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Abstract— This paper first proposes a novel input set design
method for set-based active fault diagnosis and then applies
it to implement an integrated diagnosis and control scheme.
Particularly, taking multiplicative actuator faults as an example,
a separation tendency notion is used to characterize the sepa-
rability of output sets of a group of healthy and faulty modes.
At each time instant, an input set is designed for active fault
diagnosis by increasing the separation tendency of output sets
at the next time instant. Furthermore, an optimal input out of
the input set is designed to minimize the output-tracking control
error. Based on this logic, integrated active fault diagnosis and
control is finally achieved by designing input sets and optimal
inputs step by step such that a certain separation tendency is
reached for successful diagnosis. At the end, an example is used
to illustrate the effectiveness of the proposed method.

I. INTRODUCTION

Set-based active fault diagnosis (AFD) design inputs to
excite the system to obtain more information for diagnosis.
If healthy and faulty output sets are separated by the inputs,
AFD can be guaranteed by testing consistency between out-
puts and their sets. In principle, AFD has lower conservatism
than passive fault diagnosis (PFD). In the literature, there
exist some works on set-based AFD. For saving space, only
several classical works using zonotopes are introduced. In
[2], an input sequence was designed offline for guaranteed
AFD by solving a mixed integer quadratic problem based on
the separation of all healthy and faulty output zonotopes. In
[3], a closed-loop AFD method based on [2] was further
proposed. The main shortcoming of the methods in [2]
and [3] consists in high computational complexity. Thus,
a new notion named set separation tendency instead of set
separation conditions used in [2] and [3] was proposed
in [7] and [8] to implement AFD with low computational
complexity. A detailed survey on both deterministic and
stochastic AFD methods can be found in [1].

In active fault-tolerant control (FTC) systems, the objec-
tive after diagnosis is to implement FTC to handle faults.
However, most of active FTC schemes use PFD. Thus, if
AFD is used for FTC, the low conservatism advantage of
AFD over PFD can improve the FTC performance. From
this viewpoint, integrated design of AFD and control is
meaningful. However, there are few works on this topic in
the literature [1]. In [10], an FTC scheme was proposed by
combining model predictive control (MPC) and the set-based
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AFD method in [2]. In [4], an FTC scheme was proposed to
integrate AFD with MPC by switching the input constraint
set of MPC online to a constant AFD input set designed
offline by trial and error. In [9], an integrated design of
AFD and control was proposed by weighting both AFD
and control objectives. In [12], an auxiliary input signal was
designed to integrate set-based AFD and control.

This paper is a continuous work of the previous work [4]
and aims to propose a novel AFD input set design method
based on the real-time system information to replace the
previous offline constant input set design method by trail and
error, which has potential to improve integrated performance
of AFD and control. However, due to the limitation of
space, the proposed method is only combined with simple
output-tracking control here for integrated AFD and control.
However, it is straightforward to combine it with MPC as
done in [4]. To help the readers understand the novelties of
this paper, the main contributions are summarized as follows:

• A novel AFD input set design method is proposed by
formulating and solving a quadratic problem based on
the separation tendency of output zonotopes.

• An integrated AFD and control scheme is proposed by
designing optimal inputs out of AFD input sets step by
step to balance conflicting AFD and control objectives.

Section II introduces preliminary knowledge, the system
model and set-based AFD. The main results are presented
in Section III. Section IV illustrates the effectiveness of the
proposed method. The paper is concluded in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries
The null and identity matrices are denoted as O and I ,

respectively. 1m×n denotes an (m × n)-dimensional matrix
full of 1. diag(v) denotes a diagonal matrix whose diag-
onal elements are from a vector v. |·| and ≤ are under-
stood element-wise. Given H ∈ Rm×n with hi,j being
the i-th row and j-th column element of H , vec(H) =
(h1,1, · · · , hm,1, h1,2, · · · , hm,2, · · · , h1,n, · · · , hm,n)

