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Abstract— In this paper, we study the bearing-based forma-
tion maneuver control problem of the leader-follower multi-
agent system. The objectives are achieving the rotation, trans-
lation, and scaling maneuvers with a transformable formation
shape. Unlike existing works where the target formation is
defined by displacements, distances, or constant bearings, we
propose a novel target formation with time-varying bearings.
The feasibility and uniqueness of the target formation are
analyzed by extending the properties of bearing rigidity to
time-varying cases. Compared to the existing methods where
the positions and velocities of all the agents are required, an
estimation-based control method is proposed to achieve the
target formation using relative bearings and only the leaders’
positions and velocities. Both the estimation error and tracking
error converge to zero under the extended properties of bearing
rigidity and cascade system theories. A sufficient condition
for collision avoidance among the agents is also proposed. A
numerical example illustrates the effectiveness of the proposed
method.

I. INTRODUCTION

Formation control, which is one of the most attractive tasks
in cooperative control, has received increasing attention. To
achieve the desired formation, two subtasks are needed, i.e.,
formation shape control and maneuver control, which aim to
steer agents to form a target geometric shape and maneuver
as a whole such that the translation, rotation, scaling, and
other motions can be changed, respectively [1].

Based on the invariance to the translation, the
displacement-based method can be applied to achieve
translation formation maneuver [2]. The work [3] proposes
a distance-based approach with desired motion parameters
to achieve translation and rotation formation maneuver
control based on the distances’ invariance to the maneuvers.
In addition, the complex-valued Laplacian method [4], [5],
can achieve translation, rotation, and scaling formation
maneuver control in the 2D complex field. The stress
matrices, which are invariant to any transformation of the
formation, can be used in the 3D cases [1], [6]. However,
the weights of the inter-agent edges are difficult to be
determined since the equilibrium stress of the nominal
formation is hard to predefine.
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In addition to the above approaches, the bearing-based
methods, where the target formation is defined by the relative
bearings, have attracted a growing research interest [7]–[9].
Because of the invariance to the scalings and translations, it is
easier to achieve translation and scaling formation maneuver
control in 3D cases using bearing-based methods than the
displacement-based, distance-based, and complex-Laplacian-
based ones [10], [11]. The weights of the inter-agent edges
can be easily determined by the desired bearings, which
is more convenient than the stress-matrix-based methods.
However, it is still challenging to achieve rotation maneuver
control and formation transformation, which lead to time-
varying desired bearings and result in complex relations
among the agents’ desired positions and velocities. The
relations can not be described by the bearing rigidity the-
ories [7]–[11], where the desired bearings must be constant.
Recently, a relaxed bearing rigidity-based method [12] can
achieve rotation maneuver control. However, it requires the
bearings to be persistently exciting, which means the target
formation can not be static.

Moreover, the aforementioned approaches [1]–[6], [10],
[11] need real-time position or displacement measurements
of all the agents. It requires some GPS devices or visual
cameras, which may hardly be used in severe environments
[13]. In comparison, relative bearings, which impose the
minimum requirements on the agents’ sensing abilities [14],
can be easily obtained by passive sonars or radars in many
environments [15]. However, since the bearings only describe
the inverse tangent relations among the displacements of the
agents, it is usually difficult to design a control method using
bearings, especially when the desired bearings are time-
varying [14]. The varying rates of the desired bearings lead
to complicated desired velocities of the agents, which can
not be assumed to know priorly [12] or estimated by the
first-order consensus algorithm [8]. That even increases the
difficulties of bearing-based control method design.

Based on the observation, in this paper, we aim to solve the
bearing-based formation maneuver control problem with ro-
tation, translation, and scaling maneuvers with transformable
formation shapes. The contributions of this paper are three-
fold. First, we propose a target formation defined by time-
varying bearings that contain the desired rotation, translation
and scaling maneuvers with transformable formation shapes.
The target formation can be either static or time-varying,
which contain those in [7]–[12] as special cases. The feasi-
bility and uniqueness of the target formation are analyzed by
extending some of the bearing rigidity properties to the time-
varying cases. Second, an estimation-based control method
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is designed to achieve the target formation. Compared with
[12], the desired positions and velocities of the followers are
not required priorly. Different from [1]–[6], [10], [11], only
the leaders’ position and velocity information is required.
Third, the convergence of the estimation and tracking errors
is analyzed by employing extended bearing rigidity proper-
ties and cascade system theories. A sufficient condition that
guarantees inter-agent collision avoidance is also proposed.

