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Abstract— We present a linear cutting-plane relaxation ap-
proach that rapidly proves tight lower bounds for the Alter-
nating Current Optimal Power Flow Problem (ACOPF). Our
method leverages outer-envelope linear cuts for well-known
second-order cone relaxations for ACOPF along with modern
cut management techniques. These techniques prove effective
on a broad family of ACOPF instances, including the largest
ones publicly available, quickly and robustly yielding sharp
bounds. Our primary focus concerns the (frequent) case where
an ACOPF instance is considered following a small or moderate
change in problem data, e.g., load changes and generator or
branch shut-offs. We provide significant computational evidence
that the cuts computed on the prior instance provide an effective
warm-start for our algorithm.

I. INTRODUCTION

The Alternating-Current Optimal Power Flow (ACOPF)
problem [1] is a well-known challenging computational task.
It is nonlinear, non-convex and with feasible region that may
be disconnected; see [2], [3]. From a theoretical perspective,
in [4], [5] it is shown that the feasibility problem is strongly
NP-hard; [6] proved that it is weakly NP-hard on star-
networks. In the current state-of-the-art, some interior point
methods are empirically successful at computing excellent
solutions but cannot provide any bounds on solution quality.

At the same time, strong lower bounds are available
through second-order cone (SOC) relaxations [7], [8]; how-
ever all solvers do struggle when handling such relaxations
for large or even medium cases (see [9] and [10]). Other tech-
niques, such as spatial-branch-and-bound methods applied to
McCormick (linear) relaxations of quadratically-constrained
formulations for ACOPF, tend to yield poor performance
unless augmented by said SOC inequalities and interior point
methods, the latter for upper bounds.

In this paper we present a fast (linear) cutting-plane
method used to obtain tight relaxations for even the largest
ACOPF instances, by appropriately approximating the SOC
relaxations. The emphasis on linearly constrained formu-
lations is motivated by the fact that, whereas the tight
SOC relaxations for ACOPF are clearly challenging, linear
programming technology is, at this point, very mature –
many LP solvers are able to handle massively large instances
quickly and robustly; these attributes extend to the case
where formulations are dynamically constructed and updated,
as would be the case with a cutting-plane algorithm. As we
will show herein, our approach is fast, robust, and accurate.

Moreover, the central focus on this paper concerns reop-
timization. In power engineering practice it is often the case
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that a power flow problem is solved on data that reflects
a recent, and likely limited, update on a case that was
previously handled. In short, the current problem instance
is not addressed ’from scratch.’ Our algorithm can naturally
operate in warm-started mode, i.e., make use of previously
computed cuts to obtain sharp bounds more rapidly than from
scratch.

As an additional attribute arising from our work the fact
that our formulations are linear paves the way for effective
pricing schemes, i.e., extensions of the LBMP pricing setup
currently used in energy markets [11], [12], [13].

A. Our contributions

• We describe very tight linearly constrained relaxations
for ACOPF. The relaxations can be constructed and
solved robustly and quickly via a cutting-plane algo-
rithm that relies on proper cut management. On medium
to (very) large instances our algorithm is competitive or
better, from scratch, with what was previously possible
using nonlinear relaxations, both in terms of bound
quality and solution speed.

• We provide a theoretical justification for the tightness
of the SOC relaxation for ACOPF as well as for the use
of our linear relaxations.

• As a main contribution we demonstrate, through ex-
tensive numerical testing, that the warm-start feature
for our cutting-plane algorithm yields tight bounds far
faster than otherwise possible. It is worth noting that this
capability stands in contrast to what is possible using
nonlinear (convex) solvers (cf. Tables II and III).

Please refer to [10] for the full version of this paper.

II. ACOPF PROBLEM FORMULATION AND
RELAXATIONS

A. ACOPF

Let B denote the set of buses, E the set of branches and
G the set of generators; for each bus k ∈ B, Gk ⊆ G
is the generators at k. Each bus k has fixed active load
P d
k ≥ 0 and reactive load Qd

k, and lower V min
k ≥ 0 and

upper V max
k ≥ 0 voltage limits. For each branch {k,m} we

are given a thermal limit 0 ≤ Ukm ≤ +∞, and maximum
angle-difference |∆km| ≤ π. The goal is to find a voltage
magnitude |Vk| and phase angle θk at each bus k, and active
P g and reactive Qg power generation for every generator g,
so that power is transmitted by the network to satisfy active
P d and reactive Qd power demands at minimum cost. Using
the so-called polar representation we obtain the following
nonlinear optimization problem:
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[ACOPF] : min
∑
k∈G

Fk(P
g
k ) (1a)

subject to:

∀ k ∈ B : (V min
k )2 ≤ v

(2)
k ≤ (V max

k )2, (1b)∑
{k,m}∈δ(k)

Pkm =
∑
ℓ∈Gk

P g
ℓ − P d

k , (1c)

∑
{k,m}∈δ(k)

Qkm =
∑
ℓ∈Gk

Qg
ℓ −Qd

k, (1d)

v
(2)
k = |Vk|2, (1e)

∀{k,m} ∈ E : θkm = θk − θm,

Pkm = Gkkv
(2)
k +Gkmckm +Bkmskm, (1f)

Pmk = Gmmv(2)m +Gmkckm −Bmkskm, (1g)

Qkm = −Bkkv
(2)
k +Bkmckm −Gkmskm, (1h)

Qmk = −Bmmv(2)m +Bmkckm +Gmkskm, (1i)
ckm = |Vk||Vm| cos(θkm), skm = |Vk||Vm| sin(θkm), (1j)
|θkm| ≤ ∆̄km, (1k)

max
{
P 2
km +Q2

km , P 2
mk +Q2

mk

}
≤ U2

km, (1l)

∀k ∈ G : Pmin
k ≤ P g

k ≤ Pmax
k , Qmin

k ≤ Qg
k ≤ Qmax

k . (1m)

Above, Gkk, Bkk, Gkm, Bkm, Gmk, Bmk, Gmm and Bmm

are physical parameters of branch {k,m} and are used
in (1f)-(1i); (1k)-(1l) amount to flow capacity con-
straints; (1b) and (1m) impose operational limits; and (1c)-
(1d) impose active and reactive power balance at each bus
k. For each k ∈ G, the functions Fk : R → R (1a) are
usually convex and piecewise-linear or quadratic. Often (1k)
is either not present or concerns angle limits ∆̄km that are
small (smaller than π/2); hence we will not consider it in
our relaxations.

Please refer to the surveys [14] and [15] for equivalent
ACOPF formulations.

