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Abstract— The standard game-theoretic solution concept,
Nash equilibrium, assumes that all players behave rationally.
If we follow a Nash equilibrium and opponents are irrational
(or follow strategies from a different Nash equilibrium), then
we may obtain an extremely low payoff. On the other hand,
a maximin strategy assumes that all opposing agents are
playing to minimize our payoff (even if it is not in their best
interest), and ensures the maximal possible worst-case payoff,
but results in exceedingly conservative play. We propose a new
solution concept called safe equilibrium that models opponents
as behaving rationally with a specified probability and behaving
potentially arbitrarily with the remaining probability. We prove
that a safe equilibrium exists in all strategic-form games (for all
possible values of the rationality parameters), and prove that
its computation is PPAD-hard. We present exact algorithms for
computing a safe equilibrium in both 2 and n-player games, as
well as scalable approximation algorithms.

I. INTRODUCTION

In designing a strategy for a multiagent interaction an
agent must balance between the assumption that opponents
are behaving rationally with the risks that may occur if
opponents behave irrationally. Most classic game-theoretic
solution concepts, such as Nash equilibrium (NE), assume
that all players are behaving rationally (and that this fact is
common knowledge). On the other hand, a maximin strategy
plays a strategy that has the largest worst-case guaranteed
expected payoff; this limits the potential downside against a
worst-case and potentially irrational opponent, but can also
cause us to achieve significantly lower payoff against rational
opponents. In two-player zero-sum games, Nash equilibrium
and maximin strategies are equivalent (by the minimax
theorem), and these two goals are completely aligned. But in
non-zero-sum games and games with more than two players,
this is not the case. In these games we can potentially
obtain arbitrarily low payoff by following a Nash equilibrium
strategy, but if we follow a maximin strategy will likely be
playing far too conservatively. While the assumption that
opponents are exhibiting a degree of rationality, as well as
the desire to limit worst-case performance in the case of
irrational opponents, are both desirable, neither the Nash
equilibrium nor maximin solution concept is definitively
compelling on its own.

We propose a new solution concept that balances between
these two extremes. In a two-player general-sum game, we
define an ϵ-safe equilibrium (ϵ-SE) as a strategy profile
where each player i is playing a strategy that minimizes
performance of the opponent with probability ϵi, and is
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playing a best response to the opponent’s strategy with
probability 1 − ϵi, where ϵ = (ϵ1, ϵ2). As a special case, if
we are interested in constructing a strategy for player 1, we
can set ϵ1 = 0, assuming irrationality just for player 2. We
can generalize this to an n-player game by assuming that all
players i ̸= 1 are playing a strategy that minimizes player
1’s expected payoff with probability ϵi, and are playing a
best response to all other players’ strategies with probability
1 − ϵi, while player 1 plays a best response to all other
players’ strategies. This concept balances explicitly between
the assumption of players’ rationality and the desire to ensure
safety in the worst case through the ϵi parameters. From a
theoretical perspective we show that an ϵ-safe equilibrium is
always guaranteed to exist and is PPAD-hard to compute
(assuming ϵi < 1). Thus, it has the same existence and
complexity results as Nash equilibrium.

Several other game-theoretic solution concepts have been
previously proposed to account for degrees of opponents’
rationality. The most prominent is trembling-hand perfect
equilibrium (THPE), which is a refinement of Nash equilib-
rium that is robust to the possibility that players “tremble”
and play each pure strategy with arbitrarily small proba-
bility [11]. The concept of ϵ-safe equilibrium differs from
THPE in several key ways. First, it allows a player to specify
an arbitrary belief on the probability that each other player
is irrational, rather than assume that it is an extremely small
value. In domains like national security or driving we risk
losing lives in the event that we fail to properly account for
opponents’ irrationality, and may elect to use larger values
for ϵi than in situations where safety is less of a concern.
In an ϵ-SE a player can specify the values for ϵi based on
prior beliefs about the opponent or any relevant domain-
specific knowledge, and is still free to use values that are
extremely close to 0 as in THPE. Furthermore, a THPE is
a refinement of NE, while ϵ-SE and NE are incomparable
(an ϵ-SE may not be an NE and vice versa). Another related
concept is that of a safe strategy and ϵ-safe strategy [8]. A
strategy for a player in a two-player zero-sum game is called
safe if it guarantees an expected payoff of at least v∗—the
value of the game to the player—in the worse case. Note that
this also coincides with the set of minimax, maximin, and
Nash equilibrium strategies. A strategy is ϵ-safe if it obtains
a worst-case expected payoff of at least v∗−ϵ. The concepts
of safe and ϵ-safe strategies are defined just for two-player
zero-sum games, while safe and ϵ-safe equilibrium also apply
to non-zero-sum and multiplayer games.