The rest of this paper is organized as follows. In Section
II, preliminaries and problem statements are presented. In
Section III, the bearing-based control method is presented.
The convergence analysis of the errors is also shown. Section
IV shows the numerical example. Section V draws the
conclusions.

Notations: Given a real vector x = [x1, ..., xn]T ∈ Rn,
define the norms for x as ‖x‖ =

√
xTx and ‖x‖1 =∑n

j=1 |xj |, where |·| denotes the absolute value. The signum
function sgn(x) = [sgn(x1), ..., sgn(xn)]T . Let Id and 0d be
the identity matrix and vectors of all zeros with d dimensions,
respectively. ⊗ denotes the Kronecker product. λm(·) and
λM (·) denote the minimum and maximal eigenvalues of the
matrix, respectively.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Preliminaries

Consider n mobile agents, where the first nl(nl ≥ 2)
agents are the leaders and the others labeled by nl + 1, nl +
2, . . . , n are the followers. Let pi, ui ∈ Rd(d ≥ 2) denote the
position and velocity control input of agent i in the global
reference frame, respectively. The dynamic model of each
agent i is

ṗi = ui. (1)

Let G = (V, E) denote an undirected graph with a vertex set
V = {1, . . . , n} and an edge set E = V ×V composed of m
edges. For each edge (i, j) ∈ E , j is called the neighbor of
i. Agent i can sense the relative measurements and receive
the information from j. Ni denotes the neighbor set of agent
i. In the set V , the vertexes in Vl := {1, . . . , nl} and Vf :=
{nl+1, . . . , n} denote the leaders and followers, respectively.

For each edge (i, j) ∈ E , define rij := pj − pi as the
displacement from agent i to j, and ‖rij‖ as the distance
between i and j. ϕij :=

rij
‖rij‖ represents the relative bearing

from i to j. For convenience, define Pϕij := Id − ϕijϕTij .
Moreover, define p := [pT1 , . . . , p

T
n ]T , r := [rT1 , . . . , r

T
m]T

and u := [uT1 , . . . , u
T
n ]T as the positions, displacements, and

velocities of the n agents. Then one has r = (H ⊗ Id)p :=
H̄p, where H ∈ Rm×n is the incidence matrix related to
graph G [7]. The notations shown in Fig.1(a) are all defined
in the global reference frame. An example of the topology
with 2 leaders and 6 followers is shown in Fig.1(b).

B. Problem Statement

To achieve formation maneuver control using bearing
measurements, we first define the target formation to be
achieved.

(a) (b)

Fig. 1. The notations and an example of the topology.

Definition 1 (Target Formation): A formation G(p(t)) is
a bearing-based target formation with desired rotation, scal-
ing, and translation maneuvers with transformable formation
shape if it satisfies the following conditions,

1) pk(t) = p∗k(t),∀k ∈ Vl,
2) pj(t)−pi(t)
‖pj(t)−pi(t)‖ = ϕ∗ij(t),∀(i, j) ∈ E ,

3) ṗi(t) = u∗i (t),∀i ∈ V,
where p∗i (t) and u∗i (t) denote the desired position and
velocity of each agent i, respectively. ϕ∗ij(t) denotes the
desired bearing of each pair of neighboring agents.

The desired position p∗k and velocity u∗k of each leader
∀k ∈ Vl in condition 1) and part of condition 3) determine
the translation and scaling maneuvers. The time-varying
desired bearings ϕ∗ij ,∀(i, j) ∈ E in condition 2) determines
the rotation maneuver. The formation transformation is de-
termined by p∗k, u

∗
k,∀k ∈ Vl and ϕ∗ij ,∀(i, j) ∈ E together.

The proposed target formation is a general form containing
those defined in the existing bearing-based works [7]–[12].

