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Abstract— Traditional reinforcement learning (RL) methods
for optimal control of nonlinear processes often face challenges
such as substantial demands on computational resources and
training time, and the difficulty of ensuring the safety of
the closed-loop system during training. To overcome these
challenges, this work proposes a safe transfer reinforcement
learning (TRL) framework. The algorithm leverages knowledge
obtained from pre-trained source tasks to expedite learning in
a new yet related target task, thereby significantly reducing
both learning time and computational overhead for optimizing
a control policy. Additionally, the proposed TRL method collects
data and optimizes the control policy within a control invariant
set (CIS) to ensure the safety of the system throughout the
learning process. Furthermore, we develop a theoretical analysis
for the TRL algorithm that establishes an error bound between
the approximate control policy and the optimal ones, accounting
for the discrepancy between the target and source tasks. Finally,
we validate our approach using an example of optimal control
of a chemical reactor, showcasing its effectiveness in solving
the optimal control problem with improved computational
efficiency and safety guarantees.

I. INTRODUCTION

Reinforcement learning (RL), a powerful paradigm for
learning-based control, offers an effective solution to the
challenge of optimal control in complex, nonlinear process
systems. However, during the process of learning the optimal
control policy, the system safety cannot be guaranteed, as RL
may explore new actions or states to learn more about its en-
vironment, leading to unintended and unsafe consequences.

In addressing critical safety concerns in industrial appli-
cations, such as self-driving cars, robotics, and chemical
processes, various RL strategies based on Lyapunov stability
theory have been developed [1], [2]. Another branch of RL
algorithms uses the Hamilton-Jacobi-Bellman (HJB) equa-
tion to derive control policies, iteratively optimizing them
by updating the value function approximated with neural
networks (NNs) [3], [4]. These safe RL algorithms require
a considerable amount of training time to obtain an optimal
control policy, as this process relies on data and experience
gained through interaction with the environment. Due to
these challenges, research efforts are increasingly focused
on improving traditional safe RL algorithms, with transfer
learning (TL) emerging as a crucial strategy in this field.
Specifically, TL focuses on transferring the knowledge and
experience gained from one task to another related task. The
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advantage of this method lies in its ability to provide a warm
start to RL such that learning time is reduced and learning
performance is improved.

Despite its success in supervised learning [5], TL in the
realm of RL is still in its infancy. Ref. [6] highlights the
benefits of TL in RL by improving agent learning processes
and summarizes TL-based RL research focusing on the MDP
framework in the last decade. However, a systematic analysis
of the performance of TL in RL has not been established.
In statistical learning theory, generalization error is widely
used to assess the capabilities of various machine learning
strategies and can be employed for theoretical analysis of the
performance of trained models [7]. While there is research
on the generalization error of neural networks in the RL
domain, it focuses mainly on cases where testing and training
data originate from the same distributions [4]. However,
due to the discrepancy between target and source tasks, the
knowledge transferred to the target process may cause per-
formance degradation. Therefore, it is important to develop
a theoretical analysis that characterizes the performance of
TRL by accounting for the differences between the source
and target tasks.

Motivated by the aforementioned challenges, this article
develops a safe TRL framework to address the optimal con-
trol problem in nonlinear processes while ensuring system
safety and improving computational efficiency. Our main
contributions are as follows: 1) TL is integrated into RL to
reduce the learning time for the optimal control policy; 2)
the proposed TRL scheme ensures that the control policies
stabilize the system with safety guarantees; and 3) a theoret-
ical analysis for the generalization error of neural network
models is developed accounting for the discrepancy distance
between source and target data.

II. PRELIMINARIES
A. Description of nonlinear systems

Consider a deterministic system described by the follow-
ing continuous-time nonlinear form:

i = f(x) + g(0)u (1)

with input vector v € U C R™ and state vector z € R"».
The functions f(x) : R"™ — R" and g(z) : R" —
R"= X"« are continuously differentiable. f(x) is supposed
to satisfy the condition f(0) = 0 such that the origin
(z,u) = (0,0) is an equilibrium of Eq. 1. This assumption
is reasonable, as any system with non-zero equilibrium can
be transformed into one with an equilibrium point at zero
by using coordinate transformation. Let 7(x) represent a
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control policy, signifying a mapping from state x(¢) to the
corresponding control input ().

Assumption 1: There exists a continuous control policy
m(z(t)), such that the control input u(t) = 7(x(t)) asymp-
totically stabilizes the system of Eq. 1 within a compact set
Q.