We note that a belief of opponents’ “irrationality” does
not necessarily indicate that we believe them to be “stupid”
or “crazy.” It may simply correspond to a belief that the
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opponent may have a different model of the game than we
do. For example, our analysis may indicate that a successful
attack on a location would result in a certain payoff for the
opponent, while their analysis indicates a different payoff.
In addition to potentially constructing different assessments
of their own or other players’ payoffs, opponents may also
be “irrational” because they are using an algorithm for
computing a Nash equilibrium that is only able to yield
an approximation, or just a different Nash equilibrium from
what other players have calculated (in fact, these cases do not
actually seem to be irrational at all, since computing a Nash
equilibrium is computationally challenging and many games
have multiple Nash equilibria). If any of these situations
arise, then following an arbitrary Nash equilibrium strategy
runs a risk of an extremely low payoff, and there is potential
for significant benefit by ensuring a degree of safety.

An alternative approach for modeling potentially irrational
opponents is to incorporate an opponent modeling algorithm.
Opponent modeling algorithms typically require the use of
domain-specific expertise and databases of historical play
to construct a prior distribution for opponents’ strategies
and use machine learning algorithms that predict a strategy
(or distribution of strategies) for the opponents taking into
account the prior and observations of publicly observable
actions. This can be extremely valuable if domain expertise,
large amounts of historical data, and a large number of
observations of opponents’ play are available. Often such in-
formation is not available and we are forced to construct our
strategy without any additional data-specific tendencies of
the opponent. We note that if such data is available, the safe
equilibrium concept can be integrated with opponent model-
ing to successfully achieve robust opponent exploitation. An
approach called a restricted Nash response was developed for
two-player zero-sum games where the opponent is restricted
to play a fixed strategy σfix determined by an opponent
model with probability p and plays a best response to us
with probability 1−p while we best respond to the opponent
(it is shown that this approach is equivalent to playing an ϵ-
safe best response to σfix (a best response to σfix out of
strategies that are ϵ-safe) for some ϵ) [7]. It was shown that
for certain values of p this approach can result in a significant
reduction in the level of exploitability of our own strategy
while only a slight reduction in our degree of exploitation
of the opponent’s strategy. It has also been shown that
approaches that compute an ϵ-safe best response to a model
of the opponent’s strategy for dynamically changing values
of ϵ in repeated two-player zero-sum games can guarantee
safety [5]. An ϵ-safe equilibrium strategy can be used in non-
zero-sum and multiplayer games where models are available
for the opponents’ strategies by assuming each opponent i
follows their opponent model with probability ϵi instead of
playing a worst-case strategy for us, while also playing a best
response with probability 1 − ϵi. Thus, in the event that an
opponent model is available we can view safe equilibrium
as a generalization of restricted Nash response to achieve
robust opponent exploitation in the settings of non-zero-sum
and multiplayer games.

II. SAFE EQUILIBRIUM

A strategic-form game consists of a finite set of players
N = {1, . . . , n}, a finite set of pure strategies Si for each
player i ∈ N , and a real-valued utility for each player for
each strategy vector (aka strategy profile), ui : ×iSi → R.
A mixed strategy σi for player i is a probability distribution
over pure strategies, where σi(si′) is the probability that
player i plays pure strategy si′ ∈ Si under σi. Let Σi denote
the full set of mixed strategies for player i. A strategy profile
σ∗ = (σ∗

1 , . . . , σ
∗
n) is a Nash equilibrium if ui(σ

∗
i , σ

∗
−i) ≥

ui(σi, σ
∗
−i) for all σi ∈ Σi for all i ∈ N , where σ∗

−i ∈ Σ−i

denotes the vector of the components of strategy σ∗ for all
players excluding player i. Here ui denotes the expected
utility for player i, and Σ−i denotes the set of strategy
profiles for all players excluding player i.

A mixed strategy σ∗
i for player i is a maximin strategy if

σ∗
i ∈ argmax

σi∈Σi

min
σ−i∈Σ−i

ui(σi, σ−i).

Definition 1: Let G be a two-player strategic-form game.
Let ϵ = (ϵ1, ϵ2), where ϵi ∈ [0, 1] for i = 1, 2. A strategy
profile σ∗ is an ϵ-safe equilibrium if there exist mixed
strategies τ∗i , ρ

∗
i ∈ Σi where σ∗

i = ϵiτ
∗
i + (1 − ϵi)ρ

∗
i for

i = 1, 2 such that ρ∗i ∈ argmaxσi∈Σi
ui(σi, σ

∗
−i), τ∗i ∈

argminσi∈Σi
u−i(σ

∗
−i, σi).

In practice player i would likely want to set ϵi = 0 and
ϵj > 0 for j ̸= i when determining their own strategy, though
Definition 1 allows an arbitrary value of ϵi ∈ [0, 1] as well.
It may make sense for player i to set ϵi > 0 if they believe
both that the opponent is irrational with some probability
ϵ−i, and if they also believe that the opponent believes that
player i is irrational with some probability ϵi.

Theorem 1: Let G = (N, (Si)i∈N , (ui)i∈N ) be a two-
player strategic-form game, and let ϵ = (ϵ1, ϵ2), where
ϵ1, ϵ2 ∈ [0, 1]. Then G contains an ϵ-safe equilibrium.

