. Methods that require a reference signal include iterative
feedback tuning [23], virtual reference feedback tuning [24],
[25], and correlation-based tuning [26], but these algorithms
lack stability guarantees for all consistent systems. Data-
driven predictive control through input-output data can be
accomplished through Willem’s Fundamental Lemma, as-
suming that a rank condition of the Hankel matrices is
satisfied (persistency of excitation) [27]. Stabilization, worst-
case-optimal control, and Model Predictive Control problems
can be solved through the use of this Lemma [28], [29], [30],
[31], but the Lemma is vulnerable to noise sensitivity (even
with regularization).

Prior knowledge of noise characteristics can be employed
to synthesize controllers that will stabilize all plants that are
consistent with data. L∞-bounded noise arises from bounds
on the time-derivative of the state (CTS) or discretization
of continuous-time finite-difference approximations (DTS).
Work addressing DDC of L∞-bounded noise by solving
LPs includes [32] using an Extended Farkas Lemma [33].
Tools from polynomial optimization may be applied to
the L∞ setting, such as for quadratic stabilization [34],
switched systems [35], [36], and error-in-variables control
[37], [38]. Quadratic Matrix Inequalities may be used to
represent consistency sets (including energy-based or L2-
bounded noise) [39], [40], and stabilizing controllers may
be synthesized by solving SDPs using a Matrix S-Lemma
[41]. The work in [42] employs polynomial optimization for
DDC under the assumption that magnitude bounds on Taylor
polynomial coefficients and residual terms are known.

The work in [43] utilizes the Fundamental Lemma [27] to
perform DDC of positive systems by solving an SDP. System
identification of positive systems is performed in [44]. The
method in [45] uses data-driven Lyapunov-Metzler inequali-
ties to perform switched linear systems control (including
positive linearsystems) at the expense of solving Bilinear
Matrix Inequalities.

The contributions of this work are:
• An LP that performs data-driven positive-stabilizing

control for all systems consistent with observed data.
• A tabulation of computational complexity required to

solve this LP.
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• An extension of this LP towards worst-case peak-to-
peak gain minimizing control.

Our work adapts existing model-based methods for posi-
tive systems into the DDC setting, and the resultant finite-
dimensional LP formulations are comparatively simpler than
Semidefinite-Programming-based prior methods in positive
DDC.

This paper has the following structure: Section II reviews
the preliminaries of notation, positive systems, copositive
Lyapunov functions, and the Extended Farkas Lemma. Sec-
tion III presents an LP to perform data-driven stabilizing
control of positive systems. Section IV extends this LP
framework to yield controllers that minimize the worst-
case peak-to-peak gain between an external input and a
controlled output. Section V demonstrates effectiveness of
these methods on stabilizing and worst-case-optimal control
of example systems. Section VI concludes the paper.

II. PRELIMINARIES

A. Notation

The n-dimensional Euclidean vector space is Rn. Its
nonnegative orthant will be written as Rn

≥0 and its positive
orthant will be denoted as Rn

>0. The set of n×m matrices
will be Rn×m. The transpose of a matrix M ∈ Rn×m is
MT ∈ Rm×n.

The n-dimensional identity matrix is In. The vector of
all ones is 1n ∈ Rn. The n × m matrix of all zeros is
0n×m ∈ Rn×m. The matrix with v ∈ Rn appearing on
its main diagonal and zeros elsewhere is diag(v) ∈ Rn×n.
The Kronecker product of matrices A and B is A⊗B. The
column-wise vectorization of a matrix M is vec(M). The
elementwise division between a, b ∈ Rn is a./b.

The symbol δx will refer to x+ (next state) in discrete-
time or ẋ in continuous-time. The symbols (⊛,⊕,⊖,⊙)
correspond to an unrestricted (real-valued), a nonnegative,
a nonpositive, and a zero-valued element respectively.