Definition 1: For a dynamic system, a set S is defined as
a control invariant set (CIS) if, for any initial state within this
set, there exists a control input that ensures that the state of
the system remains within this set for all future times ¢ > 0.

Considering a control policy 7 (z), let its associated infi-
nite horizon value function be defined as follows:

Vel = | " ), u(r))dr, ®

where u(7) = w(x(r)). The function r(z(7),u(r))
is generally designed as a quadratic, normalized cost
r(z(7),u(r)) = 27Qz + v Ru, in which Q and R are
positive-definite, each appropriately dimensioned to match
the sizes of x and u respectively. However, depending on the
control problem, r(z(7),u(7)) can be designed differently.
For example, when considering obstacle avoidance, the cost
function r might include terms that penalize proximity to
obstacles. The aim of this work is to find a safe control policy
m(x) that achieves asymptotic stabilization of the system
described by Eq. 1, while simultaneously minimizing the
value function specified in Eq. 2.

Remark 1: Safe RL involves maximizing/minimizing the
rewards of agents while adhering to safety constraints, which
are defined differently from various perspectives, as dis-
cussed in Ref. [8]. In this work, safety refers to maintaining
the system of Eq. 1 within a CIS for V¢ > 0, under a control
policy, since instability may lead to uncontrolled events or
other adverse consequences, such as reduced efficiency or
increased safety hazards.

B. Background of RL-based optimal control

An RL system consists of two primary components: the
environment (system) and the agent (control policy). The
agent interacts with the environment through generated ac-
tions, obtaining rewards for its decisions. These rewards,
in turn, guide the decisions made by the agent during
subsequent action selections. The procedure is executed
continuously until the optimal control policy is achieved,
under the assumption of the existence of such an optimal
controller. We define the optimal value function, represented
by V*, in the following manner:

V*(x) zm(ir)l {/ ’/‘(JS(T),U(T))CZT} 3)
u(t t
This value function satisfies the Hamilton-Jacobi-Bellman

(HJB) equation, which is expressed as:

min H(z,u, V*) =min {r(x, u) + %(f(x)

u(t) u(t)

. g<x>u>} 0 @

where gTv; denotes the partial derivation of V* with respect
to the system state x. Subsequently, by solving the following
equation, the optimal control policy is derived

7 = arg rn(iI)lH(a:,u7 V) %)
u(t

Due to the unavailability of the optimal value function
V* , it is necessary first to construct a neural network (NN)
for approximating the value function, in order to approxi-
mate the optimal control policy from the above equation.
Through the policy iteration algorithm, this function and
the corresponding control policy are iteratively optimized.
The process continues until they approximate their optimal
values within a predetermined threshold. In this context, the
NN used for approximating the value function is termed the
‘critic NN’. This NN is optimized by minimizing a loss
function, which is formulated as a mean square error.

N
Lt > (e, ut) + G (7ot

n g(x(tmu(m)) ©)

where N represents the number of samples collected for
training the critic NN. We use V' (z, ¢, w) to denote the critic
NN, where w is the NN parameter vector. For simplicity,
Vi is short for V(z, ¢, w). 2(t;) and wu(t;) denote the state
vector and input vector in the ¢;th time step. The parameter
vector of the critic NN is updated using the following rule.

w4~ w — VL (N

In this equation, 7 is a positive constant denoting the learn-
ing rate, and V,, £ denotes the gradient of the loss function
L, which is given by V,,£ = 95 The policy m(z,w) is
iteratively updated using the trained critic NN. Due to the
approximation error of the critic NN, directly updating the
control policy based on V,, may not guarantee the safety
of the system. Furthermore, learning the optimal control
policy and value function requires significant computational
resources and long training time. To address these challenges,
in the next section, we will develop a novel TRL algorithm.

III. TRANSFER REINFORCEMENT LEARNING

In this section, the focus is on developing a TRL frame-
work that addresses the optimal control problem, taking into
account both computation time and safety issues.