B. Brief review on prior work on convex relaxations

The simplest relaxations use an equivalent rectangular for-
mulation of the ACOPF problem yielding a QCQP (quadrat-
ically constrained quadratic program) and rely on the (linear)
McCormick [16] reformulation; this relaxation is known to
provide very weak bounds.

The SOC relaxation in [7], known as the Jabr relaxation
(see next subsection), is very effective as a lower bounding
technique – though in the case of large ACOPF instances,
the SOCs prove challenging for the best solvers. A wide
variety of techniques have been proposed to strengthen the
Jabr relaxation. See [8] for so-called arctangent constraints
associated with cycles and semi-definite cuts. [9] developed
the Quadratic Convex (QC) relaxation, which amounts to
the Jabr relaxation strengthened with polyhedral envelopes
for sine, cosine and bilinear terms appearing in (1j). [17]
proposes a minor-based formulation for ACOPF (which is
a reformulation of the rank-one constraints in the semidef-
inite programming formulation for ACOPF [14]). An SDP

relaxation based on the Shor relaxation [18] for non-convex
QCQPs is presented in [19]. This formulation is at least as
tight as the Jabr relaxation at the expense of even higher
computational cost [17]. Overall, experiments for all of
these nonlinear relaxations have been limited to small and
medium-sized cases.

Next we review linear relaxations for ACOPF. [20], [21]
introduces the so-called active-power loss linear inequalities
which state that on any branch the active power loss is
nonnegative, yielding good lower bounds. In a similar same
vein, [22] propose a relaxation comprised of the active-power
loss and additional sparse linear inequalities that lower bound
net reactive power losses in appropriate cases. See [23]
for a relaxation which enforces a (valid) linear relation-
ship between active and reactive power losses. A linear ϵ-
approximation for ACOPF, based on the Jabr relaxation,
is used in [24]. See also [20] for mixed integer linear ϵ-
approximation for ACOPF.

Moreover, [25], [26] propose successive linear program-
ming (SLP) algorithms for finding locally optimal AC so-
lutions. One of the algorithms in [26] is an SLP method
focusing on the Jabr relaxation, and thus yielding a linear
relaxation for ACOPF. We remark that the well-known Direct
Current Optimal Power Flow (DCOPF) may prove a poor
approximation to ACOPF (see [27]).

We refer the reader to the surveys [14], [15], [28] for
additional material on convex relaxations for ACOPF.

C. Two Convex Relaxations for ACOPF

1) The Jabr SOCP: A well-known convex relaxation of
ACOPF is the Jabr relaxation [7]. A simple derivation is
as follows: For any line {k,m}, squaring and adding the
equations (1j) yields c2km + s2km = v

(2)
k v

(2)
m , which in [7] is

relaxed into the convex inequality

c2km + s2km ≤ v
(2)
k v(2)m . (2)

This is a rotated-cone inequality hence it can be represented
as a second-order cone constraint. Therefore, the Jabr relax-
ation can be obtained from formulation (1) by (i) adding the
convex inequalities (2), and dropping (1e), (1j), and (1k).

2) The i2 SOCP: Recall that complex power injected into
branch {k,m} ∈ E at bus k ∈ B is defined by Skm :=
VkI

∗
km, hence, |Skm|2 = |Vk|2|Ikm|2 holds. Moreover, since

complex power can be decomposed into active and reactive
power as Skm = Pkm + jQkm, letting i

(2)
km := |Ikm|2, we

have P 2
km+Q2

km = v
(2)
k i

(2)
km. By relaxing the former equality

we obtain the rotated-cone inequality [9], [29]

P 2
km +Q2

km ≤ v
(2)
k i

(2)
km. (3)

Since the variable i
(2)
km can be defined linearly in terms of

v
(2)
k , v(2)m , ckm, and skm (c.f. [34]), i.e,

i2km = αkmv
(2)
k + βkmv(2)m + γkmckm + ζkmskm (4)

where αkm, βkm, γkm and ζkm are constants dependent on
branch parameters, we obtain an alternative SOC relaxation.
This formulation, which we call the i2 relaxation, differs
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from the Jabr relaxation in the linear definition of i
(2)
km (4)

and the rotated-cone inequalities (3).
It is known [30], [9], [31] that the system (a) defined by

a branch {k,m}’s linearized power flows (1f)-(1i) with its
corresponding Jabr inequality (2), and on the other hand,
the system (b) defined by branch {k,m}’s linearized power
flows (1f)-(1i) with the rotated-cone inequality (3) and the
linear definition of i

(2)
km (4), are equivalent. In other words,

for each feasible solution to one system there is a feasible
solution to the other one. It must be noted though that in
terms of the complete formulations, equivalence always holds
true if i(2) is not upper bounded.

Proposition 1: The Jabr and the i2 relaxations are equiv-
alent if i(2) is not upper bounded, and otherwise the i2
relaxation can be stronger.

Proof: Sufficiency was proven in [9]. An instance
where the i2 relaxation is stronger than Jabr is 1354pegase,
see [10].

Our computational experiments corroborate this fact; we
have found that linear outer-approximation cuts for the
rotated-cone inequalities (2) and (3) have significantly dif-
ferent impact in lower bounding ACOPF (c.f. III-B).

III. OUR WORK

Given a set X in Rn, a convex inequality g(x) ≤ d is
valid for X if ∀ x in X, g(x) ≤ d holds. In this paper
we develop an algorithm that iteratively approximates the i2
relaxation of ACOPF by adding cuts (valid linear inequal-
ities) that separate vectors not feasible for this relaxation.
These linear inequalities will be outer-envelope (i.e., tangent)
approximations to (3), (2) and (1l).

To justify the use of our methodology we note that direct
solution of the Jabr and i2 relaxations of ACOPF, for large
instances, is computationally prohibitive and often results in
non-convergence (c.f. Tables I, II and III). Empirical evi-
dence further shows that outer-approximation of the rotated-
cone inequalities (in either case) requires a large number of
cuts in order to achieve a tight relaxation value. Moreover,
employing such large families of cuts yields a relaxation
that, while linearly constrained, still proves challenging –
both from the perspective of running time and numerical
tractability.

However, as we show, adequate cut management proves
successful, yielding a procedure that is (a) rapid, (b) numer-
ically stable, and (c) constitutes a very tight relaxation (c.f.
Tables II and III). The critical ingredients in this procedure
are: (1) quick cut separation; (2) appropriate violated cut se-
lection; and (3) effective dynamic cut management, including
rejection of nearly-parallel cuts and removal of expired cuts,
i.e., previously added cuts that are slack (cf. III-B).