B. Positive Systems

A controlled LTI system with states x ∈ Rn, inputs u ∈
Rm, and outputs y ∈ Rp has the form

δx = Ax+Bu y = Cx+Du. (1)

1) Positive System Descriptors:
Definition 2.1: The system (1) is internally positive iff for

any initial condition x(0) ∈ Rn
≥0 and input u(t) ∈ Rm

≥0,
the state and output responses remain in the positive orthant
(x(t) ∈ Rn

≥0, y(t) ∈ Rp
≥0 ∀t ≥ 0) [3].

Internal positivity requires that (B,C,D) are all nonnega-
tive, along with the property that A is Metzler (off-diagonals
are nonnegative) for a CTS or that A is nonnegative for
a DTS. The system is positive-stable if A is Hurwitz and
Metzler (CTS), or Schur and Nonnegative (DTS). For the
remainder of this paper, we will assume that C = In and
D = 0n×m.

The state-feedback control u = Kx with K ∈ Rm×n

positively-stabilizes (1) if the closed-loop matrix A+BK is
Metzler-Hurwitz or Nonnegative-Schur (as appropriate).

2) Copositive Functions:
Definition 2.2: A function f : Rn → R is copositive (with

respect to the positive orthant) if ∀x ∈ Rn
>0 : f(x) > 0.

Copositivity of the linear function V (x) = vTx and the
dual-linear function V (x) = max(x./v) may be checked by
verifying that v > 0, but testing copositivity of a matrix
function such as xTMx for some M ∈ Rn×n is generically
NP-hard [46].

3) Stability of Positive Systems:
Theorem 2.1: Let the system (1) be internally positive.

Then it is asymptotically stable (positive-stable) iff one of
the following equivalent conditions is satisfied [20]:

C1) The matrices −A (CTS) or In−A (DTS) have positive
principal minors.

C2) There exists a p ∈ Rn
>0 with P = diag(p) such that

ATP + PA ≺ 0 (CTS) or ATPA− P ≺ 0 (DTS).
C3) There exists a positive vector v ∈ Rn

>0 with a Linear
Copositive Lyapunov Function (LCLF) vTx such that
AT v < 0 (CTS) or AT v < v1 (DTS).

C4) There exists a positive vector v∞ ∈ Rn
>0 with a

Dual Linear Copositive Lyapunov Function (DLCLF)
max(x./v∞) such that Av∞ < 0 (CTS) or Av∞ < v∞
(DTS).

In this paper we will exclusively use Condition C4 of
Theorem 2.1 with a DLCLF max(x./v∞). We note that
the conditions in Theorem 2.1 strictly treat the case of
(dual) LCLFs. Proposition 3.3 of [18] states that every
uniformly exponentially stable positive linear system admits
a polyhedral Lyapunov function with an undecidable number
of facets.

4) Positive System Stabilization: DLCLFs may be em-
ployed to find positive-stabilizing controllers K ∈ Rm×n.

Theorem 2.2 ([10]): The closed-loop system δx = (A +
BK)x from (1), given a control u = Kx, is positive and
asymptotically stable if there exists a vector v ∈ Rn

>0 with
a diagonal matrix X = diag(v), and a matrix Y ∈ Rm×n

such that the gain K satisfies KX = Y and

−(AX +BY )1n ∈ Rn
>0 AX +BY is Metzler (CTS)

(2a)

v − (AX +BY )1n ∈ Rn
>0 AX +BY ∈ Rn×n

≥0 (DTS).
(2b)

Finding a controller through (2) requires solving an LP
with both strict and nonstrict inequality constraints.

5) Structured Control: The stabilization task in (2) may
be restricted to a set of controllers that obey sign patterns and
sparsity structures. Such sparsity might arise from network
information constraints.

