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Abstract— This paper addresses the co-design problem of
control inputs and execution decisions for event- and self-
triggered controls subject to constraints given by the control
Lyapunov function and control barrier function. The proposed
approach computes the control input in a way that allows
for longer inter-execution intervals, which distinguishes it from
many existing event- and self-triggered controllers or control
Lyapunov-barrier function controllers. The proposed approach
guarantees lower bounds on the minimum inter-execution times.
The effectiveness of the proposed approach is demonstrated and
compared with existing approaches using a numerical example.

I. INTRODUCTION

Control Barrier Function (CBF) [1] is a function used to
design control inputs to satisfy safety requirements. As the
use of automatic control increases in safety-critical systems,
CBF is attracting much attention recently. Applications of
CBF can be found such as in robotics [2] and adaptive
cruise control [3]. Furthermore, CBF has been combined
with signal temporal logic [4], model predictive control [5]
and extended to assuring risk-sensitive safety [6], making
it more versatile for a wider range of applications. On the
other hand, Control Lyapunov Function (CLF) [7], [8], an
extension of the Lyapunov function, has been widely used
to design stabilizing controllers for many different problems
(see e.g., [9]–[12]). After an integration of CLF and CBF
was proposed in [13], [14], it has been shown that CLF and
CBF can be combined to form a quadratic program (QP) for
computing control inputs that ensure safety while aiming at
stability in [15], [16]. Since then, the CLF-CBF QP approach
has been used to solve various problems, such as autonomous
surface vehicles [17] and safe stabilization [18].

With the increasing prevalence of networked control sys-
tems, where the communication bandwidth is shared with
other tasks or batteries are used in the system elements, it has
become crucial to design systems that use communication
bandwidth and energy efficiently. Event- and self-triggered
control approaches are effective solutions to minimize un-
necessary communication and energy consumption for such
systems [19]–[21].

Several approaches have been proposed for safety-critical
systems using event- or self-triggered strategies. An event-
triggered control based on input-to-state safe barrier func-
tions by using a state feedback control law u = k(x) was
proposed in [22]. The approach is to bound the difference
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between the current state and the state used to compute the
control input, i.e., the state at the previous execution time
instance, to guarantee that the value of the barrier function
monotonically decreases. More recently, [23] proposed an
approach of event-triggered control for multi-agent systems
with unknown dynamics. It synthesizes an event-triggered
control with an adaptive affine dynamics that are updated
based on the error states to estimate the real system state. A
combination of self-triggered control and CLF-CBF QP was
proposed in [24]; however, it does not seem to guarantee the
existence of the control input. Moreover, it possibly results
in continuous control updates if the optimal control input is
achieved on the boundary of the constraint of the QP.

The main contribution of this paper is to introduce ap-
proaches to co-designing control inputs and execution time
instances for event- and self- triggered controls, with the aim
of meeting the constraints given by the CLF and CBF while
reducing the number of executions. This is achieved by com-
puting the control input so as to obtain long inter-execution
intervals in a greedy manner. The approach is different from
many existing event- and self-triggered controllers that rely
on constant feedback laws [20] or control Lyapunov-barrier
function controllers that account for only the cost of control
inputs. It is also shown that the proposed approach does not
exhibit Zeno behavior and that the optimization parameters
appear in a lower bound on the minimum inter-execution
time.

The rest of the paper is organized as follows. After
introducing the notation, system model, and basics of control
Lyapunov-barrier function in Section II, Section III presents
the proposed event-triggered control approach. Section IV
discusses the extension to the self-triggered control approach.
The performances of those proposed controllers are illus-
trated and compared with existing controllers in Section V,
which is followed by conclusions in Section VI.

II. PRELIMINARIES
A. Notation

The sets of real numbers, real vectors of length n, and
real matrices of size n × m are denoted by R, Rn, and
Rn×m, respectively. The sets of nonnegative numbers and
nonnegative integers are denoted by R≥0 and N, respectively.
LfV (x) denotes the Lie derivative of V (x) along the

vector field f(x), i.e. LfV (x) = ∂V (x)
∂x f(x).

