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Abstract— This work proposes a state-coupled model (SCM)
for extended object tracking, which treats the orientation and
velocity as two dependent variables. With this model, the
distribution of multiple measurements is modeled via Gaussian
mixture density to match the actual automotive radar or Lidar
data. As a result, SCM becomes a highly nonlinear model
with multiplicative noise. To handle this challenge, we use the
deterministic sampling approach to update the kinematics and
orientation information, followed by a constraint condition. And
the extent parameters are estimated under a Bayesian frame-
work with pseudo-measurements. An evaluation is conducted
on simulated data, which illustrates that the proposed model
and filter are effective.

I. INTRODUCTION

In recent years, the increased resolution capabilities of
modern sensors (e.g., millimeter wave radar) have garnered
attention in many scenarios, such as autonomous driving,
region surveillance, and object tracking [1]. In this case, a
sensor will receive multiple point-cloud measurements per
object. Therefore, it becomes necessary to incorporate the
object’s spatial extent into the kinematics estimation process.
This induces a so-called extended object tracking (EOT)
problem. For this purpose, a variety of relevant models are
given, including the random matrix (RM) for ellipse [2],
[3], multiplicative error model (MEM) for axis-symmetric
shapes [4], and random hyper-surface model (RHM) [5],
Gaussian process (GP) [6], B-splines [7], and level-set RHM
for arbitrary star-convex shapes [8]. Besides, the variational
Bayesian inference is used as a powerful tool to yield a
recursive expression due to the absence of conjugate prior
[9]–[11].

Since the multi-agent systems have an appealing merit
over the single agent for overcoming single-point failure,
there has been a concerted effort to develop the system
[12]. In [13], the weighted Kullback-Leibler divergence was
applied to generate a consensus estimate. In [14], Hua et al.
proposed a distributed filter with unknown prior information,
and [15] provided a manner to fit the asynchronous fusion
scenario. Considering that the MEM decomposes the extent
into a parameterized vector, a diffusion filter was developed
in [16] where each variable has an individual uncertainty
instead a single value as in the RM. To enable a tracker
still working properly when an object is detected by some
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specific sensor during every scan time, Li et al. proposed
several distributed information filters over a general sensor
network [17], [18]. These trackers further pave the way for
some realistic engineering applications.

For most object types such as vehicles, the measurements
(scattering source) distribute on the side visible to the sensor
instead an uniform distribution across the extent (see, e.g.,
the nuScenes dataset [19]). To match the actual scenario, the
method in [20] used a learned variational model on radar
data, conducting the update using a particle filter. Xia et al.
used the truncated Gaussian to describe the distribution of
multiple measurements [21]. With this model, they calculate
the mean and spread of augmented measurements by com-
bining the pseudo-measurements lying on the truncated area
with the raw measurements to yield a closed-form solution
within the RM framework. In [22], a Gaussian mixture
model was used to describe the measurement distribution,
which was then reduced into a single Gaussian via moment
matching. However, the existing tracking approaches ignore
the inner correlation between the orientation and velocity,
which causes the EOT merely being a joint estimation
problem. In fact, a tracker will generate a decreased tracking
error if it uses the correlation to update the unknown states
as discussed in [23], [24].

In this work, we propose a novel state-coupled model
(SCM) where the extent is described as the orientation and
lengths of major axis and minor axis. Such a parametrization
way completely determines the original extent if it is an axis-
symmetric shape, such as an ellipse or rectangle. The orienta-
tion and velocity in SCM is treated as two coupled variables
by introducing a sideslip angle. Meanwhile, the model assists
a Gaussian Mixture distribution (GMD) to describe the bias
towards the side of an object’s extent visible to the sensor. To
get an analytical expression in the measurement update stage,
we use the deterministic sampling approach to estimate the
kinematics and orientation information (includes a projection
into the constraint space), and update the extent parameters
in a Bayesian framework with pseudo-measurements. With
these results, a simple moment matching technique is used
to handle the GM reduction, yielding a single Gaussian
distribution for recursive inference. The main difference to
the models given in [23], [24] is that we use a GMD to
handle the mismatch issue between the actual measurement
distribution and theoretical hypothesis.