Let S be an m × n matrix filled with the symbols
(⊛,⊕,⊖,⊙). A controller with the structure K ∈ S may be
constructed by solving (2) under the constraint that Y ∈ S,
given that multiplication by the matrix X with v ∈ Rn

>0 does
not change the sign pattern. An unstable internally positive
system cannot be positive-stabilized by a nonnegative state
feedback controller K ∈ Rm×n

≥0 .
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C. Extended Farkas Lemma

This work will find a state-feedback controller u = Kx
such that the set of all K-stabilized systems contains the set
of systems consistent with observed data. The method used
to enforce this containment is the Extended Farkas Lemma:

Lemma 2.3 (Extended Farkas Lemma [33], [47]): Let
P1 = {x | G1x ≤ h1} and P2 = {x | G2x ≤ h2} be a pair
of polytopes. Then P1 ⊆ P2 if and only if there exists a
nonnegative matrix Z of compatible dimensions such that,

ZG1 = G2, Zh1 ≤ h2. (3)

III. DATA-DRIVEN STABILIZATION

This section will detail the data-driven positive-
stabilization problem and its solution using robust linear
programming.

A. Problem Setting

A set of T observations are recorded of system (1) as
corrupted by a noise process w ∈ Rn,

δx(t) = Ax(t) +Bu(t) + w(t). (4)

These observations are collected into the data D =
(X,U,Xδ) with the expressions,

X := [x(0) x(1) . . . x(T − 1)]
U := [u(0) u(1) . . . u(T − 1)]
Xδ := [δx(0) δx(1) . . . δx(T − 1)].

(5)

The discrepancy matrix W satisfies the relation,

W = Xδ − (AX+BU). (6)

The noise model that we will use is that each w(t)
(column of W) is L∞-norm-bounded by some given ϵ ≥ 0
(∥w(t)∥∞ ≤ ϵ).

The set of all system matrices (A,B) that are compat-
ible with the L∞-corrupted data in D forms a polytopic
consistency set ΣD. If it is known a priori that A is
Metzler/Nonnegative and/or B is nonnegative, then these
constraints in (A,B) may be adjoined to ΣD.

The data-driven positive-stabilization problem is:
Problem 3.1: Find a vector v ∈ Rn

>0 and a controller
K ∈ S such that max(x./v) is a common DLCLF ensuring
positive-stability of A+BK for all (A,B) ∈ ΣD.

B. Polytope Description

We will describe K-stabilized and D-consistent polytopes
that will be used in solving Problem 3.1 Throughout this
section, the column-vectorization of the plant matrices will
be defined as a = vec(A), b = vec(B). The identity
vec(UVW ) = (WT ⊗ U)vec(V ) for matrices (U, V,W ) of
compatible dimensions will be judiciously used in deriva-
tions.

1) Data-Consistent Polytopes: The polytopic set Σdata
D of

plants consistent with the data in D may be represented as

Gdata
1 =

[
XT ⊗ In UT ⊗ In

]
(7a)

Σdata
D =

{
(A,B) | Gdata

1

[
a
b

]
≤

[
ϵ1nT + vec(Xδ)
ϵ1nT − vec(Xδ)

]}
. (7b)

The consistency set of plants ΣD is the intersection of
Σdata

D and the prior knowledge on system-positivity of (A,B)
(linear constraints) described in Σprior. As an example, where
A is a positive system in discrete-time, then Σprior = {A |
A ∈ Rn×n

+ }, Gprior
1 = −In2 , and hprior

1 = 0n2 . Let (G1, h1)
be matrices such that the polytopic data-consistency set
ΣD = Σdata

D ∩ Σprior can be expressed as

ΣD = P1 =

{
(A,B) | G1

[
a
b

]
≤ h1

}
. (8a)

2) Controller-Stabilizing Polytopes: In order to apply the
Extended Farkas Lemma 2.3, we will convert the strict
inequalities in (2) and in v ∈ Rn

>0 to non-strict inequalities
by utilizing a sufficiently small η > 0.