Proof: Define G′ = (N ′, (S′
i)i∈N , (u′

i)i∈N ) to be the
following game. N ′ = {1, 2, 3, 4}, S′

1 = S′
2 = S1, S′

3 =
S′
4 = S2. For s′i ∈ S′

i, define u′
i as follows for i ∈ N :

u′
1(s

′
1, s

′
2, s

′
3, s

′
4) = −ϵ2u2(s

′
1, s

′
3)− (1− ϵ2)u2(s

′
1, s

′
4)

u′
2(s

′
1, s

′
2, s

′
3, s

′
4) = ϵ2u1(s

′
2, s

′
3) + (1− ϵ2)u1(s

′
2, s

′
4)

u′
3(s

′
1, s

′
2, s

′
3, s

′
4) = −ϵ1u1(s

′
1, s

′
3)− (1− ϵ1)u1(s

′
2, s

′
3)

u′
4(s

′
1, s

′
2, s

′
3, s

′
4) = ϵ1u2(s

′
1, s

′
4) + (1− ϵ1)u2(s

′
2, s

′
4)

Player 1’s strategy corresponds to τ∗1 , player 2’s strategy
corresponds to ρ∗1, player 3’s strategy corresponds to τ∗2 , and
player 4’s strategy corresponds to ρ∗2. By Nash’s existence
theorem, the game G′ has a Nash equilibrium, which corre-
sponds to an ϵ-safe equilibrium of G.

Theorem 2: Let ϵ = (ϵ1, ϵ2), where ϵ1, ϵ2 ∈ [0, 1) are
fixed constants. The problem of computing an ϵ-safe equi-
librium is PPAD-hard.

Proof: Let G = (N, (Si)i∈N , (ui)i∈N ) be a two-player
strategic-form game. Suppose that k is the smallest possible
payoff for any player in G, and let k′ = k − 1. Define the
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game G′ = (N ′, (S′
i)i∈N , (u′

i)i∈N ) as follows. N ′ = {1, 2},
S′
1 = S1 ∪ t, S′

2 = S2 ∪ t. For s′i ∈ S′
i, define u′

i as follows:

u′
i(s

′
1, s

′
2) = ui(s

′
1, s

′
2) for s1 ∈ S1, s2 ∈ S2.

u′
i(t, s

′
2) = k′ for s′2 ∈ S2.

u′
i(s

′
1, t) = k′ for s′1 ∈ S1.

u′
i(t, t) = k′.

Suppose we can efficiently compute an ϵ-safe equilibrium
of G′, denoted by σG′

. Then we have σG′

i = ϵiτ
∗
i +(1−ϵi)ρ

∗
i

for i = 1, 2, where ρ∗i ∈ argmaxσ′
i∈Σ′

i
ui(σ

′
i, σ

G′

−i), τ
∗
i ∈

argminσ′
i∈Σ′

i
u−i(σ

G′

−i, σ
′
i).

I claim that ρ∗ is a Nash equilibrium of G. First note
that ρ∗i must put probability 0 on t for all players, since t
is strictly dominated. So it is a valid strategy profile of G.
Also note that τ∗i must put probability 1 on t for all i.

Suppose that player i can improve performance in G by
deviating to ηi. Then

ui(ηi, ρ
∗
−i) > ui(ρ

∗
i , ρ

∗
−i)

(1− ϵi)ui(ηi, ρ
∗
−i) + ϵik

′ > (1− ϵi)ui(ρ
∗
i , ρ

∗
−i) + ϵik

′

(1− ϵi)ui(ηi, ρ
∗
−i) + ϵiui(ηi, t) > (1− ϵi)ui(ρ

∗
i , ρ

∗
−i) + ϵiui(ηi, t)

(1− ϵi)ui(ηi, ρ
∗
−i) + ϵiui(ηi, t) > (1− ϵi)ui(ρ

∗
i , ρ

∗
−i) + ϵiui(ρ

∗
i , t)

(1−ϵi)ui(ηi, ρ
∗
−i)+ϵiui(ηi, τ

∗
−i) > (1−ϵi)ui(ρ

∗
i , ρ

∗
−i)+ϵiui(ρ

∗
i , τ

∗
−i)

ui(ηi, σ
G′
−i) > ui(ρ

∗
i , σ

G′
−i).

This contradicts the fact that ρ∗i ∈ argmaxσ′
i∈Σ′

i
ui(σ

′
i, σ

G′

−i).
So we have a contradiction, and conclude that no player can
improve performance in G by deviating from ρ∗. So ρ∗ is a
Nash equilibrium of G.

Since the problem of computing a Nash equilibrium is
PPAD-hard and we have reduced it to the problem of
computing an ϵ-safe equilibrium, this shows that the problem
of computing an ϵ-safe equilibrium is PPAD-hard.

For n > 2 players, we designate one of the players as
being a special player, say player 1. We can view player 1
as representing “ourselves” as a decision-making agent, and
the other players as opponents. Player 1 then best responds to
the strategy profile of all other players, while each opposing
player i mixes between playing a strategy that minimizes
player 1’s payoff and a strategy that maximizes player i’s
payoff in response to the strategy profile of the other players.