In this paper, each leader k ∈ Vl knows its desired states
p∗k, u∗k as prior information and it can sense its position
measurement pk to move with the desired dynamics. For
each follower i ∈ Vf , the desired bearings and varying
rates ϕ∗ij , ϕ̇

∗
ij with respect to the neighbors j ∈ Ni is

known as prior information. During the maneuvers, follower
i can measure the bearings ϕij and obtain the estimations
of the desired states p∗j , u

∗
j from its neighbors j ∈ Ni via

communication.
Remark 1: A position-based controller can be easily de-

signed for each leader to track the desired dynamics very
fast. Hence, the assumption that each leader moves in its
desired dynamics does not simplify the controller design and
theoretical analysis of the whole closed-loop system greatly.

We aim to study the following two problems in this paper:
Problem 1: What is the sufficient condition such that the

target formation in Definition 1 is feasible and unique?
Problem 2: How to design a control method for each fol-

lower agent i ∈ Vf using the bearing-based information such
that the target formation in Definition 1 can be achieved?

III. BEARING-BASED FORMATION MANEUVER
CONTROL

In this section, the feasibility and uniqueness of the
time-varying target formation are first analyzed. Then, a
distributed estimator is designed for each follower to estimate
the desired states. After that, a bearing-based controller is
designed for each follower to achieve the target formation.
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Finally, the convergence of the estimation and tracking error
is analyzed.

A. Feasibility and Uniqueness of the Target Formation

To analyze the feasibility and uniqueness of the target
formation in Definition 1, a time-varying bearing Laplacian
matrix is defined as follows:

[B(t)]ij=


0d×d, i 6=j, (i, j) /∈ E ,
−(Id − ϕ∗ij(t)ϕ∗Tij (t)), i 6=j, (i, j) ∈ E ,∑
j∈Ni(Id − ϕ

∗
ij(t)ϕ

∗T
ij (t)), i=j, i ∈ V.

(2)
B(t) is partitioned to

B(t) =

[
Bll(t) Blf (t)
Bfl(t) Bff (t)

]
,

where Bff (t) ∈ Rdnf×dnf only contains the desired bear-
ings among the followers.

Stack the desired positions and velocities of the agents
into vectors as p∗ := [p∗Tl ,p∗Tf ]T and u∗ :=

[u∗T
l ,u∗T

f ]T , respectively, where p∗l := [p∗T1 , ..., p∗Tnl ]T ,
u∗
l := [u∗T1 , ..., u∗Tnl ]T , p∗f := [p∗Tnl+1, ..., p

∗T
n ]T , and u∗

f :=

[u∗Tnl+1, ..., u
∗T
n ]T .

To guarantee the feasibility of the target formation, it is es-
sential to require that if limt→∞ pi = p∗i , then limt→∞ ṗi =
u∗i . This can be satisfied by setting ṗ∗i = u∗i ,∀i ∈ V ,
which requires p∗i to be differential. For each leader k ∈ Vl,
the differentiability can be satisfied by designing a smooth
p∗k(t), which yields ṗ∗l = u∗

l . For each follower i ∈ Vf ,
however, p∗i is determined by the leaders’ desired positions
and velocities in p∗l = col(p∗k)k∈Vl and the desired bearing
Laplacian B. To be specific, the feasibility and uniqueness
of the followers’ desired positions and velocities in the target
formation is shown as follows.

Proposition 1: The desired position p∗f and velocity u∗
f

of the followers are feasible and uniquely determined by
the leaders’ desired positions p∗l and velocities u∗

l , and
the bearing Laplacian matrix B, if Bff is positive definite,
Bfl 6= 0, and B and p∗l are differential for all t ≥ 0.
Specifically, one has

p∗f = −B−1ff Bflp
∗
l , (3)

u∗
f = B−1ff

[(
ḂffB

−1
ff Bfl − Ḃfl

)
p∗l −Bflu∗

l

]
. (4)

Proof: Similar to the bearing-based network localizabil-
ity properties [16], we can obtain that the desired positions
of the followers can be uniquely determined by Bffp

∗
f =

−Bflp∗l . Since Bff is positive definite for all t ≥ 0, we
have p∗f = −B−1ff Bflp∗l . Since B and p∗l are differential, we
take the time derivative of both sides of Bffp∗f = −Bflp∗l
and obtain that Ḃffp∗f +Bff ṗ

∗
f = −Ḃflp∗l −Bflu∗

l . Then
the feasibility and uniqueness can be guaranteed by taking
u∗
f = ṗ∗f , which yields (4). The proof is completed.
Proposition 1 is obtained by extending some of the bearing

rigidity properties in [16], [17] to the cases with time-
varying desired bearings. The positive definiteness of Bff
guarantees that (3) and (4) are well-defined. Moreover, the
topology needs to be connected, i.e. Bfl 6= 0 so that the

leaders’ desired positions and velocities influence those of
the followers. Hence, we adopt the following assumptions.