A. Transfer reinforcement learning (TRL)

Let 7 and S denote the target and source distri-
butions, respectively. The set S = (s1,...,8n) =
((x1,91) -, (Tm, ym)) represents m labeled data points
sampled from a specific distribution, where z; € R% serves
as the NN input, and y; € R% corresponds to the labeled
output. In this work, the optimal value function, denoted
by V*, is referred to as the labeling function, i.e., y; =
V*(x;). Let V& represent the optimal value function in the
source task, and V7 denote the optimal value function in the
target task, respectively. The labeled data and the labeling
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function are primarily introduced for theoretical analysis,
facilitating the understanding of transfer learning concepts.
The proposed TRL framework does not involve collecting
labeled data for training the critic NN. This is due to the
unavailability of the true function V' *. Instead, the critic NN
is trained by minimizing the reconstructed loss function, as
shown in Eq. 6. This method relies on the fact that the
optimal value function and the optimal control policy satisfy
the condition H(z,n*,V*) = 0. Additionally, the TRL
algorithm is performed using independently and identically
distributed datasets, which are sampled from the source
distribution S and the target distribution 7T, respectively.
Since the distributions of these samples may not perfectly
match the underlying distributions from which they originate,
we use S; and 7 to represent the empirical distributions
characterizing the observed data points.

Source task Target task

Source environment Target environment
. ) [—— Discrepan
Action Source data — distance
Value l'unction Vi :
1
1
;
.m
i
i
i
i
Weights Weights ™ Adaptation layer
Agent Agent

Fig. 1. Framework of the proposed TRL algorithm.

Given a source task and a target task, the TRL framework
involves leveraging the knowledge learned from the source
task to improve the learning efficiency of RL for solving a
new but related optimal control problem in the target task.
This approach is demonstrated in Fig. 1. Specifically, the
optimal control policy 7s(z) of the source task is trained
using an RL algorithm with sufficient data. Generally, the
control policy derived from solving the HIB Eq. 4 under
stationarity conditions can be expressed as follows:

1 __4 p0Vs

Ry ox
It is seen that the control policy ws(x) is formulated using
the system dynamics g(x) from Eq. 1 and the value function
V. With known system dynamics, optimization of the control
policy is achievable by minimizing the value function Vgs.
Since it is difficult to explicitly express the infinite horizon
value function, a critic NN (for source task), denoted by V.,
is constructed to approximate it. However, the approximation
error between V,,; and Vs may jeopardize the safety of the
system under the controller of Eq. 8 during the learning
phase. To address this, we adopt Sontag’s control law, re-
formulating the control policy as follows to maintain system
safety within the value function V,,¢ level set.

7 WVs
—®(z)g . )

®)

ms(x) = —

with
3Vw5f+\/ avws 8(;/1}5 R-1g7 sz (wTQx)
P(x) = avws T Vg
oxT o
: (10)

As demonstrated in Ref. [4], the safety of system described
by Eq. 1 is guaranteed when the control policy is designed
in the form of Sontag’s law and the critic NN exhibits
Lyapunov function properties. To ensure that the critic NN
has Lyapunov function properties, the NN is constructed with
its penultimate layer having the same number of neurons as
there are system states. This design ensures that the output
layer, calculated as the inner product of the penultimate
layer’s output, is non-negative for all inputs. By choosing
the tanh function as the activation function and setting all
biases in the NN to be false, it is ensured that the origin is
the unique solution of V,,;(0) = 0, provided that the NN
weights are not zero.

After developing the optimal control policy and the opti-
mal value function for a source task, we can transfer this
learned knowledge to the target task to improve learning
efficiency. Since the control policy, as shown in Eq. 9, is
directly related to the value function V,,, the knowledge
transferable to the target task can be formulated as the
information derived from the value function V,,, obtained
earlier. Specifically, we construct a target critic NN, denoted
as V. It is designed with a structure identical to that
of the source critic NN, V,,., but includes an additional
hidden layer, i.e, ’adaptation layer’, with weights initialized
as an identity matrix. For the remaining layers, the weights
are initialized to be the same as those of the source critic
NN. This setup ensures that prior to training, the output
of the target critic NN is identical to that of the source
critic NN. As a result, the transfer of knowledge from the
previously trained model for the source task to the target
task is achieved through the transformation of NN weights.
Following this transfer, we proceed to collect data from the
target environment, enabling the fine-tuning of the target
critic NN V. and the optimization of the target control