T .
The Minkowski sum of two sets X and Y is X ⊕ Y =

{x + y | x ∈ X, y ∈ Y }. A zonotope is defined as
Z = g ⊕ HBm ⊂ Rn (abbreviated as Z = ⟨g,H⟩), where
g ∈ Rn and H ∈ Rn×m are its center and generator
matrix, respectively, and Bm is an m-dimensional unitary
box. Given Z1 = ⟨g1, H1⟩ and Z2 = ⟨g2, H2⟩, Z1 ⊕ Z2 =
⟨g1 + g2, [H1 H2]⟩. Given Z = ⟨g,H⟩ and an appropriate
matrix K, KZ = ⟨Kg,KH⟩. The Frobenius radius of
Z = ⟨g,H⟩ with H ∈ Rn×m is the Frobenius norm of
H , i.e., ∥Z∥F = ∥H∥F =

√∑m
i=1 ∥hi∥22, where ∥hi∥2 =√

(hi)Thi and hi is the i-th column of H ( [5]).
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B. System Model

This paper considers the discrete linear time-invariant
(LTI) system under multiplicative actuator faults:

xk+1 =Axk +BGiuk + Eωk, (1a)
yk =Cxk + Fηk, (1b)

where A ∈ Rnx×nx , B ∈ Rnx×nu , C ∈ Rny×nx , E ∈
Rnx×nω and F ∈ Rny×nη are parameters, k is the k-th
discrete time instant, xk ∈ Rnx and yk ∈ Rny are the state
and output, respectively, uk ∈ Rnu is the input, ωk ∈ Rnω is
the disturbance, and ηk ∈ Rnη is the noise. Gi ∈ Rnu×nu is a
diagonal matrix used to model the i-th actuator mode, where
gi denotes the i-th diagonal element of Gi. gi = 1 means
that the i-th actuator is healthy while gi ∈ [0, 1) means that
the i-th actuator is faulty. We consider nf+1 modes (i.e., Gi

(i ∈ If = {0, 1, 2, . . . , nf}), where G0 is an identity matrix
modeling the healthy mode and Gi (i ̸= 0) models the i-th
faulty mode. It is assumed that all the considered modes are
detectable and isolable by the proposed method here.

Assumption 2.1: The system matrix A is a Schur matrix.
Assumption 2.2: uk, ωk and ηk are bounded by U = {u ∈

Rnu : |u− uc| ≤ ū, uc ∈ Rnu}, W = {ωk ∈ Rnω : ω ≤
ωk ≤ ω} and V = {ηk ∈ Rnη : η ≤ ηk ≤ η}, respectively,
where uc, ū, ω, ω, η and η are constant vectors.

C. Set-Based Fault Diagnosis

Under Assumptions 2.1 and 2.2, corresponding to the i-th
actuator mode, a set-based version1 of (1) is obtained as

X̂i
k+1 = AX̂i

k ⊕BGiuk ⊕ EW, (2a)

Ŷ i
k = CX̂i

k ⊕ FV, (2b)

where X̂i
k and Ŷ i

k are the state and output sets, respectively.
By using zonotopes, (2) is further transformed into

x̂i,c
k+1 =Ax̂i,c

k +BGiuk + Eωc, (3a)

Ĥi,x
k+1 =[AĤi,x

k EHω̄], (3b)

ŷi,ck =Cx̂i,c
k + Fηc, (3c)

Ĥi,y
k =[CĤi,x

k FHη̄], (3d)

where x̂i,c
k , ωc, ηc, ŷi,ck , Ĥx

k , Hω̄ , Hη̄ and Ĥy
k are the centers

and generator matrices of X̂i
k, W , V and Ŷ i

k , respectively.
Thus, fault diagnosis is done by testing whether or not

yk ∈ Ŷ i
k , ∀ i ∈ If (4)

hold online to locate a unique output set satisfying (4). This
unique output set finally indicates the current mode.