Assumption 1: The target formation defined in Definition
1 is feasible and unique, i.e., Bff (t) is positive definite,
Bfl(t) 6= 0, B(t) and p∗l (t) are second-order differential for
all t ≥ 0.

Assumption 2: B(t), Ḃ(t), B̈(t) are uniformly bounded
for all t ≥ 0.

Remark 2: Bearing-based localizability is different from
bearing rigidity. A target formation is localizable if p∗ is
uniquely determined by ϕij = ϕ∗ij ,∀(i, j) ∈ E , and pk =
p∗k,∀k ∈ Vl. In this regard, there may not exist a constant
cp > 0 such that any ‖p − p∗‖ < cp satisfying Pϕij (p

∗
i −

p∗j ) = 0,∀(i, j) ∈ E also yields Pϕij (p
∗
i −p∗j ) = 0,∀i, j ∈ V .

More detailed discussions can be referred to [16].

B. A bearing-based formation maneuver control method

According to Proposition 1, the desired positions and
velocities of the followers are both determined by the lead-
ers’ positions and velocities as (3)-(4). However, (3)-(4) can
not be directly used since it is hard to know the complete
knowledge of the whole network topology. Hence, it is
required to design a distributed estimator based on the local
information with respect to the neighbors for each follower
to estimate its desired states. Based on the estimations, a
distributed controller is required to achieve the time-varying
target formation.

1) A distributed bearing-based state estimator: From (3)
and (4), the desired positions and velocities satisfy∑

j∈Vf∩NiBij(p
∗
i−p∗j )+

∑
k∈Vl∩Ni Bik(p∗i−p∗k) = 0, (5)∑

j∈Vf∩NiḂij(p
∗
i − p∗j ) +

∑
k∈Vl∩Ni Ḃik(p∗i − p∗k)

=−
∑

j∈Vf∩NiBij(u
∗
i−u∗j )−

∑
k∈Vl∩NiBik(u∗i−u∗k),

(6)

for all i ∈ V , respectively. Based on (5) and (6), we adopt
the following estimator for each follower i ∈ Vf :

˙̂p∗i=û
∗
i

˙̂u∗i=−k1
{∑

j∈Vf∩Ni [Bij(û
∗
i−û∗j )+(k2Bij+Ḃij)(p̂

∗
i−p̂∗j )]

+
∑
k∈Vl∩Ni [Bik(û∗i−u∗k) + (k2Bik+Ḃik)(p̂∗i−p∗k)]

}
−k3sgn

{∑
j∈Vf∩Ni [Bij(û

∗
i−û∗j )+(k2Bij+Ḃij)(p̂

∗
i−p̂∗j )]

+
∑
k∈Vl∩Ni [Bik(û∗i−u∗k)+(k2Bik+Ḃik)(p̂∗i−p∗k)]

}
,

(7)
where p̂∗i and û∗i are the estimations of agent i’s desired
position p∗i and velocity u∗i , respectively. B is defined in (2).
k1, k2 and k3 are all positive and constant gains. Different
from (3) and (4), the estimator (7) is based on (5) and (6),
which only require the local information ϕ∗ij , ϕ̇

∗
ij , ϕij , û

∗
j ,

p̂∗j from the follower neighbors j ∈ Ni ∪ Vf and ϕ∗ik, ϕ̇∗ik,
ϕik, uk, pk from their leader neighbors k ∈ Ni ∪ Vl.