policy 7.
B. Implementation of TRL

Algorithm 1 illustrates the implementation of the proposed
TRL algorithm. Specifically, both a source and a target critic
NN are initially initialized. It should be pointed out that,
given a large number of NN weights that are randomly ini-
tialized, there is a relatively low probability that all weights
will be zero. Consequently, there is a high probability that the
randomly initialized critic NN can act as a Lyapunov function
in a local region, as its output is positive for any non-zero
input and zero for a zero input. As shown in Algorithm 1,
Phase 1 involves learning the source optimal policy using the
policy iteration algorithm. A dataset is collected in the CIS,
and these samples are then used to train the source critic NN
The condition H (z, 7'("(5 ),Vu’js b < H(x, 77‘(9+1) Vi) <
ensures the convergence of the critic NN V,, to the optlmal
value function and guarantees that the time derivative of
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the critic NN V,, is negative, thus ensuring the system
safety under the control policy of Eq. 9 with V,,, which
will be demonstrated in Theorem 1. However, training the
value function V,, by minimizing Eq. 6 may not ensure the
satisfaction of this condition. Therefore, we use the weights
of the critic NN from the last iteration and adjust the learning
rate to train the value function V,, again until this condition is
met. In Phase 2, the knowledge learned from the source task
is transferred to the target task by transferring the weights of
the source critic NN to the target critic NN. Finally, in Phase
3, starting with the transfer learning critic NN, we learn the
value function and optimize the control policy for the target
task using the method illustrated in Phase 1.

Algorithm 1 TRL Algorithm
Initialize a source critic NN V,,; with parameter vector
wgs and a target critic NN V,,.. with parameter vector wr,
design an appropriate learning rate 7 and a threshold .

Phase 1 Learn the source optimal control policy.
Set k =
while |Vu€’;) VD > ¢ do
for [ < 1 to N; do
Randomly chosen an initial state vector = in the CIS
Stis
for t, < 0 to ¢y do
Apply the control us(ty) = ng) (x(tx)) to the
system of Eq. (1), and obtain the state z(txy1).
end for
Save the data (x, , uy, ),
end for
Set j =1, and n; = 1o.
while H(z, 77, VEY) < H(z,n§V, Vi) < 0is

ws

ty =0,...,tN to the set Dg.

not satisfied on the grid points in the set ng S) do
wWsj < Wsk
N < Mj—1/2
Train VS(J ) by minimizing the cost function of Eq. 6
j=j+1
end while
let Vi, = Vi,
Eq. 9.
k=Fk+1
end while

(k+1)

and update control policy mg using

Phase 2: Knowledge transfer.

Let wg}) =w 51), and initialize w%g) as an identity matrix.
ford7—<—3t0d3+1d0
W) — a1
T S
end for

Phase 3: Learn the optimal control policy for the target
using the method illustrated in phase 1.

Additionally, it can be found from Algorithm 1 that the
initial dataset collected for training the critic NN VU(}I) is
from the CIS SSE ) determined by the initial control policy
with the initial critic NN V,{). Although the initial critic NN

has the characteristics of Lyapunov functions, as it satisfies
VUSO)(O) = 0, and Vu(,o)(x(t)) > 0 for any x € SS,))/{O},
the critic NN V.{”) is initialized with arbitrary weights w,
the region of the CIS Sg) ) may not be large enough such
that it is difficult to choose an initial state vector to generate
data for performing the policy iteration algorithm. Therefore,
the challenge of ensuring a sufficiently large and satisfactory
initial CIS remains unresolved and is an open question in
this field. Additionally, training an initial value function and
an initial control policy to their optimal values is compu-
tationally expensive and extremely time consuming. Since
the proposed TRL algorithm (see Algorithm 1) is capable of
transferring the knowledge learned from the source task to
the target task, the aforementioned challenges are addressed,
which will be demonstrated in the simulation section.

C. Convergence analysis of TRL

Following the proposed TRL algorithm in Algorithm 1,
we present Theorem 1 to establish its convergence property.
Theorem 1: Given the nonlinear system of Eq. 1, when the
control policy 7(*) and the value function Vugk) are updated
and optimized by employing Algorithm 1, both the policy
and value function will converge to their respective optimal
values as the number of iterations k increases.
Proof: Since the control policy 7(**+1) is updated using
7D = arg m&r)lH (z,u, VF), the following inequality

holds.

H(,a ™D, V5 < H(x, 7™, V) (1n

According to the definition of the value function of Eq. 2,
we have

| e at D+ [ 88‘2‘(’;) (f(2) + gl@)n®+)dr
< [ e ®ar+ [ 8(;25;) (f(z) + gl@)n®)dr.
(12)
It follows that
Vi (@(t)) = VO (1) < Va(a() = VP (). (13)
That is,
Ve (a(t)) < Va(a(t)) (14)

Meanwhile, according to the condition H (z, ("), VFk=1) <
H(z, 71 V*) < 0 in Algorithm 1, the following inequal-
ity holds.