The contributions of this work are
• We give a novel state-coupled model (SCM) to establish

a tight relation between the orientation and velocity
vector. Therein, the distribution of measurements is
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modeled via a Gaussian mixture model.
• To generate an analytical expression for an update, we

stack the kinematics, additive noise and multiplicative
noise into a vector, and estimate them via a deter-
ministic sampling approach, followed by a constraint
condition. And the semi-lengths of object is estimated
in a Bayesian framework with pseudo-measurements.

• Numerical simulations plus theoretical analysis verify
the effectiveness of the proposed model and filter.

The remainder of the work is organized as follows. Section
II gives a brief problem formulation. Section III gives an
analytical solution for SCM. Section IV collects the proposed
filter. Experimental examples are presented in Section V.
Section VI concludes this work.

II. PROBLEM FORMULATION

Here, we describe the proposed SCM, including state
parameterization, measurement model, and evolution models.

A. State Parameterization

At time k, the following state vector xk is considered

xk = [(xc
k)

T, (xs
k)

T]T, (1)

where the kinematic state xc
k

xc
k = [xk, yk, v

x
k, v

y
k, · · · ]

T (2)

contains the Cartesian position [xk, yk]
T := mk, velocity

[vxk, v
y
k]

T := ϑk in x and y axes, and possible variables such
as acceleration.

The angle vector xs
k includes

xs
k = [pk, qk]

T, (3)

where pk = cos(βk) and qk = sin(βk) with βk :=

arctan(
vy
k

vx
k
) − αk being the sideslip angle that represents

a drift between the orientation αk and velocity direction
arctan(

vy
k

vx
k
) [23], [24]. The extent parameters

lk = [lk,1, lk,2]
T, (4)

involve the semi-lengths lk,1 and lk,2.

B. Measurement Model

At time k, a sensor receives nk Cartesian position mea-
surements {yi

k}
nk
i=1. Each individual scattering source zi

k

plus an addictive noise vi
k ∼ N (0,Pi

v) generates the raw
measurement yi

k as shown in (5). Fig. 1 gives an illustration.

As pointed out in [22], real scattering source zi
k is typ-

ically distributed at the sides of an object’s extent visible
to the sensor or at certain reflection region. Therefore, we
introduce a GMD to model zi

k. Therein, the multiplicative
noise hk (the index i is omitted for simplicity)

hk ∼
J∑

j=1

ωjN (hj
k; h̄

j
k,P

j
h), (7)

including J Gaussian mixture components with the corre-
sponding weights ωj , j = 1, 2, · · · , J, plays a vital role to
match the actual distribution. With above analysis, we have
the likelihood w.r.t yi

k

p(yi
k|xk, lk) =

J∑
j=1

ωjN (yi
k;Hkxk+Skh̄j ,SkP

j
hS

T
k+Pi

v).

(8)

C. Evolution Models

The temporal evolution models for the state vector and
extent parameters are given as follows:

xk+1 = Φx
kxk +wx

k (9a)

lk+1 = Φl
klk +wl

k (9b)

where Φx
k and Φl

k are transition matrices, wx
k and wl

k are
zero-mean Gaussian process noises with covariances Px

w and
Pl

w, respectively.

III. CLOSED-FORM SOLUTION FOR GAUSSIAN MIXTURE
DISTRIBUTION

A. Time Prediction

By equation (9), the predicted mean and error covariance
are given as:

x̂k|k−1 = Φx
k−1x̂k−1|k−1, (10a)

Px,k|k−1 = Φx
k−1 Px,k−1|k−1 (Φ

x
k−1)

T +Px
w, (10b)

l̂k|k−1 = Φl
k−1l̂k−1|k−1, (10c)

Pl,k|k−1 = Φl
k−1 Pl,k−1|k−1 (Φ

l
k−1)