Define P (t) =
[
P11(t) P12(t)
P21(t) P22

]
, Q(t) =

[
Q11(t) Q12(t)
Q21(t) Q22(t)

]
,

where P11(t) = Bff (t), P12(t) = P21(t) = k2Bff (t) +
Ḃff (t), P22 = kpIdnf , Q11(t) = k1Bff (t)2 − M2(t),
Q12(t) = Q21(t)T = k1Bff (t)P12(t) −M1(t), Q22(t) =

k1P12(t)P21(t), M1(t) = M3(t) +
kpIdnf

2 , M2(t) =
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k2Bff (t) +
3Ḃff (t)

2 , M3(t) =
k2Ḃff (t)+B̈ff (t)

2 , and kp is
a constant to be determined. Let r∗ = H̄p∗ contain all
the desired relative positions and u̇∗

l be the time derivative
of u∗

l . Define the spectral radius of a uniformly bounded
matrix A(t) : R → Rn×n at the time instant t as ρ(t) =
max{|λ1(t)|, ..., |λn(t)|}, where λ1(t), λ2(t),..., and λn(t)
are the eigenvalues of A(t). Then the values of the constants
k1, k2, k3, kp are determined in the following steps:

Step 1: Choose k3 such that

k3 > sup t≥0
{
ρ(B−1ff (t))

[
ρ(B̈(t))‖r∗(t)‖+

2ρ(Ḃ(t))‖u∗(t)‖+ ρ(B(t))‖u̇∗
l (t)‖

]}
,

(8)

Step 2: Choose k2 such that

k2 > sup t≥0
[
1/2 + ρ(B

− 1
2

ff (t)Ḃff (t)B
− 1

2

ff (t)),√
ρ(Bff (t)−1Ḃ2

ff (t)B−1ff (t))
]
.

(9)

Step 3: Choose kp such that

kp>sup
t≥0

{
ρ(P12(t)B−1ff (t)P12(t)),4k2[4ρ(M3(t))+ρ(M2(t))]

}
.

(10)
Step 4: Choose k1 such that

k1 > sup t≥0
[
(4k2/kp)ρ(M1(t)P−212 (t)M1(t))

]
. (11)

For convenience, we omit (t) in the following. The feasi-
bility of the above steps is shown in the following lemma.

Lemma 1: Under Assumptions 1 and 2, there exist
bounded constants k3, k2, kp and k1 such that (8)-(11) are
satisfied, if the leaders’ desired velocities ‖u∗

l ‖, ‖u̇∗
l ‖ are

uniformly bounded for all t ≥ 0.
Proof: According to Assumption 1, Bff is positive

definite so that B−1ff exists for all t ≥ 0. Hence, there exist
feasible k3, k2, and kp to satisfy (8)-(10) respectively. From
(9), it leads to k2Idnf > −B−

1
2

ff ḂffB
− 1

2

ff , which yields
P12 = k2Bff + Ḃff > 0 for all t ≥ 0. Hence, P−112 exists
for all t ≥ 0 and there exists k1 such that (11) is satisfied.

Moreover, according to Assumption 2, ρ(B−1ff ), ρ(B),
ρ(Ḃ), and ρ(B̈) are all uniformly bounded. r∗ contains the
desired displacements which are also uniformly bounded.
According to Proposition 1, u∗

f is uniformly bounded if
B, Ḃ, r∗ and u∗

l are uniformly bounded. Therefore, u∗

is uniformly bounded. Moreover, u̇∗
l is considered to be

uniformly bounded as we have stated, and hence k3 can be
chosen as a bounded constant to satisfy (8). By following a
similar analysis, k2 can also be set with a bounded value.
With a bounded k2, kp can be chosen as a bounded constant
to satisfy (10), and then k1 can also be bounded to satisfy
(11). The proof is completed.

Lemma 2: Under Assumptions 1 and 2, P and Q are both
positive definite and k3 > ‖u̇∗

f‖ for all t ≥ 0 if k3, k2, kp
and k1 satisfy (8)-(11), respectively.

Proof: According to Lemma 1, P11 = Bff > 0
for all t ≥ 0. Then from (10) one has P22 = kpIdnf >
ρ(P12B

−1
ff P12)Idnf ≥ P12P

−1
11 P12. Then, according to

Schur Complement [18], P is positive definite for all t ≥ 0.
By following a similar analysis, one can also get that k3 >

‖u̇∗
f‖ if (8) is satisfied and Q is positive definite if (9)-(11)

are satisfied for all t ≥ 0. The proof is completed.
The effectiveness of the estimator (7) is shown as follows.
Theorem 1: Under Assumptions 1 and 2, the estimator (7)

guarantees that p̂∗i → p∗i and û∗i → u∗i exponentially fast as
t→∞ for all i ∈ Vf if (8)-(11) are satisfied.