Our procedure possesses efficient warm-starting capabili-
ties – this is a central goal of our work. Cuts computed for
a certain instance can be reused in runs of related instances,
reducing computational effort. In III-C.3 we justify this
feature and Tables II and III summarize extensive numerical
evidence of its performance relative to solving SOCPs ‘from

scratch’. Adequate cut management is critical towards this
feature for large ACOPF instances.

A. Cuts

In this subsection we present a theoretical justification for
using an outer-approximation cutting-plane framework on the
Jabr and i2 relaxations, as well as computationally efficient
cut separation procedures. We also present brief intuition on
the complementarity of the Jabr and i2 outer-envelope cuts.
See [10] for proofs of propositions 2, 3, 4.

1) Losses and Outer-Envelope Cuts: For transmission
lines with Gkk > 0 > Gkm = Gmk ≥ −Gkk and
Bkm = Bmk, in particular lines with no transformer nor
shunt elements, active-power loss inequalities are implied
by the Jabr inequalities, and also by the definition of the
i(2) variable. If negative losses are present total generation
is smaller than total loads plus positive losses – negative
losses amount to a source of free generation thus yielding a
lower objective value than feasible. This follows from a flow
decomposition argument showing that every unit of demand
and (positive) loss is matched by a corresponding unit of
generation or negative loss. See [33] and [34] for numerical
examples showing the impact of negative losses – we remind
the reader that in standard ACOPF the objective function
accounts for generation. We begin with two simple technical
observations.

First, a rotated cone inequality x2+y2 ≤ wz is equivalent
to (2x)2 + (2y)2 ≤ (w + z)2 − (w − z)2. Hence,

x2 + y2 ≤ wz ⇐⇒ ||(2x, 2y, w − z)⊤||2 ≤ w + z. (5)

Next, let λ ∈ R3 satisfy ||λ||2 = 1. Then, by (5),

(2x, 2y, w − z)λ ≤ ||(2x, 2y, w − z)⊤||2 ||λ||2
≤ w + z. (6)

Inequality (6) provides a generic recipe to obtain outer-
envelope inequalities for a rotated cone. As a result:

Proposition 2: For a transmission line {k,m} ∈ E with
Gkk > 0 > Gkm = Gmk ≥ −Gkk and Bkm = Bmk, the
Jabr inequality c2km + s2km ≤ v

(2)
k v

(2)
m implies, as an outer

envelope approximation inequality, that Pkm + Pmk ≥ 0.
See [34] for examples where removing a single Jabr

inequality from the SOC formulation results in a strictly
weaker relaxation – this arises because on that branch we
will have a negative loss, which acts as cost-free generation.
See the discussion above on flow decompositions in [33].
Moreover, it is known that for transmission lines with no
transformers nor shunt elements the definition of the variable
i(2) implies the active-power loss inequalities [30], [31].

2) Two Simple Cut Procedures: The following proposition
give us an inexpensive computational procedure for separat-
ing the rotated-cone inequalities

c2km + s2km ≤ v
(2)
k v(2)m , P 2

km +Q2
km ≤ v

(2)
k i

(2)
km. (7)

Proposition 3: Consider the second-order cone C :=
{(x, s) ∈ Rn × R+ : ||x||2 ≤ s}. Suppose (x, s) /∈ C with
s > 0. Then the cut for C which achieves the maximum
violation by (x, s) is given by x⊤x ≤ s||x||.
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Finally, we present a proposition which gives us a simple
procedure for computing linear cuts for

P 2
km +Q2

km ≤ U2
km. (8)

Proposition 4: Consider the Euclidean ball in R2 of radius
r, Sr := {(x, y) ∈ R2 : x2 + y2 ≤ r2}, and let (x, y) /∈ Sr.
Then the cut that attains the maximum violation by (x, y) is
given by (x)⊤x+ (y)⊤y ≤ r||(x, y)⊤||.

3) On the Complementarity of the Jabr and i2 cuts: If
{k,m} is a transmission line with no transformer nor shunt
elements, then i

(2)
km = (1/(r2km + x2

km))(v
(2)
k + v

(2)
m − 2ckm)

where rkm and xkm denote line’s {k,m} resistance and
reactance (c.f. [34]). Suppose that i(2)km is upper-bounded by
some constant Hkm and that the line {k,m} has a small
resistance, e.g., on the order of 10−5 (p.u.). Since xkm is
usually an order of magnitude larger than rkm, the coefficient
(r2km + x2

km)Hkm can be fairly small, hence we have

v
(2)
k + v(2)m − 2ckm ≤ (r2km + x2

km)Hkm ≈ 0 (9)

Since v
(2)
k + v

(2)
m − 2ckm ≥ 0 is a Jabr outer-envelope cut

(c.f. proof Proposition 2), (9) is enforcing our solutions to
be on the surface of the rotated-cone c2km + s2km ≤ v

(2)
k v

(2)
m .

B. Basic Algorithm and Cut Management

In what follows we describe our cutting-plane algo-
rithm. First we define the linearly constrained model M0

as model (1) with only linear constraints, i.e., with-
out (1e), (1j), (1k), and (1l). In every round of our procedure,
linear constraints will be added to and removed from M0.
The exact manner in how this will be done is described
below. We will denote by M our dynamic relaxation at some
iteration of our algorithm.

Algorithm 1 Cutting-Plane Algorithm
1: procedure CUTPLANE
2: Initialize r ← 0, M ←M0, z0 ← +∞
3: while t < T and r < Tftol do
4: z ← minM and x̄← argminM
5: Check for violated inequalities by solution x
6: Sort inequalities by violation
7: Compute cuts for the most violated inequalities
8: Add cuts if they are not ϵ-parallel to cuts in M
9: Drop cuts of age ≥ Tage whose slack is ≥ ϵj

10: if z − z0 < z0 · ϵftol then
11: r ← r + 1
12: else
13: r ← 0
14: end if
15: z0 ← z
16: end while
17: end procedure

Given a feasible solution x̄ to M , and letting fkm(x) ≤
0 be some valid convex inequality (7) or (8), our measure
of cut-quality is the amount max{fkm(x), 0} by which the
solution x violates the valid convex inequality. Let ϵ > 0,

then for each type τ ∈ {Jabr, i2, limit} of inequality, i.e., Jabr
and i2 rotated-cones and thermal limits, we sort the branches
from highest to lowest violation strictly greater than ϵ, and
pick as τ -candidates branches, for which cuts will be added
to M , the top pτ percentage of the most violated branches.