−(AX +BY )1n − η1n ∈ R≥0 (CTS) (9a)
v − (AX +BY )1n − η1n ∈ R≥0 (DTS). (9b)

Define the canonical Metzler-indexing matrix Mn ∈
Rn(n−1)×n2

as a 0/1-valued matrix that extracts off-diagonal
elements, such as

M2vec
([

1 3
2 4

])
=

[
2
3

]
. (10)

The polytope PC
2 of continuous-time plants (A,B) that

can be positive-stabilized via (9a) under a state-feedback
controller K ∈ S with a DLCLF max(x./v) such that
Y = KX can be described by

GC
2 =

[
vT ⊗ In (Y 1n)

T ⊗ In
−Mn(X ⊗ In) −Mn(Y

T ⊗ In)

]
(11a)

PC
2 =

{
(A,B) | GC

2

[
a
b

]
≤

[
−η1n

0n(n−1)

]}
. (11b)

The top row of GC
2 is the DLCLF stabilization criterion,

and the bottom row enforces that AX +BY is Metzler.
The polytope PD

2 of discrete-time plants (A,B) positive-
stabilized by (K,Y ) under the same conditions is

GD
2 =

[
vT ⊗ In (Y 1n)

T ⊗ In
−X ⊗ In −Y T ⊗ In

]
(12a)

PD
2 =

{
(A,B) | GD

2

[
a
b

]
≤

[
v − η1n

0n2

]}
. (12b)

C. Stabilizing Programs using the Extended Farkas Lemma

To unite notation, let P2 be the appropriate stabilizing
polytope for continuous-time (PC

2 ) or discrete-time (PD
2 )

from Section III-B.2. The number of constraints in the
stabilizing polytope P2 (length of h2) is q = n + n(n − 1)
for continuous-time and q = n + n2 for discrete-time. The
polytope P2 has a constraint matrix G2 ∈ Rq×n(n+m) and
vector h2 ∈ Rq such that P2 = {(A,B) | G2[a

T bT ]T ≤
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h2}. The entries in G2 and h2 are affinely-dependent on
(v, Y ).

Problem 3.1 may be expressed in the language of
polytope-containment as,

Problem 3.2: Find a vector v ∈ Rn
>0 and a matrix Y ∈ S

such that P1 ⊆ P2.
Theorem 3.3: Problem 3.2 (equivalent to (3.1)) has a

solution iff the following LP involving variables (v, Y, Z)
is feasible:

find
v,Y,Z

ZG1 = G2(v, Y ), Zh1 ≤ h2(v, Y ) (13a)

v − η1n ∈ Rn
≥0, Y ∈ S, Z ∈ Rq×2nT

≥0 , (13b)

whereby the state-feedback gain K ∈ S can be recovered by
calculating K = Y X−1.

Proof: The LP in (13) is a direct application of the
Extended Farkas Lemma 2.3 to prove polytope containment
P1 ⊆ P2. If there exists a (v, Y ) such that Problem
3.2 is solved, then there exists a Z that renders (13) by
the Extended Farkas Lemma. Conversely if there exists a
(v, Y, Z) such that (13) is feasible, then the Extended Farkas
Lemma proves the containment of polytopes 2.3 with (v, Y ).

D. Computational Complexity

Table I computes the number of inequality and equality
constraints required to represent Program (13a). The number
of equality constraints associated with Y is set to 0 because
zero-valued entries of Y will be removed and will not be
treated as scalar variables. The LP in (13) has up to n +
mn+(2nT )q scalar variables distributed into (v, Y, Z), plus
q additional nonnegative slack variables required to represent
the inequalities in constraint (13a).

TABLE I: Number of Inequality and Equality constraints in
Program (13)

# Ineq. # Eq.
v n 0
Y ≤ mn 0
Z (2nT )q 0

(13a) q qn(n+m)

In discrete-time with q = n2+n and no value-restrictions
on K (Y ∈ Rm×n), Program (13a) will have N =
(2nT +1)(n2+n)+(2m+1)n nonnegative scalar variables
(representing Y = Y + − Y − where both Y + and Y − are
nonnegative) and (n2 + 1)n(n+m) equality constraints.