Proof: Denote the position and velocity estimation
errors of each follower i as p̃i := p̂∗i − p∗i and ũi :=
û∗i − u∗i , respectively. p̃f := [p̃Tnl+1, ..., p̃

T
n ]T and ũf :=

[ũTnl+1, ..., ũ
T
n ]T . Consider the positive definite Lyapunov

function Ve = 1
2 [ũTf , p̃

T
f ]P [ũTf , p̃

T
f ]T . Taking the time

derivative of Ve gives
V̇e =[ũTfBff + p̃Tf (k2Bff + Ḃff )] ˙̃uf + ũTf (

3Ḃff
2

+

k2Bff )ũf + p̃Tf (k2Ḃff + B̈ff + kpIdnf )ũf

≤− (k3 − ‖u̇∗
f‖)‖ũTfBff + p̃Tf (k2Bff + Ḃff )‖1

−
[
ũTf p̃Tf

]
Q
[
ũTf p̃Tf

]T
≤−

[
ũTf p̃Tf

]
Q
[
ũTf p̃Tf

]T
, (12)

where the last inequality is due to k3 > ‖u̇∗
f‖ from Lemma

2. According to Lemma 2, one has P > 0 and Q > 0 for all
t ≥ 0, which leads to maxt≥0[λM (P )] > mint≥0[λm(P )] >
0 and mint≥0[λm(Q)] > 0. For convenience, define

λ1:=min
t≥0

[λm(P )],λ2:=max
t≥0

[λM (P )],λ3:=min
t≥0

[λm(Q)].

(13)
Then one has 1

2λ1‖[ũ
T
f , p̃

T
f ]‖2 ≤ Ve ≤ 1

2λ2‖[ũ
T
f , p̃

T
f ]‖2 and

V̇e ≤ −λ3‖[ũTf , p̃Tf ]‖2 ≤ − 2λ3

λ2
Ve. Hence, one has

‖[ũTf (t), p̃Tf (t)]‖≤

√
2Ve(t)

λ1
≤
√
λ2
λ1
‖[ũTf (0), p̃Tf (0)]‖e−

λ3t
λ2 .

(14)
Then according to [19, Th 4.10], the error [ũTf , p̃

T
f ]T con-

verges to zero exponentially fast as t → ∞. The proof is
completed.

Remark 3: To avoid using the global information in de-
signing the gains as in (8)-(11), one idea is to use the local
information Bij , Ḃij , p̂∗j , û∗j for all j ∈ Ni as feedback terms
to adaptively change k3, kp, k2, and k1 until the convergence
of the estimation errors is guaranteed [20]. However, it is
hard to guarantee the exponential convergence. Hence, the
integration of the estimation errors may be unbounded. That
yields the controller design and convergence analysis more
difficulties. We leave this topic to our future work.

2) A distributed bearing-based controller: According to
Proposition 1, the target formation in Definition 1 can be
realized if pi → p∗i and ui → u∗i as t→∞ for all i ∈ Vf .

We propose the following bearing-based controller for
each follower agent i ∈ Vf :

ṗi = kϕ
∑

j∈Ni(ϕij − ϕ∗ij) + û∗i , (15)

where kϕ > 0 is a constant gain. The controller (15) is
inspired by the bearing-based method in [7]. For each
follower i ∈ Vf , the used information in (15) is û∗i , ϕij , and
ϕ∗ij ,∀j ∈ Ni, which are also local information with follower
i’s neighbors. Hence, (15) is a distributed controller without
requiring global network-wide information.
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Define the tracking error as δpi := pi − p∗i for all i ∈ Vf
and stack all the errors into δp = [0Tdnl , δ

T
pnl+1

, ..., δTpn ]T . Let
ϕ = [ϕT1 , ..., ϕ

T
m]T and ϕ∗ = [ϕ∗T1 , ..., ϕ∗Tm ]T contain the

bearing measurements and desired bearings corresponding to
H . Define MI =

[
Odnl

Odnl×dnf
Odnf×dnl

Idnf

]
. With the controller

(15), the closed-loop dynamic of δp is

δ̇p = −kϕMIH̄
T (ϕ−ϕ∗) + ũ := f(δp) + ũ, (16)

which can be seen as a perturbed system with ũ =
[0Tdnl , ũ

T
f ]T being the external input of the nominal system

δ̇p = f(δp).
The convergence of δp in the closed-loop system (16) can

be shown in the following.
Theorem 2: Under the state estimator (7) and the con-

troller (15), the tracking error δp in the closed-loop system
(16) converges to zero asymptotically as t → ∞ if As-
sumptions 1 and 2 are satisfied and no inter-agent collision
happens.