Vie(2(t) + Vi (@(o0)) — Vi~ H(a(t))
sv%u((»+VW( D Va(z(t))  (15)
Since lim VE=1(2(t)) m [ r(z(r), 7+ V)dr =0,

and lim VE(x(t)) = Jim f
and Eq. 15 result in

0> Viy1(2(t) — Vi (z(t)) > VE(x(t)) —

r(x(r ) w<k>) dr =0, Eq. 14

Vi~ (x(t)
(16)
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Therefore, we observe that V.F(z(t)) < V¥~!(x(t)). Given
that the optimal solution to the Hamilton-Jacobi-Bellman
(HIB) equation is unique, we can infer that V*(z(t))
monotonically decreases towards the optimal value func-
tion as the number of iterations increases. Similarly, since
the control policy is updated using the rule 7(+1) =
arg Hl(ltl)l H(x,u,V}F), it will also converge to its optimal
u

value as the number of iterations increases. |

D. Adaptation analysis

While there are studies on TL in RL, assessing the
effectiveness of TRL schemes poses a significant challenge.
To that end, our forthcoming analysis rigorously evaluates
the generalizability of the TL-based policy. Our initial step
involves determining the discrepancy between the target
dataset and source datasets, an essential factor affecting
the generalization performance of the pre-trained critic NN.
Before illuminating this NN’s generalization ability, we intro-
duce two essential concepts: empirical Rademacher complex-
ity [9], a metric for evaluating a machine learning model’s
complexity and generalizability on a specific training dataset,
and discrepancy distance [10], a measure for the divergence
between different data distributions, crucial for assessing a
model’s generalization over various datasets.

Definition 2: ([9]) Given a training dataset S =
{$1,...,8m }, and a function class H of real-valued functions
h, the empirical Rademacher complexity of H with respect
to S is defined as:

- 1
Rs(H) = —E,

m

a7

sup Z oih(si)l

i=1

where 0 = {01, ...,0m} denote independent random vari-
ables sampled from the Rademacher distribution, i.e., they
take values in {—1, 41}, and satisfy P(o; = —1) = P(o; =
+1) = 3.

Definition 3: ([11]) Let Hy, k = 1,2,...,d,, denote the
kth component of the function class H, where d, is the
NN output dimension. Considering m samples that are
independently and identically distributed, the Rademacher
complexity of Hj, satisfies the following condition:

Bx (Bw)"/L+1+log (d,)
N

where d denotes the NN depth, d,, is the NN input dimension,
Bx is the upper bound for the NN input, By represents
the upper bound for the NN weight matrices, and L is the
number of NN layers.

Definition 4: ([10]) Consider a function set H where each
function h maps a set X to Y, and a loss function L :
Y xY — Rt let S; and S, be two distributions over X. The
discrepancy distance between these distributions is defined as
follows:

Rs(Hi) <

(18)

. N ’
disc£(S1,So2) = max, |Es~s, [L(h(s),h'(s))]

—Ees,[Ch(), ()] (19)

where h and I’ represent any hypothesis functions from the
set H, and E;s[L(h(s),h'(s))] denotes the expected loss
over the distribution L.

After introducing the definitions of empirical Rademacher
complexity and discrepancy distance, the upper bound of
the discrepancy distance between the target and source
distributions will be showcased.

Proposition 1: Given the source and target distributions S
and 7, along with their corresponding empirical distributions
S, and 7, the following inequality is met with a probability
of at least 1 — p, where p > 0.

disc, (S, T) <4V2LidyRs(Hm) + 4V 2L1dy Ry (Him)

a2 fle B)

+ discs(Ss, Ts) (20)

Proof: The proof of this proposition is detailed in

Propositions 1-4 in our previous work (Ref. [5]). To help

readers understand better the derivation of Eq. 20, we briefly

illustrate the key steps of the proof here. First, by using the

triangle inequality, the distance between the distribution S
and 7 satisfies the following inequality:

disc, (S, T) <discs(S,Ss) + disc(Ss, Ts)
+discs (75, T)
According to Ref. 91, the expected loss

Esws[L(h(s),h'(s))] satisfies the following condition
with probability at least 1 — p over the distribution S.