For each list of τ -candidates, we compute cuts for the cor-
responding branches using the procedures in III-A. Candidate
cuts will be rejected if they are too parallel to incumbent cuts
in M [35], [36]. Given ϵpar > 0, we say that two inequalities
ctx ≤ 0 and dtx ≤ 0 are ϵpar-parallel if the cosine of the
angle between c and d is strictly more that 1− ϵpar.

We describe a heuristic for cleaning-up our formulation.
For each added cut, we keep track of its current cut-age, i.e.,
the difference between the current round and the round in
which it was added. Then, in every iteration, if a cut c⊤x ≤ d
has age greater or equal than a fixed parameter Tage, and it
is ϵ-slack, i.e., d− c⊤x > ϵ, then we remove it from M .

Other input parameters for our procedure are: a time
limit T > 0; the number of admissible iterations without
sufficient objective improvement Tftol ∈ N; and a threshold
for objective relative improvement ϵftol > 0.

C. Computational Results

We ran all of our experiments on an Intel(R) Xeon(R)
Linux64 machine CPU E5-2687W v3 3.10GHz with
20 physical cores, 40 logical processors, and 256 GB
RAM. We used three state-of-the-art commercial solvers:
Gurobi 10.0.1 [37], Artelys Knitro 13.2.0 [38], and Mosek
10.0.43 [39] For the SOCP and ACOPF we wrote AMPL
modfiles and we ran them with a Python 3 script. We note
that unlike Gurobi and Knitro, Mosek-AMPL does not detect
that a constraint like x2+y2 ≤ z2 or x2+y2 ≤ wz is actually
a conic constraint, therefore we had to reformulate the SOCP
to a format Mosek-AMPL was able to read. We describe the
parameter specifications for each solver.

a) Gurobi: We use Gurobi’s default homogeneous self-
dual embedding interior-point algorithm (without Crossover),
and we set the parameter Numeric Focus equal to 1. Barrier
convergence tolerance and absolute feasibility and optimality
tolerances were set to 10−6. By default Gurobi assigns any
available cores to use for parallel computing.

b) Knitro: We use Knitro’s default interior-Point al-
gorithm, with absolute feasibility and optimality tolerances
equal to 10−6. We used the linear solver HSL MA57, and
Intel MKL functions for BLAS, and we gave Knitro 20
threads to use for parallel computing. When solving the
SOCPs, we explicitly told Knitro that the problem is convex.
We note that for computing primal bounds, we tried HSL
MA97 whenever Knitro with MA57 was not converging.

c) Mosek: We use Mosek’s default homogeneous and
self-dual interior-point algorithm for conic optimization. We
set the relative termination tolerance, as well as primal and
dual absolute feasibility tolerances to 10−6. On the test
platform we assigned to Mosek 20 threads.

Our cutting-plane algorithm is implemented in Python 3
and calls Gurobi 10.0.1 as a subroutine for solving an LP or
convex QP. All of our reported experiments were obtained
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TABLE I
CUT COMPUTATIONS (NON-WARM STARTED) AND SOLVERS’ PERFORMANCE ON JABR SOCP

Jabr SOCP

Cutting-Plane (Cold-Started) Objective Time (s) Primal bound

Case Objective Time (s) Rnd Added Gurobi Knitro Mosek Gurobi Knitro Mosek Objective Time (s)

9241pegase 309221.81 378.82 23 29875 - 309234.16 - 82.11 34.68 31.11 315911.56 96.74
9241pegase-api 6924650.57 277.32 21 30230 - 6840612.84 - 116.32 23.39 72.29 7068721.98 73.85
9241pegase-sad 6141202.28 386.51 21 27273 - 6083747.85 - 111.05 26.01 75.99 6318468.57 33.92
9591goc-api 1346373.1 187.26 22 22469 1346480.71 1348107.89 1345869.72 38.25 23.74 36.6 1570263.74 42.85
9591goc-sad 1055493.25 246.87 27 20514 1055698.54 1058606.56 1054379.58 49.29 32.83 37.61 1167400.79 28.15
ACTIVSg10k 2476851.62 132.16 19 18183 - 2468172.93 2466666.1 40.18 21.48 26.08 2485898.75 76.71
10000goc-api 2502026.03 147.12 24 19666 - 2507034.94 2498948.0 48.63 35.19 30.13 2678659.51 23.46
10000goc-sad 1387303.02 114.97 17 18528 1387288.49 1388679.63 1386041.07 23.58 26.27 23.68 1490209.66 103.06
10192epigrids-api 1849488.3 152.87 22 24882 - 1849684.14 1848873.47 75.82 42.69 29.09 1977687.11 117.15
10192epigrids-sad 1672819.53 185.02 23 23726 - 1672989.96 1672534.72 83.85 28.33 28.63 1720194.13 23.74
10480goc-api 2708819.18 200.48 21 29805 - 2708973.58 2707828.26 75.94 27.21 56.82 2863484.4 38.71
10480goc-sad 2287314.69 270.38 24 28004 - 2286454.3 2285547.23 149.93 38.17 59.48 2314712.14 27.93
13659pegase 379084.55 841.83 22 37297 379135.73 379144.11 - 33.61 43.26 34.92 386108.81 1184.15
13659pegase-api 9270988.77 326.57 19 34390 - 9198542.14 - 162.21 30.64 105.11 9385711.45 44.43
13659pegase-sad 8868216.24 301.87 19 32662 8826902.31 8826958.23 8787429.86 83.75 31.84 108.74 9042198.49 42.08
19402goc-api 2448812.41 440.67 22 52388 - 2449020.25 2447799.72 158.12 152.89 103.04 2583627.35 87.33
19402goc-sad 1954047.79 488.33 25 49749 - 1954331.7 1952550.06 203.56 155.89 104.88 1983807.59 64.01
20758epigrids-api 3042956.88 464.17 25 46124 - - 3040421.02 143.99 TLim 93.46 3126508.3 61.39
20758epigrids-sad 2612551.03 379.36 24 44624 - - 2610196.94 98.3 TLim 75.88 2638200.23 58.11
24464goc-api 2560407.12 471.14 22 57162 2548335.96 - 2558631.63 603.95 TLim 129.9 2683961.9 533.03
24464goc-sad 2605128.51 506.39 23 55242 - - 2603525.46 333.5 TLim 128.5 2653957.66 73.87
ACTIVSg25k 5993266.85 592.39 28 43851 5956787.54 5964417.54 5955368.56 169.66 87.14 87.18 6017830.61 56.69
30000goc-api 1531110.84 464.16 24 41840 - 1531256.65 1529197.81 207.6 118.8 123.38 1777930.63 134.71
30000goc-sad 1130733.51** 147.74 6 76546 - - 1130868.71 191.22 TLim 84.90 1317280.55 565.05
ACTIVSg70k 16326225.66 1065.76 13 123431 - 16221577.73 16217263.66 553.26 320.98 232.47 16439499.83 240.55
78484epigrids-api 15877674.54 1007.99 10 240576 - - - 756.0 TLim 637.48 16140427.68 1079.03
78484epigrids-sad 15175077.19 1062.55 8 313587 15180775.21 - 15169401.54 463.17 TLim 601.04 15315885.86 343.45