The running-time of an Interior Point Method
solver for LPs up to γ-optimality is approximately
O(Nω+0.5|log(1/γ)|) [48], where ω is the matrix-
multiplication constant. Our DDC algorithm therefore has
performance on the order of (Tn3)ω+0.5 ∼ n12.5. Significant
gains in performance may be realized by noting that the
matrices (G1, G2) are sparse and are highly structured.

Remark 1: The polytope ΣD may possess a large num-
ber of redundant faces. These half-space constraints may
be removed to improve computational performance without

affecting the description of ΣD. Nonredundant faces may be
discovered by linear programming over the polytope [49].

Remark 2: An alternative approach is to perform vertex
enumeration, in which relations (2) hold at every vertex of
ΣD. The polytopes ΣD that are gathered as part of the data-
acquisition process empirically have a number of vertices
that scales exponentially with dimension, for which the face-
based approach of the Extended Farkas Lemma is more
favorable.

Remark 3: This paper focused on the case of L∞-
bounded noise. This set-containment framework will also
be nonconservative when applied to other with other
semidefinite-representable noise processes, such as when
each column of the discrepency matrix W in (6) has bounded
L2 norm. The Extended Farkas Lemma 2.3 is a specific
instance of a more general Robust Counterpart posed over
a system of linear inequalities [50, Theorem 1.3.14]. In the
L2 case, each inequality constraint in the polytope in P2

over the uncertain (a, b) is replaced via a robust counterpart
by n(n +m) second-order-cone variables, n(n +m) linear
equality constraints, and one linear inequality constraint. This
procedure is performed programmatically in [51] under the
‘duality’ option.

IV. PEAK-TO-PEAK GAIN REGULATION

This section performs worst-case peak-to-peak (p2p) gain
minimization using the Extended Farkas Lemma.

System (1) may be affected by an external noise process
ξ ∈ Re to form dynamics with a controlled output of z ∈ Rp

δx(t) = Ax(t) +Bu(t) + Eξ(t) (14a)
z(t) = Cx(t) +Du(t) + Fξ(t). (14b)

For a given set of parameters (A,B,C,D,E, F ) with C ∈
Rp×n, D ∈ Rp×m, E ∈ Rn×e, F ∈ Rp×e, this peak-to-
peak gain may be computed by solving an LP,

Lemma 4.1 ([14]): There exists a state-feedback con-
troller u = Kx with K,Y ∈ S and v ∈ Rn

>0 such that
peak-to-peak gain of (14) is less than or equal to γ ≥ 0 for
continuous-time if

− (AX +BY )1n − E1e ∈ Rn
>0 (15a)

γ1q − (CX +DY )1n − F1e ∈ Rq
>0 (15b)

CX +DY ∈ Rq×n
≥0 (15c)

AX +BY is Metzler, (15d)

and for discrete-time if

v − (AX +BY )1n − E1e ∈ Rn
>0 (16a)

γ1q − (CX +DY )1n − F1e ∈ Rq
>0 (16b)

CX +DY ∈ Rq×n
≥0 (16c)

AX +BY ∈ Rn×n
≥0 , (16d)

whereby the state-feedback gain can be recovered by K =
Y X−1.

We aim to solve the following problem:
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Problem 4.2: Find a state-feedback controller u = Kx
with K ∈ S to minimize the worst-case peak-to-peak gain
ξ → z for any data-consistent plant (A,B) ∈ ΣD.

Remark 4: The ϵ-corrupted data in D is obtained when
ξ(t) = 0 at all time samples. It is further assumed that
the matrices (C,D,E, F ) are all fixed and are known in
advance.