T +Pl
w. (10d)

yi
k = Hkxk +

[
vy
k sin βk+vx

k cos βk

∥ϑk∥
vx
k sin βk−vy

k cos βk

∥ϑk∥
vy
k cos βk−vx

k sin βk

∥ϑk∥
vy
k sin βk+vx

k cos βk

∥ϑk∥

] [
lk,1 0
0 lk,2

]
︸ ︷︷ ︸

:=Sk

[
hi
k,1

hi
k,2

]
︸ ︷︷ ︸
:=hi

k

+vi
k (5)

:= f(xk, lk,h
i
k,v

i
k) (6)
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Fig. 1: An illustration of the model (5). For clarity, we omit
the time index k and measurement index i in the figure. The
Cartesian position is m, and the extent and velocity are denoted as
l = [l1, l2]

T and ϑ = [vx, vy]T, respectively. By counterclockwise
rotating an angle α = arctan(vy/vx) (i.e., the orientation) along
x-axis, we get a reference frame xr-yr . The measurement source
z is related to l, m and h = [h1, h2]

T. The measurement y is the
source z corrupted with a Gaussian noise v.

B. Measurement Update

The measurement set {yi
k}

nk
i=1 is processed sequentially

in the measurement update stage. Let x̂(i−1)
k|k , l̂(i−1)

k|k , P(i−1)
x,k|k ,

and P
(i−1)
l,k|k denote the estimates and corresponding error

covariances on the state vector and extent parameters, respec-
tively, at the (i− 1)-th processing. To start, the notation •(0)k|k
corresponds to the predicted estimates. Since each individual
measurement yi

k, i ∈ {1, · · ·nk}, is related to a GMD, the
updated value will leave us with J mixture components.

1) State Vector Update: Since the model (5) is highly
nonlinear, we employ the deterministic sampling approach
(DSA) (e.g., Unscented transform or Cubature transform)
using a set of point masses xa,n

k , n = 1, 2, · · · , N, with the
corresponding weights αn

k , n = 1, 2, · · · , N to approximate
the mean and covariance of f(xa

k) [25], [26], where the
extent parameters lk are replaced by their estimates. To this
end, we first augment the original state xk as

xa
k =

[
(xk)

T, (hj
k)

T, (vi
k)

T
]T

(11)

with the augmented measurement ya
k = [yi

k, 1]
T. Then, we

have

(ȳa
k|k−1,C

y
k,C

xy
k ) = DSA

[
⟨f(xa

k), 1⟩ , x̄a
k|k−1,P

a
x,k|k−1

]
= DSA

[〈
f(xk,h

j
k,v

i
k), 1

〉
,
(
(x̂k|k−1)

T, (h̄j
k)

T,0T
2×1

)T

,

diag(Px,k|k−1,P
j
h,P

i
v)

]
(12)

where

ȳa
k|k−1 =

N∑
n=1

αn
ky

a,n
k ,ya,n

k = f(xa,n
k ), (13a)

Cy
k =

N∑
n=1

αn
k (ȳ

a
k|k−1 − ya,n

k )(ȳa
k|k−1 − ya,n

k )T, (13b)

Cxy
k =

N∑
n=1

αn
k (x̂k|k−1 − xn

k )(ȳ
a
k|k−1 − ya,n

k )T. (13c)

with xn
k , n = 1, 2, · · · , N, being the truncated portion of

xa,n
k to match the dimension of xk.
With above analysis, we get

Kk = Cxy
k /Cy

k, (14a)

x̂
j,(i)
k|k = x̂

(i−1)
k|k +Kk(y

a
k − ȳa

k|k−1), (14b)

P
j,(i)
x,k|k = P

(i−1)
x,k|k +KkC

y
k(Kk)

T. (14c)

Note that each sequential update will generate J mixture
components, i.e., after the updating with measurement yi

k,
we get

p(x
(i)
k |y

i
k) =

J∑
j=1

ω+
j N

(
x
(i)
k ; x̂

j,(i)
k|k ,P

j,(i)
x,k|k

)
(15)

where ω+
j = ωj · lyj is the updated weight with lyj being the

likelihood function related the j-th component of hk.
To reduce the GMD to a single Gaussian after the sequen-

tial processing, we use the moment matching technique to
yield the final expressions

x̂
(i)
k|k =

J∑
j=1

ω+
j∑J

j=1 ω
+
j

x̂
j,(i)
k|k , (16a)