Definition 2: Let G be an n-player strategic-form game.
Let ϵ = (ϵ2, . . . , ϵn), where ϵi ∈ [0, 1]. A strategy profile
σ∗ is an ϵ-safe equilibrium if there exists a mixed strategy
σ∗
1 for player 1 and mixed strategies τ∗i , ρ

∗
i ∈ Σi where

σ∗
i = ϵiτ

∗
i + (1 − ϵi)ρ

∗
i for i = 2, . . . , n such that ρ∗i ∈

argmaxσi∈Σi
ui(σi, σ

∗
−i), τ∗i ∈ argminσi∈Σi

u1(σ
∗
1 , σ

′),
σ∗
1 ∈ argmaxσ1∈Σ1

u1(σ1, σ
∗
−1), where σ′ is the strategy

profile for players in {2, . . . , n} where player i plays σi and
the other players j ̸= i play σ∗

j .
The proof of Theorem 1 extends naturally to n > 2 players

as well by creating a 2(n − 1) + 1 = 2n − 1 player game
with 2 new players corresponding to each player in the initial
game for i > 1, plus player 1.

[
(0, 0) (−1,+1)

(+1,−1) (−10,−10)

]
Fig. 1. Payoff matrix for game of Chicken.

Theorem 3: Let G = (N, (Si)i∈N , (ui)i∈N ) be an n-
player strategic-form game, and let ϵ = (ϵ2, . . . , ϵn), where
ϵi ∈ [0, 1]. Then G contains an ϵ-safe equilibrium.

The proof of Theorem 2 also straightforwardly extends to
n players.

Theorem 4: Let ϵ = (ϵ2, . . . , ϵn), where ϵi ∈ [0, 1)
are fixed constants. The problem of computing an ϵ-safe
equilibrium is PPAD-hard.

As an example, consider the classic game of Chicken,
with payoffs given by Figure 1. The first action for each
player corresponds to the “swerve” action, while the second
corresponds to the “straight” action.

The game of chicken models two drivers, both
headed for a single-lane bridge from opposite di-
rections. The first to swerve away yields the bridge
to the other. If neither player swerves, the result is
a costly deadlock in the middle of the bridge, or a
potentially fatal head-on collision. It is presumed
that the best thing for each driver is to stay straight
while the other swerves (since the other is the
“chicken” while a crash is avoided). Additionally,
a crash is presumed to be the worst outcome for
both players. This yields a situation where each
player, in attempting to secure their best outcome,
risks the worst [12].

The unique mixed-strategy Nash equilibrium σNE in the
Chicken game is for each player to swerve with probability
0.9 (there are also two pure-strategy equilibria where one
player swerves and the other player doesn’t), and the unique
maximin strategy σM is to swerve with probability 1. If we
set ϵ1 = 0, then it turns out that σNE

1 is an ϵ-safe equilibrium
strategy for player 1 for 0 ≤ ϵ2 ≤ 0.1, and σM

1 is an ϵ-
safe equilibrium strategy for player 1 for 0.1 ≤ ϵ2 ≤ 1. It
is not necessary that an ϵ-safe equilibrium strategy always
corresponds to a Nash equilibrium or maximin strategy.
For example, with ϵ1 = 0.05 and ϵ2 = 0.15, an ϵ-safe
equilibrium strategy profile is for player 1 to swerve with
probability 0.95 and player 2 to swerve with probability 0.

As another example, consider the security game depicted
in Figure 2, where the row player selects one of three targets
to defend while the column player selects a target to attack. A
Nash equilibrium for player 1 (row player) σNE

1 is to defend
the targets with probabilities (0.3136, 0.4661, 0.2203), and
a maximin strategy σM

1 is (0.6144, 0.0131, 0.3725). Again
using ϵ1 = 0, for ϵ2 ∈ [0, 0.314] it turns out that σNE

1 is an ϵ-
safe equilibrium strategy for player 1, and for ϵ2 ∈ [0.569, 1]
σM
1 is an ϵ-safe equilibrium strategy for player 1. But for

the region ϵ2 ∈ [0.314, 0.569] it turns out that the strategy
(0.4437, 0.3666, 0.1897) is an ϵ-safe equilibrium strategy for
player 1, which is neither a Nash equilibrium strategy nor a
maximin strategy.
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(4,−3) (−1, 1) (−7, 2)
(−5, 5) (2,−1) (−1, 4)
(−9, 1) (−1, 8) (9,−4)


Fig. 2. Security game payoff matrix.

III. ALGORITHMS FOR COMPUTING SAFE EQUILIBRIUM

We first present an exact algorithm for computing an ϵ-
safe equilibrium, followed by an approximation algorithm
that runs quickly on large instances. The exact algorithm is
based on a mixed-integer feasibility program formulation.
We first present the algorithm for two players, for arbitrary
ϵi ∈ [0, 1]. The algorithm builds on a related linear mixed-
integer feasibility program formulation for computing Nash
equilibrium in two-player general-sum games [10].