Peak-to-peak polytopes for (A,B) in (15) and (16) may
be construct in a similar manner to the stabilizing polytopes
P2 in Section III-B.2. The right hand sides of these polytopes
for CTSs and DTSs are,

hp2p:C
2 =

[
−η1n − E1e

0n(n−1)

]
hp2p:D
2 =

[
v − η1n − E1e

0n2

]
.

(17)

Theorem 4.3: Problem 4.2 has a solution iff the following
LP in variables (v, Y, Z, γ) is feasible,

γ∗ =min
γ∈R

γ (18a)

ZG1 = G2(v, Y ), Zh1 ≤ hp2p
2 (v, Y ) (18b)

(γ − η)1q − (CX +DY )1n − F1e ∈ Rq
≥0 (18c)

CX +DY ∈ Rq×n
≥0 (18d)

v − η1n ∈ Rn
≥0, Y ∈ S, Z ∈ Rq×2nT

≥0 , (18e)

whereby the p2p-minimizing state feedback gain K ∈ S can
be recovered by K = Y X−1.

Proof: The outer (peak-to-peak) polytope is P p2p
2 =

{(A,B) | G2[a
T bT ]T ≤ hp2p

2 } for the appropriate
continuous-time or discrete-time vector in (17), as con-
structed from conditions (15a) or (16a). The Extended Farkas
Lemma 2.3 is then applied in (18b) to ensure that γ is
an upper bound for the peak-to-peak gain of all consistent
systems (with similar logic as in the proof of Theorem 3.3).
The objective in (18a) reduces this gain as much as possible.
The minimum is achieved because all constraints in (18) are
nonstrict (due to the given tolerance η > 0).

V. NUMERICAL EXAMPLES

All experiments are written in MATLAB 2021a with
Mosek [52] and YALMIP [53] dependencies. The code is
available at https://github.com/jarmill/data_
driven_pos. All experiments use a noise level of ϵ = 0.1
for the L∞-norm bound and a tolerance of η = 10−3 for the
strict inequality constraints.

A. Continuous-Time Stabilization

The ground-truth continuous-time system in this example
has n = 3 inputs and m = 2 outputs:

A =

−0.55 0.3 0.65
0.06 −1.35 0.25
0.1 0.15 0.4

 B =

0.18 0.08
0.47 0.25
0.07 0.95

 . (19)

System (19) is internally positive but is open-loop unstable
(poles of 0.4907,−0.6055,−1.3851). The stabilization task

in (13) with T = 5 and an additional normalization constraint
that 1T

nv = 1 results in,

v =
[
0.5570 0.1401 0.3029

]T
(20a)

K =

[
0.0279 −0.2660 0.5041
0.0107 −0.0222 −0.8650

]
. (20b)

Figure 1 visualizes controlled trajectories of 100 data-
consistent plants in which each (A,B) is chosen from the
polytope ΣD by hit-and-run sampling [54] (with imple-
mentation in [55]). All closed-loop trajectories of ẋ(t) =
(A+BK)x(t) begin at the initial point x(0) = [1; 1; 1], share
a common K from (20b), and evolve in times t ∈ [0, 20].

Fig. 1: Application of the controller u = Kx from (20b) to
positively-stabilize 100 consistent systems in ΣD.

Figure 2 plots values of the DLCLF max(x./v) (for the
v in (20a)) along the 100 systems in 1.

0 5 10 15 20

0

2

4

6

8

Lyapunov Function along Trajectories

Fig. 2: DLCLF along the 100 trajectories.

B. Discrete-Time Stabilization

This example involves a discrete-time system with n =
5 states and m = 3 inputs. The ground-truth sys-
tem is internally positive, and is unstable with poles of
1.3094, −0.1218±0.0992j, 0.1201±0.1108j. With T = 60
observations the following DLCLF and stabilizing controller
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is recovered:

v =
[
0.2076 0.1212 0.2651 0.2516 0

]T
(21)

K =

 0.0483 0.0088 −0.1326 −0.0188 −0.4273
−0.3243 0.0115 0.0299 −0.2980 0.0337
0.1601 0.0749 −0.5962 −0.3537 −0.2194

 .