III. MAIN RESULTS

A. Analysis of AFD Input Sets

At time instant k, by considering an input set Uf
k ⊆ U , a

new set-based version of (1) is obtained as

Xi
k+1 = AX̂i

k ⊕BGiU
f
k ⊕ EW, (5a)

Y i
k+1 = CXi

k+1 ⊕ FV, (5b)

1For brevity, this paper follows [2] to use set-wise models. However, the
proposed method can be extended to the scheme using set-valued observers.

where Xi
k+1 and Y i

k+1 are the state and output zonotopes,
respectively2. Then, (5) is transformed into

xi,c
k+1 =Ax̂i,c

k +BGiu
f,c
k + Eωc, (6a)

Hi,x
k+1 =[AĤi,x

k BGiH
f,u
k EHω̄], (6b)

yi,ck+1 =CAx̂i,c
k + CEωc + Fηc + CBGiu

f,c
k , (6c)

Hi,y
k+1 =[CAĤi,x

k CEHω̄ FHη̄ CBGiH
f,u
k ], (6d)

where xi,c
k+1, uf,c

k , yi,ck+1, Hx
k+1, Hf,u

k and Hy
k+1 are centers

and generator matrices of Xi
k+1, Uf

k and Y i
k+1, respectively.

When designing an AFD input set Uf
k ⊆ U , we could

obtain a distribution map of all output sets Y i
k+1 (i ∈ If )

from (5) to show their separation tendency (i.e., their relative
position and size). If designing input sets step by step to
enlarge their separation tendency, it is possible to implement
fault diagnosis based on (4) at a time instant. The separation
tendency of all output sets is affected by two factors:

• The size of output sets.
• The centers distance of output sets.

Fig. 1. Separation tendency of two output sets

The center yi,ck+1 of Y i
k+1 is related to uf,c

k ((6c)) while the
Frobenius radius3 of Y i

k+1 is determined by Hf,u
k ((6d)). For

brevity, we use the square of Frobenius radius of a zonotope
to measure its size. Generally, the smaller the size of output
sets is and simultaneously the larger their centers distance
is, the larger their separation tendency is. A large separation
tendency is good for (4) to exclude unmatched modes such
that AFD is achieved. In Figure 1, two output sets are
used as an example to show the separation tendency, where
Φ(Y i

k+1) = ∥Hi,y
k+1∥2F and Ψij(Yk+1) = ∥yi,ck+1 − yj,ck+1∥22

denote the size of Y i
k+1 and the centers distance of Y i

k+1

and Y j
k+1, respectively. However, the objective of this paper

is not only to achieve AFD. Instead, it aims to implement
simultaneous AFD and control, which includes both AFD
and control objectives and can be done by two steps:

• Design an input set at each time instant to increase the
separation tendency of output sets for AFD.

• Design an optimal input out of the input set at each
time instant for integrated AFD and control.

Thus, an input set plays a key role for both AFD and
control, which is a bridge connecting the AFD and control
objectives. As shown in Figure 1, the larger the input set is,

2The dynamics (2) and (5) are different, where the former is used to
implement diagnosis while the latter is used to design an AFD input set.

3Since the Frobenius radius of a zonotope has a concise analytical
expression, it has advantages to obtain a mathematical formulation of the
AFD input set design problem and is used to measure the size of zonotopes.
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the larger the output sets are, which implies smaller sepa-
ration tendency of output sets and lower AFD performance.
However, a larger input set implies a larger feasible region
for inputs, which can be used to achieve a better control
performance. This implies that the size of the input set plays
a role to balance the AFD and control objectives.

B. Formulation of Optimization Problem

According to [7], we use the above centers distance and
sizes sum to define the separation tendency of Y i

k+1 and Y j
k+1

(i ̸= j) as Sij
k+1 =

Ψij(Yk+1)

Φ(Y i
k+1)+Φ(Y j

k+1)
. Then, the separation

tendency of all nf + 1 output sets is further defined as

Sk+1 =

∑nf−1
i=0

∑nf

j=i+1 Ψij(Yk+1)∑nf

i=0 Φ(Y
i
k+1)

. (7)

Based on (7), the design of an AFD input set Uf
k is

formulated as an optimization problem:

max
uf,c
k ,Hf,u

k

Φ(Uf
k ), s.t. Sk+1 − Sk ≥ 0, ⟨uf,c

k , Hf,u
k ⟩ ⊆ U,

(8)

where Φ(Uf
k ) = ∥Hf,u

k ∥2F is the size of Uf
k designed to

increase the separation tendency of output sets for AFD and
simultaneously achieve the maximal size for control.