P
(i)
x,k|k =

J∑
j=1

ω+
j∑J

j=1 ω
+
j

(
P

j,(i)
x,k|k

+
(
x̂
(i)
k|k − x̂

j,(i)
k|k

)(
x̂
(i)
k|k − x̂

j,(i)
k|k

)T)
.

(16b)

2) Extent Parameters Update: the pseudo-measurement
(corresponds to the j-th component) is

Yj,i
k = F

(
(yi

k − ȳj
k)⊗ (yi

k − ȳj
k)
)
, (17)

with
ȳj
k = Hkx̂

(i−1)
k|k + Ŝ

(i−1)
k h̄j

k. (18)

The expected value and covariance of the i-th pseudo-
measurement related to the j-th component are

Ȳj,i
k = F · vect(Py,j

k ), (19a)

PY,j
k = F(Py,j

k ⊗Py,j
k )(F+ F̃)T, (19b)

where the notation vect(·) reshapes a matrix into a new
vector by stacking all the columns of the matrix, and
the cross-covariance between the pseudo-measurement and
extent parameters is

PlY,j
k = P

(i−1)
l,k|k Mj

k, (20)

where

Py,j
k = HkP

(i−1)
x,k|kH

T
k +PI +PII +PIII +Pi

v, (21)

F =

1 0 0 0
0 0 0 1
0 1 0 0

 , F̃ =

1 0 0 0
0 0 0 1
0 0 1 0

 , (22)
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with

Mj
k =

 2Ŝ
(i−1)
k,1 Pj

hĴ
(i−1)
1k,l

2Ŝ
(i−1)
k,2 Pj

hĴ
(i−1)
2k,l

Ŝ
(i−1)
k,1 Pj

hĴ
(i−1)
1k,l + 2Ŝ

(i−1)
k,2 Pj

hĴ
(i−1)
2k,l

 , (23a)

PI = Ŝ
(i−1)
k Pj

h

(
Ŝ
(i−1)
k

)T

, (23b)

[ϵmn]︸ ︷︷ ︸
PII

= tr

{
P

(i−1)
l,k|k

(
Ĵ
(i−1)
nk,l

)T

(Pj
h + h̄j

k(h̄
j
k)

T)Ĵ
(i−1)
mk,l

}
,

(23c)

[ϖmn]︸ ︷︷ ︸
PIII

= tr

{
P

(i−1)
x,k|k

(
Ĵ
(i−1)
nk,x

)T

(Pj
h + h̄j

k(h̄
j
k)

T)Ĵ
(i−1)
mk,x

}
,

(23d)
for the entry indexes m,n ∈ {1, 2}. Here, •̂(i−1) represents
the variable • obtained based on the (i− 1)-th estimate.
Proof: Detailed derivation of (21) is given in Appendix.

Then, we have

l̂
j,(i)
k|k = l̂

(i−1)
k|k +PlY,j

k /PY,j
k (Yj,i

k − Ȳj,i
k ), (24a)

P
j,(i)
l,k|k = P

(i−1)
l,k|k +PlY,j

k /PY,j
k (PlY,j

k )T. (24b)

The final estimates on extent parameters l are handled
similarly as in x.