21

EovslL(h(3), W) < 3" £(h(s:), ' (s1)) + 23s(3)

log (2/p)

3
* 2m

(22)

where m represents the number of the samples drawn from
source distribution S, the term L 3" L(h(s;), W (s;))
is the loss computed on the sample distribution S,
and it can be denoted as E,.s, [L(h(s),h/(s))]. Subse-
quently, according to Definition 4, and by moving the term
LS L(h(s;), W (s;)) to the left side of the above in-
equality, the following inequality is established.

disee (5.5.) < 2Rs(#) + 3y B o)
Similarly, we have
. log (2
dmmmgmwmf%@ (24)

where n represents the number of samples drawn from the
target distribution 7. Let 97 (Hym) and Rs(Hp.m) denote
the maximum value of SR (Hy,) and Rs(Hy), respectively.
By using contraction inequality [12], the upper bound of
Rs(H) and Ry (H) are derived.

R (H) < 2vV2L1dy Ry (Him)
Rs(H) < 2V2L1dyRs(Him)

(25)
(26)
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where L; denotes the Lipschitz constant of the loss function
L. By using Egs. 22-26, Eq. 21 can be rewritten as Eq. 20.
|

Remark 2: In practice, there could be multiple source
tasks that have similar configurations as the target task and
can be used to generate a large training dataset for pre-trained
models. A pre-trained model trained with a multi-source
dataset may learn patterns of multiple source processes, and
thus, provide a robust starting point for learning the new
task to enhance its exploitation ability. In this case, multi-
source transfer learning techniques can be integrated into
the proposed transfer RL framework to guide the selection
of source tasks and the construction of pre-trained models to
achieve the best performance of adaptation [13].

Remark 3: Eq. 20 can be used to evaluate the distance
between target distribution 7 and the source distribution S.
This distance can be used to measure the similarity between
the source environment and the target environment. When
there is a high similarity, the critic NN and the resulting
control policy obtained for the source environment can
significantly improve the performance of the critic NN and
control policy for the target environment. Specifically, they
can provide a larger CIS for the target task, and significantly
reduce the training time. Additionally, this distance can help
choose a source with a small distance from the target source
to guarantee satisfactory transferability of the TRL algorithm.

We will next develop a theorem to demonstrate the gener-
alizability of the critic NN in the target task after assessing
the distance between the target and source distributions. This
will include an analysis of the discrepancy distance and other
factors that influence the generalizability of the NN of the
critic.

Theorem 2: Consider a function set H where each hypoth-
esis h maps the critic NN inputs to its outputs, and design a
loss function £ of Eq. 6. When m samples are collected
from the source distribution & and n samples from the
target distribution 7, the equation defining the generalization
error bound of the critic neural network holds true with a
probability of at least 1 — p

Bsnr[L(h, V7))
<Lr.(Vi,, »VJS )+ Ls, (Vas, ,h) +diSC.c(7'57Ss)

+6( \/logQ(i/p) N \/log 2(2/1))) @n

Proof: Let V,; _and V,;__ denote the optimal hypothesis
on the distributions & and 7. By utilizing the triangle
inequality property, for any hypothesis i € H, we have

[’T(ha V’;) SﬁT(hﬂ Vuts ) + £7—( ws, 7‘/1:7— )

+ Ly (Ve , V1) (23)
with
L (VuTT 7VT) <[’7—( wr, 7Vu>‘:s ) + ‘CT( ws, ah)
+ L7 (h,Vr5) (29)

where Vi and V,;_ represent the optimal hypothesis on
the emplrlcal d1str1but10ns S, and T;. Meanwhile, according
to Definition 4, we have

V) = Ly (h, V7]

|L"T ’LUT ? )
< £T( WTy 7V’uf5 )+£T( wsg ’h’)
Since the distributions S and 7 are unknown, we use the

empirical distributions Sg and 7, and Eq. 30 can be further
expressed as follows by using the Definition 4

|ET( Wy *) - ‘CT(hv V7*’|

<£T(VwT ,Vjs )+ Ls(Vis, » 1) +disce(S,T)

<Lt (Vg o, ,sz ) +disce (T, Ts) + Ls, (Ve ws, Jh)
+ discs (S, Ss) + discs (S, T). 31

(30)

Substituting Eq. 21 into the above inequality results in:
‘[’T( wr, *) - ‘CT(h V7f|
<£7—:.( ’w'r’V* )+‘C8( w57h)
+ 2disc. (S, SS) + 2disc. (T, Ts) + discz(Ts, Ss)-

According to Egs. 23-26, the following inequality holds with
a probability of at least 1 — p

|'CT( W, *) - ’CT(h V';)|
<L7, (Vg s Vs, ) + L5, (Vigs_ h) + dise(Ts, Ss)

+ 8Ly (Fs(Him) + Ty (Hem))
. 6( \/ logQ(i/p) N \/ log 2(2/1?))