with the following parameter setup: ϵ = 10−5, pJabr = 0.55,
pi2 = 0.15, plimit = 1, Tage = 5, ϵpar = 10−5/2, ϵftol =
10−5, and Tftol = 5. Our codes and AMPL model files can
be downloaded from www.github.com/matias-vm.

We report extensive numerical experiments on instances
with at least 9000 buses from the data sets: Pan European
Grid Advanced Simulation and State Estimation (PEGASE)
project [40], [41], ACTIVSg synthetic cases developed as
part of the US ARPA-E GRID DATA research project [42],
[43], and the largest instances from the Power Grid Library
for Benchmarking AC Optimal Power Flow Algorithms [44].

We set a time limit of 1, 000 seconds for all of our SOCP
experiments. We did not set a time limit for computing
ACOPF primal bounds, and for our cutting-plane algorithm
we enforced the 1, 000 seconds time limit before starting
a new round. The character “ − ” denotes that the solver
did not converge, while “TLim” means that the solver did
not converge within our time limit. By convergence we mean
that the solver declares to have obtained an optimal solution,
within the previously defined tolerances. We remark though
that Gurobi and Knitro provide control of absolute primal
and dual feasibility and optimality tolerances, while Mosek
only allows controlling normalized (by the RHS of the
constraints) primal and dual feasibility tolerances. The string
“INF” means that the instance was declared infeasible by the
solver, while “LOC INF” that the instance might be locally
infeasible. Moreover, if Gurobi declares numerical trouble
while solving our LPs or convex QPs at some iteration of

our algorithm, we report the objective value of the previous
iteration followed by “∗”. We also note that objective values
and running times are reported with 2 decimal places.

We remark that, to the best of our knowledge, this is the
first computational study which compares the performance
of three leading commercial solvers on the Jabr SOCP using
a common framework (AMPL). We evaluate the solvers on
Jabr SOCP, and compare our warm-started formulations on
this formulation instead of the i2 SOCP because Jabr is
numerically better behaved from the solvers’ perspective.
Indeed, the definition of the i(2) variables can involve very
large coefficients (on linear inequalities), yielding a numeri-
cally challenging nonlinear relaxation for most of the solvers.
We report on these numerical issues in subsection III-C.2.

1) Non-Warm-Started Cut Computations: The multicol-
umn “Cutting-Plane” in Table I subsumes information re-
garding our cutting-plane procedure: “Objective” reports the
objective of the last iteration of our algorithm; “Time (s)” its
total running time (in seconds); “Rnd” the number of rounds
of cuts; and “Added” the total number of cuts in our linearly
constrained relaxation at the last round (these are the cuts
used to warm-start our relaxations, c.f. III-C.3).

Our cut management heuristics permits us obtain very
tight linearly constrained relaxations with a relatively small
number of cuts - note that we could potentially add 3|E| cuts
per round. For instance, ACTIVSg70k has 88207 branches
and after 10 rounds of cuts we end up keeping 123431 out
of the 350572 cuts computed throughout our algorithm (c.f.
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[10]). Therefore, fewer than 1.5 of linear cuts per branch
gives us a relaxation with optimality gap1 equal to 0.69%.

We remark that the objective value of our procedure can
be higher than that of the Jabr SOCP, since our algorithm is
outer-approximating the i2 relaxation (c.f. Proposition 1).

2) Solvers’ Performance: In Table I multicolumn “Jabr
SOCP”, we observe that for the cases in which at least two
solvers converge, the reported bounds for the Jabr SOCP
agree on the first 3 most significant digits. These differences
in bounds across the different solvers reflect how numerically
challenging these instances are. We remind the readers of the
parameter choices that we made in order for the solvers to
achieve termination – which otherwise would often fail.

As we mentioned at the beginning of this section, the i2
SOCP is numerically even more challenging for the solvers
than the Jabr SOCP. We studied in detail some cases where
Gurobi-AMPL declared optimality on the i2 SOCP, for
example ACTIVSg70k, and observed variable bound max
violation (scaled) equal to 8.43 as well as large primal
and dual residuals (0.0128 and 3.25, resp.). Moreover, we
noticed inconsistent termination status for 10192epigrids-
sad, 10480goc-api, 20758epigrids-sad, and 30000goc-sad on
Gurobi and Gurobi-AMPL using the same model; Gurobi-
AMPL declares optimal termination for these instances while
Gurobi does not. Because of these inconsistencies and low
quality solutions we decided to focus on the Jabr SOCP.

3) Warm-Starts: In power engineering practice, it is often
the case that a power flow problem is solved on data that
reflects a recent, and likely limited, update on a case that was
previously handled. In power engineering language, a ’prior
solution’ was computed, and the problem is not solved ’from
scratch.’ In the context of our type of algorithm, this feature
opens the door for the use of warm-started formulations. In
this subsection we present this warm-starting feature of our
algorithm and show via numerical experiments its appealing
lower bounding capabilities.

The convex inequalities (7), based on which we are
dynamically adding cuts, do not depend on input data such as
loads or operational limits. Any such inequality remains valid
and can be used if the associated branch remains operational.

We created two kinds of perturbed instances: a) Instances
were the load of each bus was perturbed by a Gaussian
(µ, σ) = (0.01 ·Pd, 0.01 ·Pd), where Pd denotes the original
load, subject to the newly perturbed load being non negative;
and b) instances were the transmission line which carries
the largest amount of active power in an ACOPF solution
is turned off. We note though that perturbed cases b) do
change the structure of the network, since we are setting off
the status of a branch. Hence, when warm-starting type b)
cases, we will skip any cuts associated to the inactive branch.