A continuous function γ : R≥0 → R≥0 is said to belong to
class K if it is strictly increasing and γ(0) = 0. A continuous
function α : R≥0 → R≥0 is said to belong to class K∞ if it
belongs to class K and α(r)→∞ as r →∞.
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B. System model

This paper deals with a nonlinear control affine system in
the form of

ẋ = f(x) + g(x)u, x(0) = x0 ∈ C, (1)

where x ∈ D ⊂ Rn and u ∈ Rm denote the state and the
control input of the system, respectively, and C ⊆ D is a safe
set that is defined later. It is assumed that D is bounded, and
the functions f(x) and g(x) are Lipschitz.

C. Control Lyapunov function

Definition 2.1 (Control Lyapunov Function): A positive
definite function V : D → R≥0 is called a Control Lyapunov
Function (CLF) if it satisfies

inf
u∈U

LfV (x) + LgV (x)u ≤ −γ(V (x)), (2)

where γ is a class K function.
The existence of a CLF guarantees asymptotic stabilization
of the nonlinear control system (1) with any Lipschitz
continuous feedback controller u(x) that satisfies (2) for all
x ∈ D [16], [25].

D. Control barrier function

Let define the safe set C as the superlevel set of a
continuously differentiable function h : D ⊂ Rn → R

C = {x ∈ D : h(x) ≥ 0}. (3)

Definition 2.2 (Control Barrier Function): A function h :
D → R is called a Control Barrier Function (CBF) if it
satisfies

sup
u∈U

Lfh(x) + Lgh(x)u ≥ −α(h(x)) (4)

for all x ∈ D, where α is a class K∞ function.
The existence of a CBF guarantees that the control system
is safe [15].

E. CLF-CBF-based QP

Motivated by the results on CLF and CBF, it is of interest
to obtain a controller that satisfies

LfV (x) + LgV (x)u ≤ −γ(V (x)), (5)
Lfh(x) + Lgh(x)u ≥ −α(h(x)) (6)

for all x ∈ D so that it is a safe stabilizing controller.
To design such a controller, a CLF-CBF QP was con-

structed in [15], [26]:

v∗(x) = arg min
v=[u,δ]>∈Rm+1

1

2
v>Qv + c>v

s.t.
[
LgV (x) −1
−Lgh(x) 0

]
v ≤

[
bclf(x)
bcbf(x)

]
,

(7)

where
bclf(x) = −LfV (x)− γ(V (x)),

bcbf(x) = Lfh(x) + α(h(x)),
(8)

a positive definite matrix Q ∈ R(m+1)×(m+1) and c ∈ Rm+1

are weights and δ is a relaxation variable that ensures the

solvability of the QP. If δ is forced to be nonpositive, then
the existence of a feasible controller will guarantee the
monotonic decrease of the CLF.

III. EVENT-TRIGGERED CONTROL

This section proposes a greedy event-triggered control
with the control Lyapunov-barrier function for the system
(1).

A. Event-triggered controller structure

The primary idea behind event-triggered control is to
update the control input only when necessary to achieve
a specified performance condition, thereby reducing the
frequency of updates. In line with the standard structure of
an event-triggered controller, we consider the control inputs
that are maintained constant between successive event times,
i.e.,

u(t) = uk, t ∈ [tk, tk+1), (9)

where uk is the control input computed at time tk, which
is the time instance when the control input is re-computed
and the actuator signals are updated. The time instance tk is
determined by

t0 = 0,

tk+1 = inf{t ∈ R : t > tk and trigger condition is met}.
(10)

B. Greedy control update

Here, we introduce a greedy approach for computing the
control input uk at trigger time tk. To implement it into an
event-triggered control, we are interested in a control law
that maximizes the inter-execution time. For this purpose,
we seek the control input that brings the state away from
the boundaries of the constraints (5), (6). This is achieved
by maximizing the slack variables ρ1 and ρ2 in the new
constraints:

LgV (x)u+ ρ1 ≤ bclf(x),

−Lgh(x)u+ ρ2 ≤ bcbf(x),
(11)

where bclf(x) and bcbf(x) are defined in (8).
Based on the constraints (11), we propose to modify the

CLF-CBF QP in (7) as follows:

v∗(x) = arg min
v=[u,ρ1,ρ2]>∈Rm+2

1

2
v>Qv + c>v

s.t.