Proposition 3.1: The constraint4 Sk+1 − Sk ≥ 0 equals

νTk P1,kνk + P2,kνk + P3,k ≥ 0, (9)

where νk = [(uf,c
k )T (vec(Hf,u

k ))T ]T and

êij,xk = x̂i,c
k − x̂j,c

k , eij,yk = yi,ck − yj,ck ,

eyk =

nf−1∑
i=0

nf∑
j=i+1

∥eij,yk ∥22, H
y
k =

nf∑
i=0

∥Hi,y
k ∥2F ,

P1,k =
[
Pu

1,k O

O −PH
1,k

]
, P2,k =

[
Pu

2,k O
]
,

P3,k = Hy
k (

nf−1∑
i=0

nf∑
j=i+1

(êij,xk )TATCTCAêij,xk )−

eyktr
( nf∑
i=0

CAĤx,i
k (Ĥx,i

k )TATCT+

(nf + 1)CEHω̄(Hω̄)
TETCT + (nf + 1)FHη̄H

T
η̄ F

T
)
,

Pu
1,k = Hy

k (

nf−1∑
i=0

nf∑
j=i+1

(Gi −Gj)
TBTCTCB(Gi −Gj)),

Pu
2,k = 2Hy

k (

nf−1∑
i=0

nf∑
j=i+1

(êij,xk )TATCTCB(Gi −Gj)),

PH
1,k = eyk(I ⊗ (

nf∑
i=0

(Gi
T (CB)TCBGi))).

Proof: It is straightforward to obtain the results above
by substituting (6) and (7) into Sk+1 − Sk ≥ 0.

4During AFD, unmatched modes are excluded online. Thus, the number
of candidate output sets included in Sk+1 and Sk may be different. For
brevity, we consider that both Sk+1 and Sk include nf + 1 sets in (9).

Proposition 3.2: Given a generator matrix Hf,u
k ∈

Rnu×nu , the constraint5 ⟨uf,c
k , Hf,u

k ⟩ ⊆ U is equivalent to

Λ1,1νk + Λ1,2|νk| ≤uc + ū, (10a)
Λ2,1νk + Λ2,2|νk| ≤ − uc + ū, (10b)

where Λ1,1 =
[
I O

]
, Λ1,2 = Λ2,2 =

[
O LKn2

u×n2
u

]
,

Λ2,1 =
[
−I O

]
, Kn2

u×n2
u

is an (n2
u × n2

u) commutation
matrix and6 L = diag([11×nu 11×nu · · · 11×nu ]).

Proof: Please see the appendix for the proof.
Under Propositions 3.1 and 3.2, (8) is transformed into

max
νk

νTk Qνk, s.t. (9) and (10), (11)

where Q = diag([O I]). Theoretically, an AFD input set
Uf
k can be obtained by solving (11). However, due to (9),

it is difficult to directly solve (11). Instead, we have to
approximate (9) with some conservatism in Section III-C
such that an AFD input set can be computed.

C. Design of AFD Input Sets

It is known that (9) is related to the centers distance
and size of output sets. As unmatched modes are gradually
excluded during AFD, on one hand, the system gradually
tends to a steady phase. On the other hand, as AFD succeeds,
the number of candidate modes gradually decreases to 1.
This implies that the effect of the size of output sets on
(9) decreases as AFD proceeds. It is also derived that the
indefiniteness of P1,k is induced by −PH

1,k originated from
the size of output sets. Following the analysis above, we
propose to simplify (9) by a reasonable neglection of the
effect of the size of output sets during AFD. In other
words, we assume that the total size of candidate output
sets changes slowly during AFD (i.e.,

∑nf

i=0 ∥H
i,y
k+1∥2F ≈∑nf

i=0 ∥H
i,y
k ∥2F ). Based on this idea, (9) is reduced to

νTk P̄1,kνk + P̄2,kνk + P̄3,k ≥ 0 (12)

with

P̄u
1,k =

nf−1∑
i=0

nf∑
j=i+1

(Gi −Gj)
TBTCTCB(Gi −Gj),

P̄u
2,k =

nf−1∑
i=0

nf∑
j=i+1

2(êij,xk )TATCTCB(Gi −Gj),

P̄1,k =
[
P̄u

1,k O

O O

]
, P̄2,k =

[
P̄u
2,k O

]
,

P̄3,k =

nf−1∑
i=0

nf∑
j=i+1

(êij,xk )TATCTCAêij,xk − eyk.