Tables II and III summarize our warm-started experiments
on perturbed instances from our data set in Table I and
compare to solvers’ performance on the Jabr SOCP. “First

1Given a primal bound of a minimization problem, we define the
optimality gap of a relaxation of the given problem as zp−zr

zp
, where zp

denotes the objective value of the primal bound and zr denotes the objective
value of the relaxation.

Round” reports the objective value and running time of the
relaxation M0 loaded with the cuts computed in Table I,
i.e., our warm-started relaxation. “Last Round” presents
the objective value and running time of the last iteration
of our cutting-algorithm (on the warm-started relaxation).
“Jabr SOCP” and “Primal bound” report, respectively, on
the objective value and running time of the Jabr SOCP for
the three solvers, and ACOPF primal solutions.

We stress the comparison between the running time for
our first round, and the solvers’ running time.

a) Loads perturbed: For most of the instances, our
procedure proves very tight lower bounds in less than 25
seconds (“First Round” column). Our procedure stands out
in quickly lower bounding the largest cases, e.g., a very
sharp bound for ACTIVSg70k is obtained in 102.25 seconds,
taking less than half of the time it takes the fastest SOCP
solver to converge. Similar performance is achieved on the
largest epigrids cases where our method is 3x to 5x faster.

An interesting empirical fact is that our cuts are robust
with respect to load perturbations. Indeed, our evidence
shows that there is not a considerable improvement from the
“First Round” to the “Last Round” objectives. This means
that the pre-computed cuts loaded to M0 in the first iteration
are accurately outer-approximating the SOC relaxations.

Our linearly constrained relaxations are able to prove
infeasibility for 9241pegase-api in 23.10 seconds while none
of the three solvers were able to provide a certificate of
infeasibility for the Jabr SOCP. Knitro required 1845.42 sec-
onds to declare convergence to a locally infeasible solution.
Similar results are obtained for 24464ogc-api. The only case
were our method fails to provide a valid lower bound is
30000goc-sad – our minimization oracle reports numerical
trouble and fails to provide a solution to our warm-started
relaxation. This is not surprising since numerical instability
was noticed when computing cuts for this case.

b) Transmission line with largest flow turned off:
Overall, our method achieves a similar performance on this
set of perturbed instances as in a); sharp lower bounds are
obtained in about 25 seconds for most of the cases.

Our method and all of the SOCP solvers are able to prove
infeasibility relatively quickly. On the other hand, our method
proves a lower bound for ACTIVSg70k relatively fast in the
first round, but fails to converge in the next round due to
numerical trouble caused by the newly added cuts. As in a),
our warm-started formulation achieves a good performance
on the largest epigrid cases – bounds are sharp with respect
to the SOC relaxations and it is at least 3x faster.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we present a fast and robust (linear) cutting-
plane method, with efficient warm-starting capabilities, used
to obtain tight relaxations for even the largest ACOPF
instances. The central focus on this paper concerns reop-
timization. As a main contribution we demonstrate, through
extensive numerical testing in medium to (very) large in-
stances, that the warm-start feature for our algorithm yields
tight and accurate bounds far faster than otherwise possible.

5029



TABLE II
WARM-STARTED RELAXATIONS, LOADS PERTURBED BY GAUSSIAN (µ, σ) = (0.01 · Pd, 0.01 · Pd)

Cutting-Plane Jabr SOCP

First Round Last Round Objective Time (s) Primal bound

Case Objective Time (s) Objective Time (s) Gurobi Knitro Mosek Gurobi Knitro Mosek Objective Time (s)

9241pegase 309288.32 13.78 309299.97 160.28 - 309302.67 - 73.12 32.21 36.04 315979.53 101.48
9241pegase-api INF 23.10 INF 23.10 - - - 134.53 TLim 72.96 LOC INF 1845.92
9241pegase-sad 6153913.91 16.18 6154117.59 136.78 - 6096743.03 - 97.51 26.07 83.43 6333763.92 43.71
9591goc-api 1343642.47 11.06 1343670.62 56.36 1343767.43 1345384.57 1343190.29 39.36 25.36 35.30 1571582.59 54.16
9591goc-sad 1058124.48 12.62 1058157.44 65.37 1058337.76 1061275.83 1057323.31 51.85 34.04 37.52 1178895.53 29.53
ACTIVSg10k 2475041.43 9.52 2475078.69 50.51 - 2466383.20 - 42.31 21.75 29.33 2484093.15 57.24
10000goc-api 2502049.28 8.51 2502098.01 36.48 2501946.30 2507074.78 2499373.75 31.91 43.44 32.33 LOC INF 1677.21
10000goc-sad 1388833.86 8.70 1388859.09 44.50 1388824.91 1390230.41 1387588.17 25.96 29.31 23.67 1493481.44 93.72
10192epigrids-api 1848085.36 10.27 1848133.48 45.84 - 1848285.26 1847120.93 65.38 41.17 25.99 LOC INF 1458.35
10192epigrids-sad 1672358.89 10.33 1672398.61 53.37 - 1672533.02 1671364.67 73.64 28.61 35.66 1717429.36 23.89
10480goc-api 2704157.29 12.43 2704252.95 58.45 - 2704373.73 2703432.85 197.17 27.57 55.92 2868495.28 36.89
10480goc-sad 2294908.37 12.81 2294990.69 70.93 - 2294080.35 2292830.56 185.22 35.90 58.31 2322198.81 27.34
13659pegase 379742.62 60.74 379794.51 426.88 379799.37 379804.43 - 34.21 43.17 32.75 386765.25 370.23
13659pegase-api 9253539.07 21.25 9253773.43 109.20 9181205.93 9181269.20 - 97.11 30.41 118.31 9368277.57 62.20
13659pegase-sad 8865733.59 21.28 8865892.49 113.04 8824442.20 8824486.03 - 86.49 33.19 102.59 9039904.52 40.02
19402goc-api 2452185.69 23.55 2452270.83 120.10 - 2452448.33 2451708.50 146.87 120.39 103.32 LOC INF 4440.99
19402goc-sad 1956255.19 23.28 1956313.91 113.89 - 1956570.60 1955018.07 231.90 172.82 102.19 1986936.95 66.02
20758epigrids-api 3043006.76 22.34 3043076.56 104.06 - - 3032919.24 134.60 TLim 78.32 LOC INF 12425.89
20758epigrids-sad 2610197.53 20.46 2610261.88 93.09 - - 2608090.26 143.69 TLim 72.19 2635892.81 49.25
24464goc-api 2561680.14 26.28 INF 50.38 - LOC INF - 223.07 573.37 118.6 - 19444.54
24464goc-sad 2606391.76 26.78 2606473.78 133.54 - - 2604708.86 423.12 TLim 128.84 2655942.01 72.48
ACTIVSg25k 5988886.18 28.24 5989016.75 198.58 5952404.50 5960068.30 5949381.04 138.01 73.75 109.39 6013477.05 57.87
30000goc-api 1527412.96 25.35 1527487.45 151.75 - 1528338.73 1525625.64 243.61 369.83 119.92 LOC INF 3407.47
30000goc-sad - 46.33 - 46.33 - - 1132715.53 257.94 TLim 75.20 1318389.55 620.27
ACTIVSg70k 16316572.42 102.25 16317886.35 536.51 - 16210682.53 16206290.43 498.80 309.56 229.07 16428367.50 243.84
78484epigrids-api 15862318.24 115.76 15865624.98 883.93 - - 15859950.52 757.64 TLim 642.24 - 8113.53
78484epigrids-sad 15176866.00 151.77 15180592.27 1118.02 15182602.75 - 15174716.43 420.56 TLim 589.46 15316872.94 353.13

