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Abstract— In addition to the known stochastic stability prop-
erties of asymptotic moment stability and almost sure global
asymptotic stability for continous-time Markov jump linear
systems, in this work, we propose component-wise asymptotic
moment stability and study the relations between these stochas-
tic stability properties. Next, we show that the component-wise
1st and 2nd moments of a Markov jump linear system can
be precisely computed by solving linear ordinary differential
equations. Consequently, necessary and sufficient conditions for
component-wise asymptotic 1st and 2nd moment stability are
obtained. Lastly, we test stochastic stability of several numerical
examples via our criteria, one of which consists of all unstable
flow and all unstable jumps, yet has all the stochastic stability
properties aforementioned.

I. INTRODUCTION

Continuous-time Markov jump linear systems (MJLSs)
constitute a specialized category within randomly switched
systems, where linear subsystems interact with switching
signals generated by continuous-time Markov processes [1].
This modeling framework finds application in various areas,
including financial systems, communication networks, net-
worked control systems, biological systems, power systems,
etc. (cf. [2] and the references therein). Given the significance
of such systems, our focus lies in comprehensively under-
standing the intricacies of MJLSs, with the aim of leveraging
this understanding for applications in identification, control,
and stabilization.

Extensive research has been devoted to investigating
stochastic stability properties of MJLSs, encompassing as-
pects such as almost sure stability and moment stability [3],
[4], [5]. Similar investigations extend to randomly switched
nonlinear systems [6], [7], [8], systems with switching
signals generated by a broader class of random processes
[9], [10], [11], and switched diffusion, where stochastic
differential equations replace ordinary differential equations
for subsystem dynamics [12], [13], [14].

The motivation for this work stems from a continuation
of our previous research on the stability analysis of ran-
domly impulsive switched systems [11]. A primary objective
of this work is to enhance moment estimation, departing
from conventional stability analysis methods relying on the
assumption of multiple Lyapunov functions [15]. The draw-
backs of multiple Lyapunov functions approach are twofold:
firstly, it introduces natural inequalities, and the choice of
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Lyapunov functions significantly impacts the conservatism
of stability criteria [16]. Secondly, Lyapunov functions map
a multidimensional state to a scalar value, resulting in
significant information loss. Notably, this method fails to
conclusively determine the stability of switched systems with
all unstable modes.

To address these limitations, our proposed alternative
involves a direct analysis via the state transition matrix,
capturing the precise evolution of each state component. It’s
worth noting, as stated in [17], that moment stability for
multidimensional randomly switched systems is considered
challenging and remains unresolved. This is because in the
context of multidimensional switched systems with arbitrary
switching, the challenges posed by non-commutativity be-
come evident when employing traditional stability analysis
methods based on the transition matrix [18, Chapter 2.2].
However, when the switching signals adhere to a Markov
process, non-commutativity ceases to be an impediment,
allowing us to precisely compute the expected mean and
mean square of the state. We also highlight that this approach
has been previously employed in [3] to derive moment
stability criteria for MJLSs. However, it’s important to note
that the MJLSs considered in that work do not allow state
jumps and impulses. In other words, the stability results
proposed in this work are more general, as they allow for
state jumps and impulses in the context of MJLSs.

This work introduces the concept of component-wise
asymptotic moment stability and explores its relationship
with classical asymptotic moment stability and almost sure
global asymptotic stability. The analysis reveals that the
component-wise 1st and 2nd moments of a MJLS can
be accurately computed through linear ordinary differential
equations. Consequently, the study establishes necessary and
sufficient conditions for component-wise asymptotic 1st and
2nd moment stability. To validate the proposed criteria,
stochastic stability is tested on several numerical examples,
including one with all unstable flow and jumps, yet exhibiting
all the stochastic stability properties discussed earlier.

The rest paper is organized as follows. Section II provides
the necessary math notions, introduces MJLSs and defines
several stochastic stability properties. Section III then shows
the relations between all the stochastic stability properties.
Section IV then provide the formulae for component-wise
moments and the necessary and sufficient conditions for
component-wise asymptotic moment stability. Section V
contains several numerical examples, where stochastic sta-
bility properties are tested by the proposed criteria. Finally,
Section VI concludes the paper.
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II. PRELIMINARIES

In this section, we provide the necessary math notions,
introduce MJLSs and define several stochastic stability prop-
erties.