In order to match the form of (11), νk is also used in
(12). Actually, the real variable of (12) should be uf,c

k . Thus,
P̄u
1,k is generally a positive definite matrix, which means

that (12) represents the complementary set of an ellipsoid
νTk P̄1,kνk + P̄2,kνk + P̄3,k < 0 (omitting the boundary

5Hf,u
k is not required to be a square matrix. However, without loss of

generality, we consider the case that Hf,u
k is square here for brevity.

6L is a block diagonal matrix whose diagonal elements are all 11×nu .
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for brevity). Different from (12), (10) generally forms a
polytope. At each time instant, (10) and (12) together mean
the intersection of the complementary set of an ellipsoid with
a polytope. Besides, in order to compensate the deviation
between (9) and (12), a scalar γk > 0 is added to (12), i.e.,

νTk P̄1,kνk + P̄2,kνk + P̄3,k ≥ γk. (13)

By giving an appropriate value to γk, the deviation be-
tween (9) and (12) can be compensated to some extent.
Moreover, γk affects the AFD performance and the size of
the consequent AFD input set. By changing γk, on one hand,
the AFD performance can be adjusted. On the other hand,
the performance of the following integrated AFD and control
can be balanced. In this way, (11) is approximated by

max
νk

νTk Qνk, s.t. (10) and (13). (14)

Due to (13), (14) cannot be solved under the convex frame-
work. However, there exists a method in [11] to handle (13)
such that (14) is solved. Particularly, the method is a branch
and bound method that can search a global solution with
a given precision but has high computational complexity.
Besides, it is also found that (13) satisfies the constraint
requirements of some nonlinear programming solvers such as
fmincon in Matlab. In order to save space, we turn to fmincon
and make use of the geometric meaning of the objective
function and constraints of (14) to provide a new and simple
method to solve (14) in the following.

Particularly, the objective function of (14) means a ball
centered at the origin while the feasible region of (14) is
an intersection of the complementary set of an ellipsoid
with a polytope. Therefore, (14) has the physical meaning
to find a point in the intersection to make the ball have the
largest size. Moreover, the polytope is fixed and thus only
the ellipsoid varies such that the largest ball also varies at
different time instants. We use the notations Ok, Ek and V to
denote the ball (i.e., the objective function), ellipsoid (i.e., the
complementary set of (13)) and polytope (i.e., the constraint
(10)) at time instant k, respectively. The intersection of Ek
and V generally has the four possible relations, where the
first case is an empty set (e.g., Ek contains V), the second
case is a convex set (e.g., Ek and V have no intersection),
the third case is a concave set (i.e., V contains Ek), and
the fourth case is also a concave set (Ek and V have an
intersection but do not contain mutually). Since the second
and third cases belong to the same situation, only the second
and fourth cases are considered in the following.

First, we analyze the second relation above, where the
feasible region of (14) is V and Ok reaches its largest size
at some vertices of V . Second, we consider the fourth relation
above. In this situation, the ball Ok reaches its largest size at
some vertices of V or at some newly generated vertices of the
feasible region by the intersection of Ek and V . This implies
that the vertices of V play an important role in solving (14).

Because V is fixed, the first step is to compute the values
of the objective function at all vertices of V offline, i.e.,
Γi = (vi)TQvi, i ∈ IV = {1, 2, · · · , nV}, where vi is the

i-th vertex of V , Γi is the function value and IV is the index
set of all vertices of V . The second step is to test whether
some vertices of V are ”bitten” off by the ellipsoid Ek, i.e.,

(vi)T P̄1,kv
i + P̄2,kv

i + P̄3,k < γk, i ∈ IV , (15)

where all vertices of V satisfying (15) are excluded from IV
and the index set of all remaining vertices is denoted by ĪV .
The third step is to choose a vertex in ĪV with the largest
objective function value as the initial value of a nonlinear
programming solver to solve (14), which assures that the
solver can provide a satisfactory solution.