TABLE III
WARM-STARTED RELAXATIONS, TRANSMISSION LINE WITH LARGEST FLOW TURNED OFF

Cutting-Plane Jabr SOCP

First Round Last Round Objective Time (s) Primal bound

Case Objective Time (s) Objective Time (s) Gurobi Knitro Mosek Gurobi Knitro Mosek Objective Time (s)

9241pegase INF 10.86 INF 10.86 INF INF INF 8.36 7.55 10.22 INF 8.37
9241pegase-api INF 7.55 INF 7.55 INF INF INF 7.92 8.02 10.22 INF 8.23
9241pegase-sad INF 7.33 INF 7.33 INF INF INF 8.14 8.10 10.31 INF 8.46
9591goc-api 1346470.95 10.42 1346859.06 60.76 1346969.75 1348591.44 1346437.99 39.30 17.98 36.89 1395829.51 28.08
9591goc-sad 1055823.53 11.51 1056267.57 101.64 1056447.48 1059382.10 1055501.31 45.09 35.41 37.18 1199276.44 29.90
ACTIVSg10k 2477043.05 9.94 2477537.79 75.85 - 2468821.96 2466981.35 44.81 21.60 17.52 LOC INF 7092.45
10000goc-api 2506671.15 8.06 2509971.69 46.10 2509846.00 2514991.16 2506236.75 31.03 33.95 32.15 2692320.35 23.28
10000goc-sad 1387382.65 8.76 1387515.89 66.14 1387480.33 1388870.68 1386283.75 26.53 34.24 24.14 1506187.88 108.19
10192epigrids-api 1849901.82 9.47 1850621.81 68.73 - 1850788.76 1849821.44 69.81 38.01 25.30 2021493.05 117.18
10192epigrids-sad 1673575.50 11.08 1674274.99 74.49 - 1674417.21 1673564.57 69.91 43.91 28.54 1734014.50 24.11
10480goc-api 2710040.46 11.33 2711100.23 73.85 - 2711224.27 2710520.15 95.40 27.99 56.58 2862699.50 225.06
10480goc-sad 2288069.64 13.47 2288969.47 98.88 - 2288069.23 2286864.08 106.54 37.65 59.43 2318279.76 26.13
13659pegase 379102.13 53.29 379163.58 199.96 379177.99 379182.14 - 33.18 345.83 31.90 386126.93 394.93
13659pegase-api INF 10.81 INF 10.81 INF INF INF 10.94 8.90 13.79 INF 11.55
13659pegase-sad INF 10.63 INF 10.63 INF INF INF 11.02 10.80 13.76 INF 11.73
19402goc-api 2450110.09 23.93 2451621.60 171.31 - 2451793.39 2450488.01 154.42 132.03 104.58 2587915.50 403.20
19402goc-sad 1954365.39 23.70 1954881.06 191.52 - 1955116.35 1953676.05 258.93 156.10 102.63 1985954.83 63.38
20758epigrids-api 3043482.21 20.44 3044690.46 133.92 - - 3041974.74 112.78 TLim 96.19 3132571.31 52.82
20758epigrids-sad 2612646.70 20.62 2612786.37 115.89 - - 2610315.41 169.67 TLim 73.02 2638560.64 47.87
24464goc-api 2560669.11 25.94 2561110.03 161.80 2550118.22† - 2559240.55 440.81 TLim 118.05 2684708.93 1663.63
24464goc-sad 2605179.75 26.98 2605369.03 166.81 - 2605474.23 2603609.34 564.27 74.69 124.19 2654344.45 76.39
ACTIVSg25k 6045885.88 27.52 6048122.86 238.67 6009656.52 6018875.03 6009500.57 144.28 65.42 81.41 LOC INF 1634.38
30000goc-api 1531110.55 25.02 1531159.95 130.30 - 1532013.41 1529195.12 195.74 135.71 119.77 LOC INF 3203.26
30000goc-sad - 45.60 - 45.60 - - 1130917.78 218.12 TLim 74.27 1324622.71 186.43
ACTIVSg70k 16426522.74 98.51 16426522.74* 98.51 - - - 150.77 TLim 129.60 LOC INF 3160.81
78484epigrids-api 15888353.48 104.32 15892229.11 916.88 15894055.55 - 15880422.78 322.22 TLim 625.74 16169740.92 2328.79
78484epigrids-sad 15179882.22 149.65 15185980.69 1151.33 15188085.99 - 15182701.65 437.59 TLim 594.84 15330674.69 272.41
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Our work paves the way for promising new research
directions. For instance, since our relaxations are linear they
could be deployed for practical pricing schemes which could
increase welfare and mitigate biasedness in price signals [13].
Moreover, we believe our relaxation is a natural candidate to
supersede the well-known DC linear approximation in harder
problems such as the Unit-Commitment problem or Security
Constrained ACOPF (SCOPF), hence it would be interesting
to evaluate its performance on these challenging problems.
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[13] M. Bichler, and J. Knörr, Getting Prices Right on Electricity Spot
Markets: On the Economic Impact of Advanced Power Flow Models,
Energy Economics, vol. 126, 2023, 106968.

[14] D.K. Molzahn, and Ian A. Hiskens, A Survey of Relaxations and
Approximations of the Power Flow Equations, Now Foundations and
Trends, 2019.

[15] D. Bienstock, and M. Escobar, C. Gentile, and L. Liberti, Mathematical
Programming Formulations for the Alternating Current Optimal Power
Flow Problem, 4OR, vol. 18, 2020, pp. 249-292.