IV. IMPLEMENTATION

A. Constrained Estimation

Clearly, the two variables pk and qk in (3) have such a
relation

p2k + q2k = 1. (25)

We rewrite (25) as

([02×4, I2]xk)
T([02×4, I2]xk) = 1 (26)

where I2 and 02×4 are full zero and identity matrices with
the appropriate dimension, respectively. Then (26) can be
written as

(xk)
TDxk = 1 (27)

where D = diag(0, 0, 0, 0, 1, 1). Based on the constraint
condition (27), we project x̂k|k into the constraint space to
get the solution of the optimization function (28)

argmin
c

(c− x̂k|k)
TWk(c− x̂k|k)

s.t. cTDc = 1 (28)

where Wk is selected as Px,k|k.
Since (28) is non-convex w.r.t c, we perform first order

series expansion, yielding

cTDc ≈ (x̂k|k)
TDx̂k|k + (2Dx̂k|k)

T(c− x̂k|k). (29)

Then, the constrained estimate x̂p
k|k and its error covariance

are given as

x̂p
k|k = x̂k|k +Px,k|k(2Dx̂k|k)/(2Dx̂k|k)

TPx,k|k(2Dx̂k|k)

×
[
1− (x̂k|k)

TDx̂k|k
]

(30a)

Pp
k|k = BPx,k|kB

T (30b)

where

B = I−Px,k|k(Dx̂k|k)

×
[
(Dx̂k|k)

TPx,k|k(Dx̂k|k)

]−1

(Dx̂k|k)
T.

(31)

B. Parameters Calculation

In general, the weights and components need to be esti-
mated or learned by using a large amount of data. In this
work, we choose four components

h̄ =

[
0.8 0 −0.8 0
0 0.8 0 −0.8

]
(32)

Ph =


diag( 1

200
1
3 )

diag( 13
1

200 )
diag( 1

200
1
3 )

diag( 13
1

200 )

 (33)

to approximate the GMD of a rectangular shape [22]. And
the entry 1

3 in Ph is replaced by 1
4 for an ellipse. To fit most

tracking scenarios, the weights are set to be different values
according to the geometry between the sensor and object.
In detail, the weight is higher when an object moves toward
the sensor and lower weight, otherwise [22]. The required
weights are given as follows:

ωj = 0.9, if θj < 0.4π

ωj = 0.5, if 0.4π ≤ θj < 0.7π

ωj = 0.001, else

, (34a)

θj =
∣∣(∡(sx)− ∡(h̄j) + π, mod 2π)− π

∣∣ , (34b)

sx = diag

(
1

l1

1

l2

)
·RT

α · (s−m), (34c)

where sx transforms the sensor’s position s into the unit co-
ordinates, Rα is the rotation matrix related to the orientation
α, and the notation ∡(·) returns the corresponding angle [22].
The filter so-called Gaussian Mixture Distribution-State-
Coupled Model (GMD-SCM) is summarized in Algorithm
1.

V. NUMERICAL EXAMPLES

In this section, we compare the proposed GMD-SCM filter
with GMD-MEM filter [22] (abbreviated as SCM and MEM,
respectively) and CVM filter with a single node [24] over
3 different dynamic scenarios. We evaluate the estimation
errors by the Gaussian Wasserstein distance (GWD) for
assessing both the position and extent errors over M = 50
Monte Carlo runs [4].
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1 Initialization: x̂(0)
1|0, l̂(0)1|0, P(0)

x,1|0, and P
(0)
l,1|0 ;

2 for k ← 1, 2, · · · // scan time do
3 Data: {yi

k}
nk
i=1 ;

4 for j = 0, · · · , J − 1 do
5 ωj ← using sx and hj

6 end
7 for i = 1, 2, · · · , nk // sequential do
8 for j = 0, · · · , J − 1 // mixture do
9 x̂

j,(i)
k|k ,P

j,(i)
x,k|k, l̂

j,(i)
k|k ,P

j,(i)
l,k|k, l

y
j ←

Update x̂
(i−1)
k|k ,P

(i−1)
x,k|k , l̂

(i−1)
k|k ,P

(i−1)
l,k|k

via (14) and (24);
10 ω+

j ← ωj · lyj ;
11 end
12 ω+

j ← Normalize ω+
j ;

13 x̂
(i)
k|k,P

(i)
x,k|k ← (16) using all

ω+
j , x̂

j,(i)
k|k ,P

j,(i)
x,k|k;

14 l̂
(i)
k|k,P

(i)
l,k|k ← (16) using all

ω+
j , l̂

j,(i)
k|k ,P

j,(i)
l,k|k;