 LgV (x) 1 0
−Lgh(x) 0 1

0 0 −1

v ≤

bclf(x)
bcbf(x)
−εcbf

 , (12)

where a positive semidefinite matrix Q = Q> ∈
R(m+2)×(m+2) and c ∈ Rm+2 are weights, ρ1 and ρ2 are
slack variables, and εcbf > 0 is a constant (design parameter)
that forces ρ2 be sufficiently large in (11), thus guaran-
tees that the states to be away from the safety boundary
−Lgh(x)u = bcbf(x). This is still QP and the solvability of
the QP is still ensured as long as ρ1 is not constrained. Let
[u∗(x), ρ∗1(x), ρ∗2(x)]> = v∗(x).
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Typically, a small norm control input u is desired to
minimize the control effort while large ρ1 and ρ2 are desired
to have a longer the inter-execution time. Hence, a possible
choice for Q and c is

Q =

w1 0 0
0 0 0
0 0 0

 , c =
[
0 −w2 −w3

]>
, (13)

where w1 ∈ Rm×m is positive definite, and w2, w3 ≥ 0.
With (12), the proposed controller implements the control

input uk defined by

uk = u∗(xk) =
[
1> 0 0

]
v∗(xk), (14)

where xk = x(tk).

C. Trigger conditions

For the states to remain in the safe region, the safety
constraint (6) should be always satisfied. However, the sat-
isfaction of the stability constraint (5) cannot be guaranteed
together with the satisfaction of (6) in general. This is the
same for the proposed controller. Yet, we do our best to
minimize the time in which the stability constraint (5) is
violated.

Define

p(x) = pk(x), t ∈ [tk, tk+1), (15)
q(x) = qk(x), t ∈ [tk, tk+1), (16)

where

pk(x) = −LfV (x)− LgV (x)uk, (17)
qk(x) = Lgh(x)uk + bcbf(x). (18)

Note that V̇ (x) = −pk(x), thus pk(x) ≥ 0 is desired for the
stability, while qk(x) ≥ 0 is desired for the safety.

We set the trigger condition in (10) as
1) if pk(xk) ≥ εclf:

pk(x) = 0 or qk(x) = 0 (19)

2) else:

qk(x) = 0 or t = tk + τbd (20)

where εclf > 0 and τbd > 0 are design parameters.
The first case is that, if V̇ is sufficiently negative at the

time of update tk, then the next update time is when either
the time-derivative of the CLF becomes zero or the safety
constraint (6) is satisfied with equality. This guarantees the
satisfaction of both stability and safety between tk and tk+1.

The second case is that, if V̇ is close to zero or positive at
the time of update tk, then we compromise the controller
design only focusing on the safety constraint. The next
update time is when the safety constraint (6) is satisfied with
equality or small time τbd passes, whichever occurs first.
This limits the duration of time during which the stability
constraint is violated to τbd with the same control input.

D. Lower bound on minimum inter-execution time

This subsection shows that the events cannot be triggered
an infinite number of times in any finite time period with the
proposed controller, i.e., the proposed controller is Zeno-free
under mild conditions.

Define the inter-execution time

τk = tk+1 − tk, k ∈ N. (21)

It is of interest to show the existence of a lower bound τ∗

such that τk ≥ τ∗ for all k ∈ N.
Assumption 3.1: We assume the followings hold on D:
• ‖f(x) + g(x)u‖ is bounded above, and
• There exists a Lipschitz constant Lclf > 0 for p(x)
• There exists a Lipschitz constant Lcbf > 0 for q(x)

If the problem is considered in a finite time horizon, the first
assumption is sufficient. There are reasonable assumptions;
the first assumption only requires that the time derivative of
the state, ẋ, is bounded, the second and third assumptions
asks for bounded Lie derivatives, bounded h(x) and bounded
control inputs.

Theorem 3.2: Under Assumption 3.1, for the time se-
quence (10) for the system (1) with the event-triggered
controller (9), (14) with the trigger condition (19)-(20), there
exists τ∗ > 0 such that τk ≥ τ∗ for all k ∈ N.