We quote from the original description of the program
formulation for two-player Nash equilibrium, and present the
formulation below:

In our first formulation, the feasible solutions
are exactly the equilibria of the game. For every
pure strategy si, there is binary variable bsi . If
this variable is set to 1, the probability placed
on the strategy must be 0. If it is set to 0, the
strategy is allowed to be in the support, but the
regret of the strategy must be 0. The formulation
has the following variables other than the bsi .
For each player, there is a variable ui indicating
the highest possible expected utility that that
player can obtain given the other player’s mixed
strategy. For every pure strategy si, there is a
variable psi indicating the probability placed
on that strategy, a variable usi indicating the
expected utility of playing that strategy (given
the other player’s mixed strategy), and a variable
rsi indicating the regret of playing si. The
constant Ui indicates the maximum difference
between two utilities in the game for player i: Ui =

maxshi ,sli∈Si,s
h
1−i,s

l
1−i∈S1−i

[
ui(s

h
i , s

h
1−i)− ui(s

l
i, s

l
1−i)

]
.

The formulation follows below [10].
Find psi , ui, usi , rsi , bsi such that:∑
si∈Si

psi = 1 for all i (1)

usi =
∑

s1−i∈S1−i

ps1−i
ui(si, s1−i) for all i, si ∈ Si (2)

ui ≥ usi for all i, si ∈ Si (3)
rsi = ui − usi for all i, si ∈ Si (4)
psi ≤ 1− bsi for all i, si ∈ Si (5)
rsi ≤ Uibsi for all i, si ∈ Si (6)
psi ≥ 0 for all i, si ∈ Si (7)
ui ≥ 0 for all i (8)
usi ≥ 0 for all i, si ∈ Si (9)
rsi ≥ 0 for all i, si ∈ Si (10)
bsi binary in {0, 1} for all i, si ∈ Si (11)

The first four constraints ensure that the psi values
constitute a valid probability distribution and define
the regret of a strategy. Constraint 5 ensures that
bsi can be set to 1 only when no probability is
placed on si. On the other hand, Constraint 6
ensures that the regret of a strategy equals 0,
unless bsi = 1, in which case the constraint is
vacuous because the regret can never exceed Ui.
(Technically, Constraint 3 is redundant as it follows
from Constraints 4 and 10.) [10]

We modify this program as follows. For every pure strat-
egy si, we include two binary variables b1si , b

2
si . The first

one corresponds to player i’s best response strategy, and
the second corresponds to player i’s strategy that minimizes
the opponent’s payoff. Additionally, we include variables
uj
i , p

j
si , u

j
si , r

j
si and constants U j

i for j = 1, 2. Given con-
stants ϵ1, ϵ2 ∈ [0, 1], we create the following formulation for
computing an ϵ-safe equilibrium (note that we have removed
the redundant Constraint 3).

Find pjsi , u
j
i , u

j
si , r

j
si , b

j
si such that:∑

si∈Si

pjsi = 1 for all i, j

u1
si =

∑
s1−i∈S1−i

[
ui(si, s1−i)

(
ϵ1−ip

2
s1−i

+ (1− ϵ1−i)p
1
s1−i

)]
for all i, si ∈ Si

u2
si =

∑
s1−i∈S1−i

[
−u−i(s1−i, si)

(
ϵ1−ip

2
s1−i

+ (1− ϵ1−i)p
1
s1−i

)]
for all i, si ∈ Si

rjsi = uj
i − uj

si for all i, si ∈ Si, j

pjsi ≤ 1− bjsi for all i, si ∈ Si, j

rjsi ≤ U j
i b

j
si for all i, si, j ∈ Si

pjsi ≥ 0 for all i, si ∈ Si, j

uj
i ≥ 0 for all i, j

uj
si ≥ 0 for all i, si ∈ Si, j

rjsi ≥ 0 for all i, si ∈ Si, j

bjsi binary in {0, 1} for all i, si ∈ Si, j

For three players, we can use the following formulation,
where new variables pji,jksi,sk

denote the product of the vari-
ables pjisi and pjksk . For the special player 1 we just have
superscript 1, while for players 2 and 3 we have superscripts
1 and 2 (corresponding to the best-response strategy and the
strategy that is worst-case for player 1). This formulation can
be straightforwardly extended to a non-convex quadratically-
constrained mixed-integer feasibility program formulation
for n players, and is based on a recent algorithm for
computing multiplayer Nash equilibrium [2].

Find pjsi , u
j
i , u

j
si , r

j
si , b

j
si , p

ji,jk
si,sk

subject to:∑
si∈Si

pjsi = 1 for all i, j

u1
s1 =

∑
s2∈S2

∑
s3∈S3

[u1(s1, s2, s3)(ϵ2ϵ3p
2,2
s2,s3 + ϵ2(1− ϵ3)p

2,1
s2,s3

+ (1− ϵ2)ϵ3p
1,2
s2,s3 + (1− ϵ2)(1− ϵ3)p

2,2
s2,s3)] for all s1 ∈ S1
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u1
s2 =