Since ]ESNT[E(h Vi) = Ly(h,Vy), we derive Eq. 27 by
moving L1 (V.} wr. , V) to the right-hand side of Eq. 33.

(32)

(33)

|
In Eq. 27, the term Ls, (V5 , ) denotes the hypothesis
h and the expected loss between the optimal hypothe-
sis V. within the source empirical distribution S,. The
term L'T( wr.+ Vs, ) denotes the expected loss between
the optimal hypotheses Veor . and V,; s corresponding to
the empirical distributions ’7; and Sg, respectively. The
discrepancy distance between the empirical distributions
Ts and S is denoted by the term disc.(7s,Ss). The
values of these three terms can be determined after ob-
tammg the optimal hypotheses Vi and V,; . The term
L1 (V. V) represents the expected loss between the
optimal hypotheses V7 and the optimal value function. The

term 8[ley (‘ﬁs(rﬂkm) + %T(Hkm)
output dimension d,, the Lipschitz constant L; of the loss
function, and the Rademacher complexity, where fﬁg(?-lkm)
and Sf{T(Hkm) have upper bounds that are related to the
input and output NN dimensions of the NN, the number
of NN layers, and the upper bounds for the NN input and
weight matrices, respectively (as shown in Definition 3).
The last term is related to the sample numbers m and n,
and the confidence level p > 0. By selecting a sufficiently
large number of training samples, constructing an NN with
an appropriate structure, and tuning the NN parameters, a
sufficiently small generalization error can be ensured.

) is related to the
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IV. SIMULATION STUDY

This section uses a chemical process as a case study to
illustrate the efficacy of the proposed TRL Algorithm 1, with
the implementation procedure detailed in Section III.

A. Process description

The chemical process under consideration is a continuous
stirred tank reactor (CSTR). Specifically, reactant A is trans-
formed into product B in the reaction. This reactor operates
with a liquid volume V/, receiving reactant A at a volumetric
flow rate F' and an inlet temperature 7. Our goal is to
regulate the concentration C'4 of reactant A in the reactor
and the reactor’s temperature 7' by manipulating the feed
concentration C' 4o of A and heat input rate ). These controls
are essential for ensuring the production of the product B.
The CSTR, as described in Ref. [14], is chosen as the source
CSTR. The target CSTR’s parameters are set at 90% of the
source process’s values, except for the ideal gas constant R.
Below is the dynamic model for both.

F - F
@ = Cao — koCpeRT — Ca
dt Vi Vi, 34
ir Q| F(Ty-T) AHkCa oz Y
dt pLCpVL VL pLCp '

Let the steady-state of the CSTR be denoted by (Cys, Ts),
and (Cao,,Q@s). The manipulated inputs, namely the inlet
concentration of A, ACy9 = Cyo — Cap,, and the heat
input rate AQ = @ — Qs, are subject to physical constraints.
The manipulated inputs |[AQ| and |AC 4| are saturated by
0.167 kJ/min and 5 kmol/m3, respectively. We utilize
deviation variables to rewrite the input and state vectors as
u = [ACr0, AQ]T and x = [Ca—C a4, T-T;]7T, respectively.
The performance value function is designed as Eq. 2 with the
parameters R = [1,0;0, 1] and Q = [9.35,0.41;0.41,0.02].

B. Development of TRL and simulation results

) )
i) i)
B &
-10
-15 -15
0.5 0 0.5 0.5 0 0.5
C4—Ca,(kmol/m?) Ca—Cay, (kmol/m?)
Fig. 2. CSI derived from the control policy in the source task, utilizing

the initial value function and the approximate optimal value function,
respectively.