Proof: First, we consider if pk(xk) ≥ εclf, then how
long it takes to achieve

pk(x) = 0 (22)

for the first time after tk. Let this time instance be t̄clf and
the corresponding state be x̄clf.

For this, we first show that

‖x̄clf − xk‖ ≥
εclf

Lclf
. (23)

Clearly,

pk(xk)− pk(x̄clf) ≥ εclf, (24)

and

Lclf‖xk − x̄clf‖ ≥ pk(xk)− pk(x̄clf). (25)

Together, it follows that

‖x̄clf − xk‖ ≥
εclf

Lclf
. (26)

Next, we show that the time difference t̄clf − tk is lower
bound away from zero. By the fundamental theorem of
calculus, we have

‖x̄clf − xk‖ =

∥∥∥∥∥
∫ t̄clf

tk

ẋ(τ)dτ

∥∥∥∥∥
≤ sup ‖f(x) + g(x)u‖(t̄clf − tk).

(27)

Because ‖f(x)+g(x)u‖ is bounded above, there exists M >
0 such that M = sup ‖f(x) + g(x)u‖, then it follows that

t̄clf − tk ≥
1

M
‖x̄clf − xk‖ ≥

εclf

MLclf
. (28)

Thus, at least the time interval of εclf
MLclf

takes to achieve (22).
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Similarly, we consider how long it takes to achieve

qk(x) = 0 (29)

for the first time after tk. Let this time instance t̄cbf and the
corresponding state x̄cbf.

Using the fact that qk(xk) ≥ ρ∗2(xk) ≥ εcbf, we can show
that

‖x̄cbf − xk‖ ≥
εcbf

Lcbf
(30)

and then

t̄cbf − tk ≥
1

M
‖x̄cbf − xk‖ ≥

εcbf

MLcbf
. (31)

In summary, the inter-execution time is lower bounded by
τ∗ = min( εclf

MLclf
, εcbf
MLcbf

, τbd), which is strictly positive. This
completes the proof.

Here, we see the parameter εcbf > 0 in (12) can be used
as a parameter to tune the inter-execution time together with
other design parameters εclf and τbd.

E. Special cases

1) Feasibility is guaranteed: Suppose that the feasibility
of the constraints (5) and (6) is guaranteed for all x ∈ D
with some margins, i.e., there exist s1, s2 > 0 such that for
all x ∈ D, there exists an control input u that depends on x
that satisfies

LgV (x)u+ s1 ≤ bclf(x),

−Lgh(x)u+ s2 ≤ bcbf(x).
(32)

Then, we may consider not only forcing the relaxation
variable δ to be 0 in (7), but securing certain distances from
the boundaries of the constraints. This allows us to add a
constraint on ρ1 in (12) and the resulting QP is:

v∗(x) = arg min
v=[u,ρ1,ρ2]>∈Rm+2

1

2
v>Qv + c>v

s.t.


LgV (x) 1 0
−Lgh(x) 0 1

0 −1 0
0 0 −1

v ≤


bclf(x)
bcbf(x)
−ε1

−ε2

 , (33)

where ε1 ∈ (0, s1), ε2 ∈ (0, s2) are constants, a positive
semidefinite matrix Q ∈ R(m+2)×(m+2), and c ∈ Rm+2 are
the weights. In this case, the trigger condition (19)-(20) can
be combined and modified as:

(LgV (x)u− bclf(x))(Lgh(x)u+ bcbf(x)) = 0 (34)

to guarantee both stability and safety.
2) Control input is not penalized: In addition that the fea-

sibility is guaranteed, if the control input u is not penalized as
in other event-triggered controls, then, the problem simplifies
to solving a linear program:

u∗(x) = arg min
u∈Rm

(−w2LgV (x)− w3Lgh(x))u

s.t.
[
LgV (x)
−Lgh(x)

]
u ≤

[
bclf(x)− ε1

bcbf(x)− ε2

]
,

(35)

where, again, ε1 ∈ (0, s1), ε2 ∈ (0, s2) are constants, using
some weights w2, w3 ≥ 0.