∑
s1∈S1

∑
s3∈S3

[u2(s1, s2, s3)(ϵ3p
1,2
s1,s3 + (1− ϵ3)p

1,1
s1,s3)]

for all s2 ∈ S2

u2
s2 =

∑
s1∈S1

∑
s3∈S3

[−u1(s1, s2, s3)(ϵ3p
1,2
s1,s3 + (1− ϵ3)p

1,1
s1,s3)]

for all s2 ∈ S2

u1
s3 =

∑
s1∈S1

∑
s2∈S2

[u3(s1, s2, s3)(ϵ2p
1,2
s1,s2 + (1− ϵ2)p

1,1
s1,s2)]

for all s3 ∈ S3

u2
s3 =

∑
s1∈S1

∑
s2∈S2

[−u1(s1, s2, s3)(ϵ2p
1,2
s1,s2 + (1− ϵ2)p

1,1
s1,s2)]

for all s3 ∈ S3

pji,jksi,sk = pjisi · p
jk
sk for all ji, jk, si ∈ S1, sk ∈ S2

pji,jksi,sk = pjisi · p
jk
sk for all ji, jk, si ∈ S1, sk ∈ S3

pji,jksi,sk = pjisi · p
jk
sk for all ji, jk, si ∈ S2, sk ∈ S3

rjsi = uj
i − uj

si for all i, si ∈ Si, j

pjsi ≤ 1− bjsi for all i, si ∈ Si, j

rjsi ≤ U j
i b

j
si for all i, si, j ∈ Si

pjsi ≥ 0 for all i, si ∈ Si, j

uj
i ≥ 0 for all i, j

uj
si ≥ 0 for all i, si ∈ Si, j

rjsi ≥ 0 for all i, si ∈ Si, j

bjsi binary in {0, 1} for all i, si ∈ Si, j

This provides an exact algorithm for computing ϵ-safe
equilibrium in n-player games. Next we consider an ap-
proximation algorithm that scales to large games. Two algo-
rithms that have been recently applied to approximate Nash
equilibrium in large multiplayer games are (counterfactual)
regret minimization [13] and fictitious play [1], [9]. These
are iterative self-play procedures that have been proven to
converge to Nash equilibrium in two-player zero-sum games,
but not for more than two players. Recently it has been
shown that fictitious play outperforms regret minimization
for multiplayer games [3], so we will base our algorithms
on fictitious play. Algorithm 1 presents our algorithm for
computing ϵ-safe equilibrium in two-player games, and Al-
gorithm 2 presents our algorithm for n-player games. Note
that ρti and τ ti are not actually needed in the algorithms (for
t > 0), but they will be useful for evaluating the algorithms
in our experiments.

Proposition 1: In Algorithms 1 and 2, σt
i = ϵiτ

t
i + (1 −

ϵi)ρ
t
i for all t and i (for i > 1 for Algorithm 2).
Proof: This is true for t = 0 by the definition of σ0

i . Now
suppose σt

i = ϵiτ
t
i + (1− ϵi)ρ

t
i for all t ≤ k, for some k ≥ 0.

σk+1
i =

(
1− 1

k + 2

)
σk
i +

1

k + 2
σ′k+1
i

=

(
1− 1

k + 2

)(
ϵiτ

k
i + (1− ϵi)ρ

k
i

)
+

1

k + 2

(
ϵiτ

′
i + (1− ϵi)ρ

′
i

)
= ϵiτ

k+1
i + (1− ϵi)ρ

k+1
i

Algorithm 1 Approximation algorithm for ϵ-safe equilibrium
in two-player games
Inputs: Game G, ϵ1, ϵ2 ∈ [0, 1], initial mixed strategies
τ0i , ρ

0
i ∈ Σi for i = 1, 2, number of iterations T .

σ0
i = ϵiτ

0
i + (1− ϵi)ρ

0
i for i = 1, 2

for t = 1 to T do
ρ′i = argmaxσi∈Σi

ui(σi, σ
t−1
−i ) for i = 1, 2

τ ′i = argminσi∈Σi
u−i(σ

t−1
−i , σi) for i = 1, 2

σ′
i = ϵiτ

′
i + (1− ϵi)ρ

′
i for i = 1, 2

σt
i =

(
1− 1

t+1

)
σt−1
i + 1

t+1σ
′t
i for i = 1, 2

ρti =
(
1− 1

t+1

)
ρt−1
i + 1

t+1ρ
′t
i for i = 1, 2

τ ti =
(
1− 1

t+1

)
τ t−1
i + 1

t+1τ
′t
i for i = 1, 2

Output strategy profile (σT
1 , σ

T
2 )

Algorithm 2 Approximation algorithm for ϵ-safe equilibrium
in n-player games, n > 2

Inputs: Game G, ϵi ∈ [0, 1] for i = 2, . . . , n, initial mixed
strategy σ0

1 ∈ Σ1, initial mixed strategies τ0i , ρ
0
i ∈ Σi for

i = 2, . . . , n, number of iterations T .
σ0
i = ϵiτ

0
i + (1− ϵi)ρ

0
i for i = 2, . . . , n

for t = 1 to T do
σ′
1 = argmaxσ1∈Σ1

u1(σ1, σ
t−1
−1 )