It is now desired to obtain a stabilizing controller for all
consistent plants that obeys the sign pattern

S =

⊙ ⊙ ⊙ ⊙ ⊖
⊙ ⊙ ⊛ ⊙ ⊕
⊙ ⊙ ⊙ ⊛ ⊛

 (22a)

Such a DLCLF certificate and controller is

v =
[
0.2147 0.1259 0.2448 0.2516 0.1630

]T
(22b)

K =

0 0 0 0 −0.6853
0 0 −0.3206 0 0.1206
0 0 0 −0.5604 −0.3317

 . (22c)

C. Continuous-Time Peak-to-Peak

The following ground-truth positive-stable continuous-
time system has n = 3 inputs and m = 2 outputs

A =

−0.2 0.2 0.2
0.4 −0.7 0.2
0 0.8 −3

 B =

−0.4 0.5
0.2 −0.8
−1 2

 . (23)

This system has e = 2 external input channels and p = 5
controlled outputs with

C =

[
I3

02×3

]
, D =

[
03×2

I2

]
, E =

[
I2

01×2

]
, F = 05×2.

(24)

The peak-to-peak gain of the ground-truth (23) under the
parameters in (24) when uncontrolled (K = 02×3) is γ∗ =
32.178. Lemma 4.1 synthesizes a controller for the ground-
truth system resulting in a gain of γ∗ = 3.742. The constraint
CX +DY ∈ Rq×n

≥0 with the values in (24) imposes that all
elements of Y and K are nonnegative (⊕).

Table II collects the worst-case peak-to-peak gains ob-
tained by (18) as a function of the number of samples T .
These gains decrease as T increases and the consistency
set ΣD shrinks. The top row of (II) incorporates the prior
knowledge that the ground-truth A from (23) is Metzler
when constructing the polytope ΣD. The bottom row does
not impose this positivity (Metzler) prior on A, and therefore
yields peak to peak bounds that are always greater than or
equal to the Metzler-imposed bounds.

TABLE II: Worst-case peak-to-peak gain γ∗ computed by
(18) decreases as the number of samples T increases

T 20 30 50 80 120
A Metzler 6.4539 5.0182 4.4967 4.0619 4.0028

No Prior 6.4823 5.0719 4.5292 4.0659 4.0029

The system with T = 50 and a Metzler-prior on A has a
worst-case peak-to-peak gain of γ∗ = 4.4967 and solution

outputs of

v =
[
4.4967 4.2021 0.4303

]T
(25a)

K =

[
0.5095 0.4765 0.4727
0.2587 0 0

]
. (25b)

The polytope ΣD under the Metzler-prior has 2nT+(n2−
n) = 300 + 6 = 306 faces and 308,672 vertices, of which
62 faces are nonredundant (see Remark 1). The nonnegative
Farkas matrix over the nonredundant faces is Z ∈ R9×62

≥0 .

VI. CONCLUSION

This paper presented an LP-based algorithm (Theorem
3.3) to perform data-driven stabilizing control of positive
linear systems. The state-feedback controller K stabilizes
all possible systems in the L∞-norm bounded consistency
set ΣD, as certified by a common DLCLF function V (x) =
max(x./v) and the Extended Farkas Lemma. There is no
conservativeness in such a design: Equation (13) will find a
controller iff there exists such a linear copositive Lyapunov
function across all consistent systems. This framework can
also be used to perform data-driven worst-case peak-to-peak
gain minimization using Theorem 4.3.

Future work includes imposing other forms of consis-
tency sets for the noise (e.g. elementwise L2 norm bounds,
semidefinite energy-based noise bounds for W). Other av-
enues include creating controllers in the switched or linear-
parameter-varying setting, and extending this method to-
wards Monotone systems.
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