IV. SELF-TRIGGERED CONTROL

This section develops a greedy self-triggered control based
on the results in Section III.

A. Self-triggered controller structure

As in Section III, let tk be the triggering time instance.
Self-triggered control computes the control input uk as well
as the next time instance tk+1 at execution time tk. Similar to
the event-triggered control (9), the control input uk remains
constant in between tk and tk+1. Unlike the event-triggered
condition, however, no sampling or computation is required
between tk and tk+1.

As for the event-triggered control, the controller imple-
ments the control input uk in (14) by solving (12).

The next execution time tk+1 is computed based on the
measured state x(tk) = xk at tk:

t0 = 0,

tk+1 = tk + Γ(xk),
(36)

where the map Γ : Rn → R≥0 determines the triggering
time tk+1 as a function of the state xk at the time tk. Thus,
the inter-execution time is given by Γ(x), i.e., τk = Γ(xk).

In the following, we present approaches to how to design
the map Γ(x).

B. Computing the next execution time instance

In Section III, the trigger condition (19)-(20) is designed
to satisfy the safety constraint (6) and minimize the violation
of the stability constraint (5). Here, again, we design the map
Γ that satisfies the safety constraint (6) all the time, while
allowing the violation of the stability constraint:

Γ(xk) ≤ sup{t > tk :

if pk(xk) ≥ εclf :

pk(x(τ)) > 0 and qk(x(τ)) > 0 for all τ < t

else:
qk(x(τ)) > 0 for all τ < t and t ≤ tk + τbd}

− tk.

(37)

This basically requires the same conditions as for (19)-(20).
Ideally, we would like to find t that achieves an equality

in (37). However, it is difficult in general for nonlinear
systems, thus, we aim at finding a lower bound by revising
the approach in Section III-D.

Again, we assume that Assumption 3.1 is satisfied. Then,
we may use the following map:

Theorem 4.1: Under Assumption 3.1,

Γ(xk) =

min
(

εclf
LclfMk

, εcbf
LcbfMk

)
, if pk(xk) ≥ εclf

min
(

εcbf
LcbfMk

, τbd

)
, otherwise,

(38)

where

Mk = sup
t∈[tk,tk+Γ(xk))

‖f(x) + g(x)uk‖ (39)

satisfies (37).
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Proof: Here, again note that after solving (12), it is
guaranteed that

qk(xk) ≥ ρ∗2(xk) ≥ εcbf. (40)

For the first case of pk(xk) ≥ εclf, we show

Γ(xk) = min

(
εclf

LclfMk
,

εcbf

LcbfMk

)
, (41)

satisfies (37). By the fundamental theorem of calculus, the
equation (41) implies that for t ∈ [tk, tk + Γ(xk)),

‖x− xk‖ ≤
∫ t

tk

‖f(x) + g(x)uk‖dt

≤ (t− tk)Mk

≤ (t− tk)
min

(
εclf
Lclf
, εcbf
Lcbf

)
Γ(xk)

< min

(
εclf

Lclf
,
εcbf

Lcbf

)
⇔

{
εclf − Lclf‖x− xk‖ > 0,

εcbf − Lcbf‖x− xk‖ > 0.

(42)

On the other hand,

εclf − pk(x) ≤ pk(xk)− pk(x) ≤ Lclf‖x− xk‖,
εcbf − qk(x) ≤ qk(xk)− qk(x) ≤ Lcbf‖x− xk‖.

(43)

Hence, it follows that

pk(x) > 0, qk(x) > 0. (44)

The second case is clear from the above discussions.
Together, it completes the proof.

The difference between this map Γ and the lower bound
τ∗ in the event-triggered control is only the upper bound on
the norm of f(x) + g(x)u. Although a uniform M may be
used to design a constant Γ = τ∗, such a law will shorten
the inter-execution time because M is likely to be much
larger than Mk. However, one difficulty of implementing this
approach is actually in the computation of Mk in (47) where
Mk appears in both sides of the equation. To compute exact
Mk, it is required to compute the evolution of (1) starting
at tk by gradually increasing the time duration. In the actual
implementation, this might not be a big problem because
implementation is done digitally, which we discuss next.