Remark 3.1: Each feasible point of (14) corresponds to a
subset of U . Moreover, the subsets of U include three types.
The first type represents points inside U . The second type
represents degenerated subsets inside U , whose dimensions
are smaller than that of U . The third type represents normal
subsets inside U , which has the same dimension with U . For
the vertices of V and the solution of (14), we give priority
to the points corresponding to the third type of subsets. If
there is no third type, give priority to those corresponding to
the second type. Otherwise, turn to the first type.

Based on the steps above, an AFD input set is finally
designed as Uf

k = ⟨Λ3ν
∗
k , vec

−1(Λ4ν
∗
k)⟩, where ν∗k is the

solution of (14), Λ3 =
[
I O

]
, Λ4 =

[
O I

]
and vec−1(·)

is the inverse operation of vec(·).
D. Integrated Design of AFD and Control

After designing Uf
k , all inputs inside Uf

k can be used
for AFD. For integrated AFD and control, we only need to
select an optimal input out of Uf

k to achieve the best control
performance. For brevity, we consider a simple output-
tracking problem to introduce the idea. Particularly, when
the system is in the i-th mode, a reference output7 yi,refk

is given. In this situation, a reference output-tracking error
for the j-th output set in the i-th mode is computed as
ỹijk+1 = yi,refk+1 − ŷj,ck+1, i, j ∈ If . Since a mode changed
from the i-th one is unknown before AFD, the total output-
tracking error ỹik+1 for all possible output sets is obtained:

ỹik+1 =

nf∑
j=0

∥ỹijk+1∥
2
2, (16)

where the expression8 of ỹik+1 is obtained by substituting
(3a) and (3c) into (16) and is a quadratic function with
respect to uk (omitted here for saving space). Thus, corre-
sponding to the i-th mode, an optimal input u∗

k for integrated
AFD and control is obtained by solving a convex problem:

u∗
k = arg min

uk∈Uf
k

ỹik+1. (17)

After injecting u∗
k into (1) and (2), the output yk+1 and

a group of output sets Ŷ j
k+1 are obtained. Then we employ

them for diagnosis by testing (4), where if some output sets
violate (4), then they are removed till an AFD decision is
finally made at a time instant.

7The reference output can be generated by a reference governor designed
for an expected output performance.

8During AFD, the number of candidate output sets gradually decreases,
which means that the sum terms in (16) need to be updated step by step.
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IV. ILLUSTRATIVE EXAMPLE

A four-tank system taken from [6] is used as an ex-
ample for illustration in this paper. With a sampling
time of 10s, the parameters of its linearized discrete-

time model are given as A =

[
0.8769 0 0.0869 0

0 0.8581 0 0.0838
0 0 0.9111 0
0 0 0 0.9159

]
,

B =

[
0.0175 0 0

0 0.0232 0
0 0.0351 0.0293

0.0407 0 0.0291

]
, C =

[
1 0 0 0
0 1 0 0

]
, E =[

0.7142 0.5310 0.4978 0.2404
0.3080 0.7151 0.9360 0.6849
0.6712 0.5048 0.3893 0.8393
0.6524 0.4880 0.1171 0.9701

]
and F =

[
0.2152 0.5100
0.7603 0.4956

]
. The

disturbances, noises and inputs are bounded by W =

⟨
[
0
0
0
0

]
,

[
0.001 0 0 0

0 0.001 0 0
0 0 0.001 0
0 0 0 0.001

]
⟩, V = ⟨

[
0
0

]
,
[
0.001 0

0 0.001

]
⟩

and U = ⟨
[
1.5
1
2

]
,
[
1 0 0
0 1 0
0 0 1

]
⟩, respectively. The follow-

ing actuator modes are considered: G0 =
[
1 0 0
0 1 0
0 0 1

]
,

G1 =
[
0.3 0 0
0 0.95 0
0 0 0.95

]
, G2 =

[
0.95 0 0
0 0.3 0
0 0 0.95

]
and

G3 =
[
0.95 0 0
0 0.95 0
0 0 0.3

]
. The reference output, initial

state and initial state set are given as yref =[
0.75 0.77

]T
, x0 =

[
0.75 0.77 0.84 1.08

]T
and X̂i

0 =

⟨
[
0.75
0.77
0.84
1.08

]
,

[
0.0001 0 0 0

0 0.0001 0 0
0 0 0.0001 0
0 0 0 0.0001

]
⟩, respectively.