15 end
16 Return1: x̂k|k← x̂

(nk)
k|k ,Px,k|k←P

(nk)
x,k|k ;

17 x̂p
k|k,P

p
x,k|k ← Project x̂k|k,Px,k|k via (30)

;
18 Return2: l̂k|k← l̂

(nk)
k|k ,Pl,k|k←P

(nk)
l,k|k ;

19 x̂k+1|k,Px,k+1|k, l̂k+1|k,Pl,k+1|k ←
Prediction x̂p

k|k,P
p
x,k|k, l̂k|k,Pl,k|k via

(10)
20 end
Algorithm 1: GMD-SCM Filter. The function Update
gives the updated means and covariances of the state
vector and extent parameters. The function Normalize

normalizes the input weights. The function Project

projects the state vector into the constraint space. The
function Prediction gives the predicted means and
covariances of the state vector and extent parameters.

A. Rectangular Object Moves Along the Orientation

In this scenario (S1), the considered object is a rectangle
with lengths 3 and 4 meters. The orientation of the object is
aligned with its direction of velocity. The parameters used
in S1 are collected in Table I. Fig. 2 gives the true trajectory
and whole tracking results. As shown in Fig. 2, the proposed
SCM deals with such a situation more effectively since its
estimates are closer to the ground truth than MEM and
CVM at most time steps. The reason is twofold. On the one
hand, SCM is capable of describing the correlation between
the velocity and orientation, so SCM quickly modifies its
filtering gain. On the other hand, SCM describes the actual
received data distributed mainly on the side visible to the
sensor. Fig. 3 shows the GWD distance, and its result verifies
the advantage of SCM.

TABLE I: Parameters used in S1 & S2

Categories Para. Specification

Common

Scan Time T = 3 s
Sensor’s Position s = [0, 0]T

Mea. Cov. Pi
v = diag( 1

3
, 1
3
)

No. of Meas. λ = 10

MEM

Extent Transition Matrix Φl
k = I3

State Transition Matrix Φx
k =

[
1 T
0 1

]
⊗ I2

Process Cov. in Extent Pl
w = diag(.01, .052, .052)

Cov. in Extent P
(0)
l,1|0 = diag(.01, 1

50
, 1
10

)

Process Cov. in State Px
w = diag(50, 50, 10, 10)

Cov. in State P
(0)
x,1|0 = diag(2, 2, 1

5
, 1
5
)

SCM

Extent Transition Matrix Φl
k = I2

State Transition Matrix Φx
k =

1 T 0
0 1 0
0 0 1

⊗ I2

Process Cov. in Extent Pl
w = diag(.052, .052)

Cov. in Extent P
(0)
l,1|0 = diag( 1

50
, 1
10

)

Process Cov. in State Px
w = diag(50, 50, 10, 10, .01, .01)

Cov. in State P
(0)
x,1|0 = diag(2, 2, 1

5
, 1
5
, .01, .01)

TABLE II: Parameters used in S3

Categories Para. Specification
Common Mea. Cov. Pi

v = diag(50, 8)

MEM

Process Cov. in Extent Pl
w = diag(.01, .052, .052)

Cov. in Extent P
(0)
l,1|0 = diag(.05, 10, 4)

Process Cov. in State Px
w = diag(102, 102, 20, 20)

Cov. in State P
(0)
x,1|0 = diag(50, 50, 1, 1)

SCM

Process Cov. in Extent Pl
w = diag(.052, .052)

Cov. in Extent P
(0)
l,1|0 = diag(10, 4)

Process Cov. in State Px
w = diag(102, 102, 20, 20, .01, .01)

Cov. in State P
(0)
x,1|0 = diag(50, 50, 1, 1, .01, .01)

B. Rectangular Object Moves with a Drift

In this scenario (S2), the considered object is a rectangle
with lengths 3 and 4 meters. Its orientation is a constant
value π

4 , and it moves firstly with a drift and then goes with a
turn. As depicted in Fig. 4, SCM that allows an object to do a
drift motion keeps a better tracking results on the kinematics
and extent parameters over most time steps, but MEM and
CVM get worse after the object moves away from the sensor.
From Fig. 5, we observe that SCM has an overall lower level
GWD distance than MEM and CVM, which indicates the
superiority on SCM.