C. Digital implementation

Similarly to [20], we now consider the following discrete-
time versions of pk(x) and qk(x) based on a sampling time
∆ > 0, which are defined by

p̄k(n) = pk(x(tk + n∆)),

q̄k(n) = qk(x(tk + n∆)).
(45)

Let τmin and τmax be design parameters and let Nmin =
bτmin/∆c, Nmax = bτmax/∆c.

Then, by choosing τbd = ∆, the map can be simplified as

Γ(xk) = max{τmin, n(xk)∆}, (46)

where

n(x) = max
n∈N
{n ≤ Nmax : p̄k(m) ≥ 0 and q̄k(m) ≥ 0,

m = 1, · · · , n}.
(47)

This satisfies

p̄k(n) ≥ 0 and q̄k(n) ≥ 0, ∀n ∈
[
0,

⌈
tk+1 − tk

∆

⌉)
(48)

and n(x) ∈ [Nmin, Nmax].
With a smaller choice of ∆, the stability constraint is more

strictly forced, i.e., while the stability constraint is violated,
the control input is updated every sampling time. Such a
choice of ∆ may result in an increase in the number of
execution. Of course, it is possible to use different values
for τbd and ∆ with a slight modification.

We may simply choose τmin = 0 and a sufficiently large
τmax. However, the value of τmax enforces the robustness of
the implementation and limits the computational complexity
[20].

V. NUMERICAL EXAMPLE

This section demonstrates the effectiveness of the pro-
posed approach using an example of a double integrator.

Let x =
[
x1 x2

]>
, where x1 is the position and x2 is

the velocity. The dynamics of a double integrator is given as
follows:

ẋ =

[
0 1
0 0

]
x+

[
0
1

]
u. (49)

The CLF and CBF are selected as

V (x) = x2
1 + x1x2 + x2

2,

h(x) = (x1 − 0.5)2 + (x2 + 0.5)2 − 0.32.
(50)

Moreover, the α and γ functions are chosen to be identity
maps and the parameters εclf = εcbf = 0.1, τbd = 0.5, ∆ =
0.2, τmin = 0 and τmax = 4 are selected. The weights for
QP in (12) are selected as

Q =

1 0 0
0 0 0
0 0 0

 , c =
[
0 −1 0

]>
. (51)

Here, the performances of the following five controllers
are compared for the duration of time 15, starting at x0 =
[1, 1].
• Greedy ET: the controller that solves (12) and imple-

ments (14) when the trigger condition (19) or (20) is
met

• Greedy ST: the controller that solves (12) and imple-
ments (14) at time instances determined by (36) and
(46)

• Greedy: the controller that solves (12) and implements
(14) continuously

• CLF-CBF QP: CLF-CBF QP controller in [16] with
H(x) = 2, p = 1

• SF: a standard state-feedback controller with the con-
troller gain K = [−0.5 − 1], which corresponds to
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the case of weight for the states is
[

0.25 −0.5
−0.5 0

]
and

weight for the control input is 1, thus P =

[
1 0.5

0.5 1

]
in the algebraic Riccati equation. No constraints are
considered.

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x1
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Fig. 1: Phase portrait: the grey region indicates the unsafe
region, h(x) < 0
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Fig. 2: Control inputs
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Fig. 3: CLF values, V (x) = x2
1 + x1x2 + x2

2, versus time

Figure 1 shows the phase portraits for the five controllers.
It is observed that the trajectory with SF goes into the unsafe
region, which motivates us to use the barrier function to
remain in the safe region. Also, the trajectories of Greedy
and CLF-CBF-QP are close to each other, but the state of
CLF-CBF-QP is further from the origin at the end of the
simulation compared with the other four methods. Moreover,
both trajectories of Greedy ET and Greedy SF take longer
paths compared with other methods.

Figure 2 shows the control input trajectories. It can be
seen that Greedy ET and Greedy ST do not require frequent
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(a) Stability constraint used for trigger condition, LfV (x) +
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Fig. 4: Trigger conditions

control updates. In fact, the numbers of control updates for
Greedy ET and Greedy ST were 24 and 26, respectively.
With Greedy ST, a smaller sampling time ∆ forces the
derivative of the CLF to be negative more strictly thus tends
to increase the update frequency.