The whole simulation includes three different phases.
From k = 0 to k = 14, the system is healthy and
the objective of this phase is to implement output-tracking
control. This phase is only added to provide a steady period
for better illustration of the proposed method. At k = 15,
the fault G3 is injected into the system. From k = 15 to the
AFD time instant k = kd, the proposed method is used to
implement AFD and simultaneously suppress the effect of
the fault on the output-tracking control performance. From
k = kd + 1 to k = 30, AFD is done and the fault is already
known. The objective of this phase becomes to track the
reference output again. The vertices of V should be first
analyzed. In this example, there are three inputs and thus
the augmented vector νk is 12-dimensional. Moreover, V has
512 vertices and all their corresponding objective function
values9 can be computed offline as shown in Section III-C.
Note that each vertex of V corresponds to an input set and
we could give different priorities to different vertices of V .

During the second phase, X̂1
15 = X̂2

15 = X̂3
15 = X̂0

15

and γ15 = γ16 = γ17 = γ18 = 0.0002 are given10. Then,
AFD input sets are designed as Uf

15 = ⟨
[
1.5
1
2

]
,
[
0 0 1
1 0 0
0 1 0

]
⟩,

Uf
16 = ⟨

[
1.5
1
2

]
,
[
0 0 1
1 0 0
0 1 0

]
⟩, Uf

17 = ⟨
[
1.5
1
2

]
,
[
0 0 1
1 0 0
0 1 0

]
⟩ and Uf

18 =

⟨
[
1.5
1
2

]
,
[
0 0 1
1 0 0
1 0 0

]
⟩. Using the AFD input sets above and solv-

ing (17) at each time instant during the second phase, an
input sequence is designed for integrated AFD and control
as u∗

15 = [2.5, 2, 2.6042]T , u∗
16 = [0.5, 0, 2.3635]T , u∗

17 =
[0.5, 0.5939, 2.3711]T and u∗

18 = [0.5, 0.9753, 2.3560]T ,

9Since the number of vertices is too large, it is impossible to show all
their values and thus they are omitted here for saving space.

10At k = 15, the proposed method is started and thus the set-based
dynamics of all modes should be initialized. We use the state set X̂0

15 of
the healthy mode for the initialization here. Since X̂0

15 is computed online
and has a large dimension, it is omitted here for saving space.

(a) k = 16

(b) k = 19

Fig. 2. Diagnosis of the fault G3

which is also plotted in Figure 3 for better display. In
Figure 3, the notations uk,1, uk,2 and uk,3 denote the first,
second and third components of uk, respectively.

Fig. 3. Designed inputs for the system

The output sets11 generated by (2) are shown in Figure 2,
which are used for diagnosis by testing (4). In Figure 2,
yk ̸∈ Ŷ 0

19 and yk ∈ Ŷ 3
19 hold, which implies that the third

fault G3 has been diagnosed at kd = 19. During AFD, the
total sizes of output sets are computed as

∑nf

i=0 ∥H
i,y
15 ∥2F =

0.0036,
∑nf

i=0 ∥H
i,y
16 ∥2F = 0.0035,

∑nf

i=0 ∥H
i,y
17 ∥2F = 0.0038

and
∑nf

i=0 ∥H
i,y
18 ∥2F = 0.0038, whose differences are small

and are negligible in this example as assumed in Section III-
C. The output-tracking control is shown in Figure 4, where
yref = [yrefk,1 yrefk,2 ]