Proof: According to Theorem 1 and [7], δp of the
nominal system δ̇p = f(δp) and the external input ũ
converge to zero exponentially fast. According to the cascade
system theories [21], the rest of the proof is to show that ũ
will not lead to the unboundedness of the state δp in (16).

Consider the following Lyapunov function Vu = 1
2δ

T
p δp.

Similar to [7, Th.1], it yields δTpf(δp) ≤ 0. Hence, taking the
time derivative of Vu gives V̇u = δTp [f(δp)+ũ] ≤ ‖δp‖‖ũ‖.
Note that ‖δp‖ ≤ 1

2‖δp‖
2 = Vu if ‖δp‖ ≥ 2. Then one has

‖δp‖ ≤ 2 + Vu. Moreover, according to (14) one has

V̇u/(2 + Vu) ≤
√
λ2/λ1‖[ũTf (0), p̃Tf (0)]‖e−

λ3t
λ2 . (17)

Integrating both sides of (17) from 0 to t gives log 2+Vu(t)
2+Vu(0)

≤
λ2

λ3

√
λ2

λ1
‖[ũTf (0), p̃Tf (0)]‖, which leads to Vu(t) ≤ (2 +

Vu(0))e
λ2
λ3

√
λ2
λ1
‖[ũTf (0),p̃Tf (0)]‖ − 2. Since the initial value

‖[ũTf (0), p̃Tf (0)]‖ is bounded, i.e., ‖ũ(0)‖ is bounded, Vu(t)
is bounded and so is ‖δp(t)‖ ≤ 2 + Vu(t).

As a result, before ‖ũ‖ converges to zero, the track-
ing error state ‖δp‖ is always bounded. Recall that δp
of the nominal system δ̇p = f(δp) converges to zero
asymptotically and the external input ũ converges to zero
exponentially. According to the cascade system theories [21],
δp converges to zero as t→∞. The proof is completed.

Theorem 2 indicates that all the agents achieve their
desired positions. This also means δ̇p → 0 as t→∞. Hence,
the target formation is achieved, and Problem 2 is solved.

To drop the assumption of collision avoidance, a sufficient
condition on the initial tracking error δp(0) and estimation
error [p̃f (0)T , ũf (0)T ]T is given as follows.

Proposition 2: Under Assumptions 1 and 2, if the initial
estimation error [p̃f (0)T , ũf (0)T ]T and the tracking error
δp(0) are sufficiently small so that

(2 + 1
2‖δp(0)‖2)e(λ2/λ3)

√
(λ2/λ1)‖[ũTf (0),p̃Tf (0)]‖

≤
(

min t≥0,i∈V,j∈V‖p∗i (t)− p∗j (t)‖ − γ
)
/
√
n,

(18)

then ‖pi(t) − pj(t)‖ ≥ γ for all i, j ∈ V, t ≥ 0
and δp converges to zero asymptotically, where γ satisfies
mint≥0,i∈V,j∈V ‖p∗i (t)− p∗j (t)‖ > γ > 0.

The proof can be completed by a similar way as [7,
Corollary 1] and hence omitted here.

IV. NUMERICAL EXAMPLE

In this section, a general scenario is considered to validate
the effectiveness of our method. The topology of the multi-
agent system is shown in Fig.1(b), where 1, 2 are the leaders
and the others are the followers. The bearing Laplacian
matrix B corresponding to the topology is composed of

ϕ∗21 = −ϕ∗43 = RT2 R
T
1 ϕ
∗
21(0), ϕ∗65 = RT1 ϕ

∗
65(0),

ϕ∗31 =ϕ∗75 =RT1ϕ
∗
31(0), ϕ∗32 =ϕ∗41=ϕ∗76 =ϕ∗85 =RT1ϕ

∗
32(0),

ϕ∗51=ϕ∗62 =ϕ∗73 =ϕ∗84=R
T
1ϕ
∗
51(0),

where the initial values ϕ∗21(0), ϕ∗65(0), ϕ∗31(0), ϕ∗32(0),
ϕ∗51(0) can be calculated from the initial desired positions
in Fig.1(b). R1 and R2 are two orthogonal rotation matrices
with R1 =

[
cos θ1 0 sin θ1

0 1 0
− sin θ1 0 cos θ1

]
and R2 =

[
cos θ2 0 sin θ2

0 1 0
− sin θ2 0 cos θ2

]
.