[16] G.P. McCormick, Computability of Global Solutions to Factorable
Nonconvex Programs: Part I — Convex Underestimating Problems,
Mathematical Programming, vol. 10, 1976, pp. 147-175.

[17] B. Kocuk, S.S. Dey, and A.X. Sun, Matrix Minor Reformulation
and SOCP-based Spatial Branch-and-Cut method for the AC Optimal
Power Flow Problem, Mathematical Programming Computation, vol.
10, 2018, pp. 557-596.

[18] N.Z. Shor, Quadratic Optimization Problems, Soviet Journal of Com-
puter and Systems Sciences, vol. 25, 1987, pp. 1-11.

[19] L. Lavaei, and S.H. Low, Zero Duality Gap in Optimal Power Flow
Problem, IEEE Transactions on Power Systems, vol. 27, 2012, pp.
92-107.

[20] D. Bienstock, and G. Munoz, On Linear Relaxations of OPF Problems,
arXiv:1411.1120, 2014, pp. 1-15.

[21] D. Bienstock, and G. Munoz, Approximate Method for AC Trans-
mission Switching based on Simple Relaxation for ACOPF Problems,
IEEE Power & Energy Society General Meeting (PESGM), 2015, pp.
1-5.

[22] C. Coffrin, H.L. Hijazi, and P. Van Hentenryck, Network Flow
and Copper Plate Relaxations for AC Transmission Systems, Power
Systems Computation Conference (PSCC), 2016, pp. 1-8.

[23] J.A. Taylor, and F.S. Hover, Linear Relaxations for Transmission
System Planning, IEEE Transactions on Power Systems, vol. 26, 2011,
pp. 2533-2538.

[24] S. Mhanna, G. Verbic, and A.C. Chapman, Tight LP Approximations
for the Optimal Power Flow Problem, Power Systems Computation
Conference (PSCC), 2016, pp. 1-7.

[25] A. Castillo, P. Lipka, J.P. Watson, S.S. Oren, and R.P. O’Neill, A
Successive Linear Programming Approach to Solving the IV-ACOPF,
IEEE Transactions on Power Systems, vol. 31, 2016, pp. 2752-2763.

[26] S. Mhanna, and P. Mancarella, An Exact Sequential Linear Pro-
gramming Algorithm for the Optimal Power Flow Problem, IEEE
Transactions on Power Systems, vol. 37, 2022, pp. 666-679.

[27] K. Baker, Solutions of DC OPF are Never AC Feasible, Proceedings of
the Twelfth ACM International Conference on Future Energy Systems,
2021, pp. 264-268.

[28] F. Zohrizadeh, C. Josz, M. Jin, R. Madani, J. Lavaei, and S. Sojoudi,
A Survey on Conic Relaxations of Optimal Power Flow Problem,
European Journal of Operational Research, vol. 287, 2020, pp. 391-
409.

[29] M. Farivar, C. Clarke, S. Low, and K. Chandy, Inverter VAR Control
for Distribution Systems with Renewables, Proc. 2011 IEEE Int.
Conf. Smart Grid Communications (SmartGridComm), Oct. 2011, pp.
457–462.

[30] B. Subhonmesh, and S.H. Low, K.M. Chandy, Equivalence of Branch
Flow and Bus Injection Models, 2012 50th Annual Allerton Conference
on Communication, Control, and Computing (Allerton), 2012, pp.
1893-1899.

[31] C. Coffrin, H.L. Hijazi, and P. Van Hentenryck, DistFlow Extensions
for AC Transmission Systems, arXiv:1411.1120, 2015.

[32] A. Schrijver, On Cutting Planes, Annals of Discrete Mathematics, vol.
9, 1980, pp. 291-296.

[33] D. Bienstock, Electrical transmission system cascades and vulnera-
bility, an Operations Research viewpoint, Society for Industrial and
Applied Mathematics, 2015.

[34] D. Bienstock, and M. Villagra, Accurate Linear Cutting-Plane Relax-
ations for ACOPF, arXiv:2312.04251, 2023.

[35] N. Higham, Accuracy and Stability of Numerical Algorithms, SIAM,
1996.

[36] E. Klotz, Identification, Assessment, and Correction of Ill-
Conditioning and Numerical Instability in Linear and Integer Pro-
grams, Bridging Data and Decisions, 2014, pp. 54-108.

[37] Gurobi Optimization, LLC, Gurobi Optimizer Reference Manual,
https://www.gurobi.com, 2023.

[38] R.H. Byrd, J. Nocedal, and R.A. Waltz, KNITRO: An Integrated Pack-
age for Nonlinear Optimization, Large-Scale Nonlinear Optimization,
2006, pp. 35-59.

[39] MOSEK ApS, Mosek for AMPL User’s Guide, 2024.
[40] C. Josz, S. Fliscounakis, J. Maeght, and P. Panciatici, AC Power Flow

Data in MATPOWER and QCQP Format: iTesla, RTE Snapshots, and
PEGASE, arXiv:1603.01533, 2016.

[41] S. Fliscounakis, P. Panciatici, F. Capitanescu, and L. Wehenkel,
Contingency Ranking with respect to Overloads in very large Power
Systems taking into account Uncertainty, Preventive and Corrective
Actions, IEEE Trans. on Power Systems, vol. 28, 2013, pp. 4909-4917.

[42] A.B. Birchfield, T. Xu, K.M. Gegner, K.S. Shetye, and T.J. Overbye,
Grid Structural Characteristics as Validation Criteria for Synthetic
Networks, IEEE Transactions on Power Systems, vol. 32, 2017, pp.
3258-3265.

[43] A.B. Birchfield, T. Xu, and T.J. Overbye, Power Flow Convergence
and Reactive Power Planning in the Creation of Large Synthetic Grids,
IEEE Transactions on Power Systems, vol. 33, 2018, pp. 6667-6674.

[44] S. Babaeinejadsarookolaee, A. Birchfield, R.D. Christie, C. Coffrin,
C. DeMarco, R. Diao, M. Ferris, S. Fliscounakis, S. Greene, R.
Huang, C. Josz, R. Korab, B. Lesieutre, J. Maeght, T.W.K. Mak,
D.K. Molzahn, T.J. Overbye, P. Panciatici, B. Park, J. Snodgrass,
A. Tbaileh, P. Van Hentenryck, and R.D. Zimmerman, The Power
Grid Library for Benchmarking AC Optimal Power Flow Algorithms,
arXiv:1908.02788v2, 2021.

5031