T , y∗k = [y∗k,1 y∗k,2]
T are the outputs

obtained by the proposed method and yk = [yk,1 yk,2]
T are

the outputs obtained by injecting a randomly selected input
sequence from the AFD input sets for comparison. During
the third phase from k = 19 to k = 30, both the red and blue
lines are generated by inputs obtained from min

uk∈U
∥yrefk+1 −

ŷ3,ck+1∥22. In Figure 4, the proposed method achieves smoother
outputs during AFD, which verifies its effectiveness. The

11Only output sets at k = 16 and 19 are plotted for saving space.
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simulation is done by using Matlab 2019a on a desktop
with Intel(R) Core(TM) i7-6700 CPU@3.40GHz and 16GB
RAM. The convex problem is solved by the CVX toolbox
and the nonlinear problem is solved by the Matlab solver
fmincon. The average computational time of each step during
the first, second and third phases is 0.4580s, 0.6225s and
0.4612s, respectively, which shows that the proposed method
is computationally capable.

Fig. 4. Output-tracking performance of the proposed method

Remark 4.1: As long as input sets are computed, both
AFD and control can be done by solving simple convex
problems (17). Particularly, the input sets are mainly involved
in two online computations. The first one is related to (15)
that is an online function evaluation problem and thus has
relatively low complexity. The second one is related to (14)
that needs to solve a nonlinear programming problem. Since
the proposed method uses nonlinear programming solvers to
handle (14), the computational complexity is also acceptable.
To illustrate its complexity, the computing time of the ex-
ample is also given above, which verifies the computational
feasibility to implement the proposed method.

V. CONCLUSIONS

This paper computes AFD input sets by increasing the
separation tendency of all output sets step by step. At each
time instant, an AFD input set is obtained by solving an
optimization problem. The advantage of designing an AFD
input set over an AFD input at each step is that it could be
used to simultaneously balance the performances of AFD and
control. In the future, the proposed method will be extended
to handle more complex systems and more types of faults.
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APPENDIX

Proof of Proposition 3.2: It is known that uf,c
k ⊕

Hf,u
k Bnu ⊆ U . For Hf,u

k ∈ Rnu×nu and uk ∈ uf,c
k ⊕

Hf,u
k Bnu , we have uf,c

k,i −
∑nu

j=1 |H
f,u
k,ij | ≤ uk,i ≤ uf,c

k,i +∑nu

j=1 |H
f,u
k,ij |, where uf,c

k,i and uk,i are the i-th components
of uf,c

k and uk, respectively, and Hf,u
k,ij denotes the i-th row

and j-th column element of Hf,u
k . Similarly, for uk ∈ U ,

we have uc
i − ūi ≤ uk,i ≤ uc

i + ūi, where uc
i and ūi are

the i-th components of uc and ū, respectively. Furthermore,
uf,c
k ⊕Hf,u

k Bnu ⊆ U is transformed into an explicit form:

uf,c
k,i +

nu∑
j=1

|Hf,u
k,ij | ≤ uc

i + ūi, (18a)

−uf,c
k,i +

nu∑
j=1

|Hf,u
k,ij | ≤ −uc

i + ūi. (18b)

We take (18a) as an example and thus transform (18a)
into uf,c

k,i + 11×nu
(|Hf,u

k,i |)T ≤ uc
i + ūi, where Hf,u

k,i de-
notes the i-th row of Hf,u

k . Furthermore, we can obtain
a compact expression uf,c

k + L(rvec(|Hf,u
k |))T ≤ uc + ū

where rvec(|Hf,u
k | is row vectorization of |Hf,u

k |. Since
vec

(
(|Hf,u

k |)T
)

=
(
rvec(|Hf,u

k |)
)T

and vec(|Hf,u
k |) =

Kn2
u×n2

u
vec

(
(|Hf,u

k |)T
)

(Kn2
u×n2

u
is unique and KT

n2
u×n2

u
=

K−1
n2
u×n2

u
= Kn2

u×n2
u

). Thus, the inequality is transformed
into uf,c

k +LKn2
u×n2

u
vec(|Hf,u

k |) ≤ uc+ū. Similarly, (18b) is
transformed into −uf,c

k +LKn2
u×n2

u
vec(|Hf,u

k |) ≤ −uc + ū.
Finally, using νk, they are reformulated into (10). ■
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