θ1 and θ2 are two rotation angles. The matrices Ḃ and B̈ are
the first and second time derivatives of B. Ṙ1 = R1S1 and
Ṙ2 = R2S2, where S1 and S2 contains the angular velocities
θ̇1 and θ̇2. S1 and S2 are continuous and uniformly bounded
which satisfy ‖S1‖ ≤ 0.03, ‖S2‖ ≤ 0.03, ‖Ṡ1‖ ≤ 0.1,
‖Ṡ2‖ ≤ 0.1. The gains k3, k2, kp, and k1 are chosen as Step
1-Step 4 in Section III.B to satisfy (8)-(11), which yields
k3 = 23, k2 = 0.8, kp = 13, and k1 = 55.

The leaders’ initial velocities are set as u1(0) = [0.2 +
0.02
√

2π, 0, 0]m/s and u2(0) = [0.2, 0,−0.02
√

2π]m/s,
respectively. The initial desired positions are shown in
Fig.1(b). Define ha = [cos θa, 0, sin θa]T and h⊥a =
[− sin θa, 0, cos θa]T for a = 1, 2, 3. Fig.2 illustrates that
the target formation is achieved and Fig.3 shows the details
of the agents’ velocities. When 0 ≤ t ≤ 200, the forma-
tion rotates and translates with a constant angular velocity
θ̇1 = − π

100 and a constant translation velocity, i.e., u1 =

2
√

2|θ̇1|h1+[0.2, 0, 0]T and u2 = −2
√

2|θ̇1|h⊥1 +[0.2, 0, 0]T .
θ̇2 = θ̇3 = 0. Then the translation velocity is 0.2h3 when
200 ≤ t ≤ 300, where θ̇3 = − π

100 . When 328.2 ≤
t ≤ 352.8, the formation shape transforms into a right-
angled trapezoid by changing the velocities of Leader 2 and
Follower 2. The other agents only move with a constant
translation velocity. Then one has u1 = −[0.2, 0, 0]T and
u2 = −4θ̇2h2 − [0.2, 0, 0]T , where θ̇2 = 1

32 (1 − cos(t −
328.2)). θ̇1 = θ̇3 = 0. When 433.2 ≤ t ≤ 458.4, the
formation scale shrinks to half of the original scale, and
u1 = cos t−1

4π (ϕ∗21+ϕ
∗
51+ϕ

∗
41)− [0.2, 0, 0]T , u2 = cos t−1

4π (ϕ∗21+
ϕ∗51−ϕ∗41)− [0.2, 0, 0]T . When 518.4 ≤ t ≤ 543.4, the scale
restores. The angular velocities are θ̇1 = θ̇2 = θ̇3 = 0 from
t = 353.2 to t = 543.4 since there is no rotation maneuver
during the time phase. Different from [12], the formation
is not required to keep rotating all the time. Fig.4(a) and
Fig.4(b) of the revised manuscript show that the velocity
estimation errors and the formation tracking errors converge
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to zero within 5 seconds, and they remain null during the
different maneuvers and formation transformations.
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Fig. 2. Trajectories of all the agents.

Fig. 3. Velocities of all the agents.
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Fig. 4. Errors of the agents. (a) Velocity estimation error of each follower
‖ũi‖. Bearing error of all the agents

∑
(i,j)∈E ‖ϕij − ϕ∗ij‖.

V. CONCLUSION

This paper considers the bearing-based problem of achiev-
ing rotation, translation, and scaling formation maneuver
control with transformable formation shapes. The target
formation corresponding to the control objectives is defined
by the time-varying desired bearings. By extending the
bearing rigidity properties, the time-varying target formation
is analyzed to be feasible and unique. An estimation-based

control method is proposed using the relative bearings and
the leaders’ positions and velocities. Both the estimation
error and tracking error converge to zero as time goes to
infinity. A sufficient condition for guaranteeing collision
avoidance between each pair of agents is proposed. In the
future, the proposed method will be extended to cases with
agents of more complex models.
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