ρ′i = argmaxσi∈Σi
ui(σi, σ

t−1
−i ) for i = 2, . . . , n

τ ′i = argminσi∈Σi
u1(σ̂) where σ̂ is the strategy

profile where player i follows σi and the other players
j ̸= i follow σt−1

j , for j = 2, . . . , n
σ′
i = ϵiτ

′
i + (1− ϵi)ρ

′
i for i = 2, . . . , n

σt
i =

(
1− 1

t+1

)
σt−1
i + 1

t+1σ
′t
i for i = 1, . . . , n

ρti =
(
1− 1

t+1

)
ρt−1
i + 1

t+1ρ
′t
i for i = 2, . . . , n

τ ti =
(
1− 1

t+1

)
τ t−1
i + 1

t+1τ
′t
i for i = 2, . . . , n

Output strategy profile (σT
1 , . . . , σ

T
n )

IV. EXPERIMENTS

For the first set of experiments we investigate the runtime
of our exact two-player algorithm as the number of pure
strategies per player varies. For these experiments we set
ϵ1 = 0, ϵ2 = 0.05. We used an Intel Core i7-8550U at
1.80 GHz with 16 GB of RAM under 64-bit Windows 11 (8
threads). We used Gurobi version 9.5 [6]. We experimented
on games with all payoffs uniformly random in [0,1]. For
m = 2, 3, 5, 10 we ran 10,000 trials, and for m = 15, 20, 25
we ran 1,000. Here m refers to the number of pure strategies
per player (note that we experiment on games where all
players have the same number of pure strategies, while our
solution concepts and algorithms also apply to games where
the players can have different numbers of pure strategies).
The results in Table I indicate that the algorithm runs in less
than a second for up to m = 20.

Next we experimented with the exact three-player algo-
rithm, using ϵ2 = ϵ3 = 0.05. Again we used Gurobi 9.5
with 8 cores on a laptop. For these experiments we used
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m Avg. time(s) Median time(s)
2 4.647× 10−4 0.0
3 0.001 9.975× 10−4

5 0.010 0.007
10 0.062 0.061
15 0.186 0.173
20 0.736 0.555
25 3.815 2.007

TABLE I
RUNNING TIMES FOR EXACT 2-PLAYER ALGORITHM FOR VARYING

NUMBER OF PURE STRATEGIES PER PLAYER (m), USING ϵ1 = 0,
ϵ2 = 0.05.

Gurobi’s non-convex quadratic solver. For m = 2, 3 we ran
1,000 trials, and for m = 4, 5 we ran 100. The results in
Table II indicate that the algorithm runs in a fraction of a
second for m = 2, 3 and several seconds for m = 4.

m Avg. time(s) Median time(s)
2 0.036 0.032
3 0.194 0.169
4 4.856 1.787
5 468.731 97.407

TABLE II
RUNNING TIMES FOR EXACT 3-PLAYER ALGORITHM FOR VARYING

NUMBER OF PURE STRATEGIES PER PLAYER (m), USING ϵ1 = 0,
ϵ2 = 0.05, ϵ3 = 0.05.

We next experimented with our 2-player approximation
algorithm (Algorithm 1). Again we used ϵ1 = 0, ϵ2 = 0.05.
For these experiments we just used a single core (note that
the algorithm can be parallelized which would result in even
lower runtimes). For each value of m we ran 10,000 trials,
performing 10,000 iterations of Algorithm 1 for each trial.
The results in Table III indicate that the algorithm runs in
just a fraction of a second for m = 25.

For player i, define

δρi = max
σi∈Σi

ui(σi, σ
T
−i)− ui(ρ

T
i , σ

T
−i).

That is, δρi denotes the difference between the payoff of
playing a best response to σT

−i and following ρTi . Then define
δρ = maxi δ

ρ
i . Similarly, define

δτ = u−i(σ
T
−i, τ

T
i )− min

σi∈Σi

u−i(σ
T
−i, σi),

and δτ = maxi δ
τ
i . If both δρ = 0 and δτ = 0, then σT

would constitute an exact ϵ-safe equilibrium. So these values
can be viewed as measures of approximation error. Table III
shows these approximation errors for different values of m.
While this algorithm runs significantly faster than the exact
algorithm and can scale to larger games (particularly when
implemented with parallelization), this comes at some cost
to the accuracy of the solution.

We next experimented with a variant of Algorithm 1
based on a new initialization procedure for fictitious play
called maximin initialization [4]. While the prior experiments

m Avg. time(s) Avg. δρ Avg. δτ

2 9.642× 10−4 1.822× 10−4 9.385× 10−5

3 0.001 8.839× 10−4 6.865× 10−4

5 0.002 0.004 0.003
10 0.006 0.013 0.014
15 0.010 0.022 0.027
20 0.016 0.031 0.039
25 0.026 0.039 0.049

TABLE III
RUNNING TIMES AND DEGREES OF APPROXIMATION ERROR FOR

2-PLAYER APPROXIMATION ALGORITHM FOR VARYING NUMBER OF

PURE STRATEGIES PER PLAYER (m), USING ϵ1 = 0, ϵ2 = 0.05.