Figure 3 shows how the CLF values varies as functions of
time. Both Greedy ET and Greedy ST admit increases of the
CLF values for certain periods. However, those trajectories
approach zero quickly, while CLF-CBF-QP is still away from
zero at the end of the simulation. Note that the original CLF-
CBF-QP controller also allows increases of the CLF values
to guarantee the feasibility of the optimization problem [16].

Figure 4 shows the trajectories of values used for trig-
gers. Because Greedy ET and Greedy ST compromised the
stability constraints for the sake of reducing the update
frequencies, Figure 4a indicates the values of LfV (x) +
LgV (x)u go above zero sometimes. On the other hand, the
safety constraints are always satisfied by all the controllers
except for the SF that ignored the existence of unsafe
region in Figure 4b. In Figure 4b, we also observe that the
trajectory Lgh(x)u + bcbf (x) of CLF-CBF-QP stays near
zero around time 2. Thus, we cannot implement an event-
triggered strategy with CLF-CBF-QP because the trigger
condition is violated or close to violate already at the time
of the update.

VI. CONCLUSIONS
In this paper, we have presented a set of greedy approaches

for synthesizing event-triggered and self-triggered controls
with the control Lyapunov-Barrier function. Our proposed
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approach computes each control input to maximize the
distance from the safety boundary, which is a departure
from existing approaches to the control Lyapunov-Barrier
function. By doing so, our approach ensures a positive lower
bound on the minimum inter-execution time, while also
maintaining the safety of the control system and reducing
the frequency of control input updates and/or samplings.
This is particularly beneficial in the context of networked
control systems, where safety is of paramount concern. The
effectiveness of our proposed approach has been illustrated
through a numerical example, which highlights its potential
for real-world implementation.
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[9] M. Krstić and P. V. Kokotović, “Control lyapunov functions for
adaptive nonlinear stabilization,” Systems & Control Letters, vol. 26,
no. 1, pp. 17–23, 1995.

[10] R. Freeman and J. Primbs, “Control lyapunov functions: new ideas
from an old source,” in Proc. of IEEE Conference on Decision and
Control, vol. 4, 1996, pp. 3926–3931.
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[19] R. Postoyan, P. Tabuada, D. Nešić, and A. Anta, “Event-triggered and
self-triggered stabilization of distributed networked control systems,”
in Proc. of IEEE Conference on Decision and Control and European
Control Conference, 2011, pp. 2565–2570.

[20] W. Heemels, K. Johansson, and P. Tabuada, “An introduction to event-
triggered and self-triggered control,” in Proc. of IEEE Conference on
Decision and Control, 2012, pp. 3270–3285.

[21] M. Mazo and P. Tabuada, “On event-triggered and self-triggered
control over sensor/actuator networks,” in Proc. of IEEE Conference
on Decision and Control, 2008, pp. 435–440.

[22] A. J. Taylor, P. Ong, J. Cortés, and A. D. Ames, “Safety-critical
event triggered control via input-to-state safe barrier functions,” IEEE
Control Systems Letters, vol. 5, no. 3, pp. 749–754, 2021.

[23] W. Xiao, C. Belta, and C. G. Cassandras, “Event-triggered control for
safety-critical systems with unknown dynamics,” IEEE Transactions
on Automatic Control, pp. 1–16, 2022.

[24] G. Yang, C. Belta, and R. Tron, “Self-triggered control for safety
critical systems using control barrier functions,” in Proc. of American
Control Conference, 2019, pp. 4454–4459.

[25] A. D. Ames, K. Galloway, K. Sreenath, and J. W. Grizzle, “Rapidly
exponentially stabilizing control lyapunov functions and hybrid zero
dynamics,” IEEE Transactions on Automatic Control, vol. 59, no. 4,
pp. 876–891, 2014.

[26] A. D. Ames and M. Powell, Towards the Unification of Locomotion
and Manipulation through Control Lyapunov Functions and Quadratic
Programs. Heidelberg: Springer International Publishing, 2013, pp.
219–240.

4473