C. Elliptical Object Moves Along the Orientation

In this scenario (S3), the considered object is an ellipse
with lengths of the semi-axes 40 m and 20 m. Table II
collects the parameters used in S3, and the other required
parameters are given in Table I. Fig. 6 shows the overall
tracking results. To provide a visible viewpoint, Fig. 7 gives
the GWD distance. As expected, SCM has a lower error than
MEM and CVM, as it treats the velocity and orientation as
two dependent variables, followed an efficient GWD model.
The facts in turn deliver a positive feedback to improve
SCM’s performance.
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Fig. 2: Measurements, trajectory, and estimation results in S1
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Fig. 3: GWDs with different filters in S1

VI. CONCLUSIONS
To describe the real measurements distributed on particular

region of an object’s extent, this work first proposes a novel
state-coupled model with Gaussian mixture distribution.
Meanwhile, the model considers the correlation between the
orientation and velocity. We then derive a problem-tailored
filter to generate a recursive solution by comprehensively us-
ing the deterministic sampling approach, moment matching
and optimization method with constraint. Numerical results
show that the proposed filter has an improved performance.

APPENDIX

Proof: For brevity, we first derive the partial derivatives
as

d1 =
∂vxk/∥ϑk∥

∂vxk

∣∣∣∣
ϑ̂

(i−1)

k|k

=
1

∥ϑk∥
− (vxk)

2

(∥ϑk∥)3

∣∣∣∣
ϑ̂

(i−1)

k|k

,

d2 =
∂vyk/∥ϑk∥

∂vyk

∣∣∣∣
ϑ̂

(i−1)

k|k

=
1

∥ϑk∥
−

(vyk)
2

(∥ϑk∥)3

∣∣∣∣
ϑ̂

(i−1)

k|k

,

d3 =
∂vyk/∥ϑk∥

∂vxk
=

∂vxk/∥ϑk∥
∂vyk

∣∣∣∣
ϑ̂

(i−1)

k|k

= −
vxkv

y
k

(∥ϑk∥)3

∣∣∣∣
ϑ̂

(i−1)

k|k

.

(35)
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Fig. 4: Measurements, trajectory, and estimation results in S2
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Fig. 5: GWDs with different filters in S2

Performing the first-order Taylor series expansion in term
Skh

j
k around the (i − 1)-th estimates l̂

(i−1)
k|k and x̂

(i−1)
k|k ,

respectively, yields

Skh
j
k ≈ Ŝ

(i−1)
k hj

k︸ ︷︷ ︸
I

+


(
hj
k

)T

Ĵ
(i−1)
1k,l(

hj
k

)T

Ĵ
(i−1)
2k,l

(
lk − l̂

(i−1)
k|k

)
︸ ︷︷ ︸

II

+


(
hj
k

)T

Ĵ
(i−1)
1k,x(

hj
k

)T

Ĵ
(i−1)
2k,x

(
xk − x̂

(i−1)
k|k

)
︸ ︷︷ ︸

III

(36)

where Ĵ1k,x and Ĵ2k,x are the Jacobian matrices of the first
row S1,k and second row S2,k of Sk at the (i− 1)-th estimate
x̂
(i−1)
k|k , respectively. And Ĵ1k,l and Ĵ2k,l are the Jacobian

matrices of the first row S1,k and second row S2,k of Sk at
the (i− 1)-th estimate l̂

(i−1)
k|k , respectively. Substituting (36)

and (7) into (5), using the fact that the terms II and III in
(36) are scalar, then the residual covariance in yi

k related to
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Fig. 7: GWDs with different filters in S3

the j-th component is given as

Py,j
k = HkP

(i−1)
x,k|kH

T
k +PI +PII +PIII +Pi

v. (41)
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