initialized ρi and τi to be mixed strategies with equal proba-
bility for all pure strategies, maximin initialization generates
a set of K initial strategy profiles and selects the run of the
fictitious play algorithm that produces the smallest error. We
can implement the same idea with Algorithm 1. Let δρ,k

and τρ,k denote the values of δ using initialization k. Let
δ′k = max{δρ,k, τρ,k}, and let k′ = argmink δ

′k. Then
define δρ = δρ,k

′
, δτ = δτ,k

′
. For our experiments we used

K = 10 initial strategy profiles. The results in Table IV
show that maximin initialization significantly reduces the
approximation error, though increases the runtime. We ran
these experiments using a 64-core server parallelizing over
the 10,000 trials, though we just used a single core for each
algorithm run.

m Avg. time(s) Avg. δρ Avg. δτ

2 0.186 1.029× 10−4 3.426× 10−5

3 0.243 4.775× 10−4 3.164× 10−4

5 0.327 0.001 0.001
10 0.370 0.003 0.003
15 0.582 0.003 0.003
20 0.806 0.004 0.004
25 1.072 0.004 0.006

TABLE IV
RUNNING TIMES AND DEGREES OF APPROXIMATION ERROR FOR

2-PLAYER APPROXIMATION ALGORITHM FOR VARYING NUMBER OF

PURE STRATEGIES PER PLAYER (m), USING ϵ1 = 0, ϵ2 = 0.05, USING

10 INITIAL STRATEGY PROFILES.

We ran similar experiments for Algorithm 2 on 3-player
games, using ϵ1 = 0, ϵ2 = 0.05, ϵ3 = 0.05. Again we used
a single core per run of the algorithm, and ran 10,000 trials
for each value of m, with 10,000 iterations of the algorithm
per trial. In Table V, we define δρ and δτ as before except
that they are just the maximum over the values for players
2 and 3. We also define

δσ = max
σ1∈Σ1

ui(σ1, σ
T
−1)− u1(σ

T
1 , σ

T
−1).

The results in Table V show how the running times and
approximation errors for different values of m. We also
experimented on 3-player games using maximin initialization
with K = 10. The results in Table VI show that, as for the
two-player case, maximin initialization leads to a significant
reduction in approximation error.
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m Avg. time(s) Avg. δσ Avg. δρ Avg. δτ

2 0.007 0.001 0.002 6.996× 10−4

3 0.011 0.003 0.006 0.004
5 0.021 0.012 0.017 0.018
10 0.116 0.037 0.049 0.057
15 0.322 0.048 0.063 0.072
20 0.832 0.057 0.073 0.080
25 1.707 0.061 0.077 0.085

TABLE V
RUNNING TIMES AND DEGREES OF APPROXIMATION ERROR FOR

3-PLAYER APPROXIMATION ALGORITHM FOR VARYING NUMBER OF

PURE STRATEGIES PER PLAYER (m), USING ϵ1 = 0, ϵ2 = 0.05,
ϵ3 = 0.05.

m Avg. time(s) Avg. δσ Avg. δρ Avg. δτ

2 0.414 5.224× 10−4 7.279× 10−4 2.930× 10−4

3 0.595 0.002 0.002 0.002
5 0.993 0.003 0.004 0.003
10 2.897 0.007 0.009 0.010
15 7.706 0.015 0.019 0.023
20 16.536 0.023 0.031 0.035
25 36.392 0.034 0.040 0.043

TABLE VI
RUNNING TIMES AND DEGREES OF APPROXIMATION ERROR FOR

3-PLAYER APPROXIMATION ALGORITHM USING ϵ1 = 0, ϵ2 = 0.05,
ϵ3 = 0.05, AND 10 INITIAL STRATEGY PROFILES.

V. CONCLUSION

We defined a new game-theoretic solution concept called
safe equilibrium in which players behave potentially arbi-
trarily with some fixed probability ϵi. We proved that a
safe equilibrium is guaranteed to exist for any number of
players and all possible values of the parameters ϵi, and we
proved that its computation is PPAD-hard. We devised exact
algorithms, both for the 2-player and n-player cases, which
we showed are able to solve small games relatively quickly.
We also presented approximation algorithms that achieve
significantly lower runtimes but at the cost of a degree of
approximation error. While we focused on strategic-form
games, which model situations of perfect information with
simultaneous actions, our analysis and algorithms should
extend straightforwardly to more complex settings such as
those with imperfect information and stochastic events. In
the event that historical data of opponents’ play is available,
our algorithms can be integrated with an opponent modeling
algorithm to provide models of opponents’ irrational strate-
gies that are more realistic than the worst-case assumption.

While Nash equilibrium has emerged as the central game-
theoretic solution concept, its assumption that all players
behave rationally may be too strict when modeling real hu-
man decision makers. As game theory is being increasingly
applied to high-stakes situations, such as self-driving cars and
national security, it is essential that strategies are able to ac-
commodate the possibility of opponents’ irrationality, which
may be unpredictable. At the other end of the spectrum, a
maximin strategy assumes that all opponents are trying to
minimize our payoff, resulting in exceedingly conservative

play with low payoffs. The new safe equilibrium concept
effectively bridges the gap between these two extremes,
enabling us to construct strategies that are robust to arbitrary
degrees of opponents’ irrationality.
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