Based on the description in Section III, we construct
critic NNs for both source and target tasks and initialize
the source critic NN with arbitrary weights. Given that
the source critic NN is constructed with the properties
of a Lyapunov function, it yields an initial control policy

T—T, (K)

T s 0 05 05 0 0.5
Cp—Cjy,(kmol/m®) Cy—Cy,(kmol/m®)

Fig. 3. CSI derived from the control policy in the target task, utilizing
the initial target value function and the approximate target optimal value
function, respectively.

capable of stabilizing the closed-loop system. Subsequently,
we compute the maximum CIS within the stability region, as
shown in the left subfigure of Fig. 2. Specifically, the black
ellipse represents the maximum CIS, and the blue region
represents the region where the derivative of the Lyapunov
function under the initial control policy is less than zero.
Due to the arbitrary initialization of weights, the region of
the maximum CIS is relatively small, bringing challenges
in selecting initial system states from which to gather a
sufficient dataset for training. We carefully select the initial
points within this CIS as the initial states of the system.
Applying the initial control policy to the source CSTR, we
collect data from these trajectories to train the source critic
NN and the control policy. By implementing Algorithm 1, the
source value function and its corresponding control policy
are optimized. However, as training progresses, the critic
NN progressively approximates the optimal value function,
consequently expanding the CIS. After 12 iterations, the
approximate optimal value function and the approximate
optimal control policy are derived. The largest CIS under
the approximate optimal control policy is illustrated in the
right subfigure of Fig. 2. It can be seen that the region of
the maximum CIS within the stability region is considerably
larger than that in the left subfigure.

Subsequently, we transferred the weights of the source-
trained critic NN to the target critic NN. This process
yields the initial target value function and its corresponding
control policy. The maximum CIS under the initial target
control policy within the stability region is depicted in the
left subfigure of Fig. 3. It is observed that the region of
the maximum CIS under the initial target control policy is
noticeably larger than that under the initial source control
policy. The reason for this is that the initial target control
policy incorporates pretrained information based on the
source CSTR. This provides a better initial control policy
for the target CSTR, which also facilitates data collection
for training due to the larger region of the maximum CIS.
Using the Algorithm 1, after 3 iterations, the approximated
optimal value function and the optimal control policy are
obtained in the target task. The maximum CIS under the
target approximate optimal control policy within the stability
region is depicted in the right subfigure of Fig. 3. It illustrates
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Fig. 4.  State profiles ( x1 = C4 — Cas and 9 = T — T ) for the
initial conditions (—0.2 kmol/m3,2 K) and (0.2 kmol/m3, -2 K) are
presented under the initial target control policy and the approximate target
optimal control policy, respectively. Specifically, the solid lines represent the
trajectories under the approximate optimal control policy, while the dashed
lines denote the trajectories under the initial control policy.
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Fig. 5.  Manipulated input profiles (u; = AC a0 and uz = AQ) for

the initial condition (—0.2 kmol/m3,2 K) under the approximate target
optimal control policy.

a significant reduction in computational load achieved by the
developed TRL algorithm, as it requires only 3 iterations to
derive an approximate optimal control policy in the target
task, in contrast to the 12 iterations needed by the standard
RL algorithm in the source task, where the control policy is
optimized using arbitrarily initialized critic NN.

Fig. 4 compares the closed-loop trajectories obtained from
the initial target control policy and those derived from the
approximate optimal control policy developed using the TRL
algorithm. The solid lines in the figure represent closed-
loop trajectories using the initial target control policy prior
to training in the target CSTR. In contrast, the dashed
lines indicate the trajectories achieved with the approximate
optimal control policy. It can be found that the trajectories
are optimized by the TRL algorithm, as they converge to the
origin more rapidly compared to those using the pre-training
control policy. This demonstrates the effectiveness of the
target approximate optimal control policy generated by the
TRL algorithm. Finally, Fig. 5 shows the manipulated input
profiles, which are constrained by (5 kmol/m3,0.167 K),

for the initial condition (—0.2 kmol/m3,2 K). It is illus-
trated that the inputs remain within the constraints at all times
under the approximate optimal control policy of the target
CSTR.

V. CONCLUSION

This work developed a TRL scheme to solve the opti-
mal control problem in nonlinear systems. The proposed
learning method collected data within the CIS and used a
control policy based on a critic NN that possessed Lyapunov
function characteristics, thereby maintaining the safety of the
closed-loop system during the learning phase. Furthermore,
we utilized a transferred critic NN, which possesses the
knowledge learned from a source process to assist in training
the optimal value function and control policy for the target
process, which significantly reduces computational burden
and training time. Simulations of a CSTR example showed
that the proposed TRL scheme maintained the safety and
stability of the closed-loop system, and optimized the closed-
loop control performance.
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