A. Math notions

Let N,N>0 be the sets of non-negative integers and
positive integers, respectively, and let R,R≥0,R>0 be the set
of all real numbers, non-negative real numbers and positive
real numbers, respectively. Let In be the n-dimensional
identity matrix. If q is a vector, diag(q) means a diagonal
matrix, whose diagonal elements are the elements in q; if
A1, · · · , Am are matrices, then diag(A1, · · · , Am) means
a block diagonal matrix, the blocks on the diagonal of
whom are given by A1, · · · , Am. The Kronecker product
of two matrices A,B is denoted by A ⊗ B. The operator
vec : Rn×n → Rn2

denotes square matrix vectorization, and
vec−1 denotes its inverse map. Let | · | denote the absolute
value of a real number, and ∥ · ∥ denote the Euclidean norm
of a vector. If X is a vector of random variables or a
matrix of random variables, then E(X) denotes the vector
or matrix of expectations of each component in X . If the
left limit of x : R≥0 → Rn exists everywhere, we denote
lims→t− x(s) =: x(t−).

B. Markov jump linear systems

Let M = {1, . . . ,m}. An impulsive switching signal is
defined by a pair (σ, T ), where σ : R≥0 → M is a Càdlàg
(right-continuous and left limit exists everywhere) piece-wise
constant function and T ⊂ R>0 is a countable set satisfying
the following two conditions:

1) All discontinuities of σ belong to T .
2) For any bounded interval I, card(I ∩ T ) < ∞,

where card(·) denotes the cardinality of a set. Note that by
our definition, it is allowed to have σ(t−) = σ(t) for t ∈ T .
Such time instants are considered as impulse instants.

For any impulsive switching signal (σ, T ), let T =
{t1, t2, · · · } and denote t0 = 0 as a convention.
We call the sequence σ (t0) , σ (t1) , · · · the jump chain
and ∆t0,∆t1, · · · where ∆tk := tk+1 − tk the so-
journ times of the impulsive switching signal (σ, T ). Let(
Ω,F, (Ft)t≥0 ,Pr

)
be a complete filtered probability space,

where (Ft)t≥0 is the natural filtration, satisfying the usual
conditions. Let p0 be a probability vector of dimension
m,Π be a row stochastic matrix1 of dimension m, and
q ∈ Rm

>0. We say an impulsive switching signal (σ, T ) obeys
Markov process with data p0,Π, q, denoted as (σ, T ) ∼
Markov(p0,Π, q), if the following conditions are satisfied
on the jump chain and sojourn times:
(a) The jump chain σ (t0) , σ (t1) , · · · is a discrete-time-

Markov-chain with initial probability vector p0 and

1A probability vector of dimension m ∈ N>0 is a column vector v =
[vi] ∈ Rm

≥0 such that
∑m

i=1 vi = 1. A row stochastic matrix of dimension
m ∈ N>0 is a matrix Q = [qij ] ∈ Rm×m

≥0 such that
∑m

j=1 qij = 1 for
all i = 1, . . . ,m.

probability transition matrix Π. That is,

Pr (σ (t0) = i) = (p0)i,

Pr (σ (tk) = j | σ (tk−1) = i) = πij .

(b) For any k ∈ N, the sojourn time ∆tk only depends
on the most recent mode σ(tk) and obeys exponential
distribution with parameters qσ(tk). That is,

Pr(∆tk ≥ t |σ(tk) = j, σ(ti),∆ti ∀i = 0, . . . k − 1)

= Pr (∆tk ≥ t | σ(tk) = j) = e−qjt.

We remark that we allow πii > 0, which is the probability
for an incidence of switching back to the same mode. Our
definition is consequently a generalized version of Markov
process with possible self-jumps.

Let Ai, Bij ∈ Rn×n for all i, j ∈ M. An n-dimensional
Markov jump linear system (abbreviated as MJLS) with m
modes is given by

ẋ(t) = Aix(t) ∀t ̸∈ T , (1a)

x(t) = Bijx(t
−) ∀t ∈ T s.t σ(t−) = i, σ(t) = j. (1b)

where x : R≥0 → Rn is the state trajectory and (σ, T ) ∼
Markov(p0,Π, q). Note that contrast to the MJLSs defined
in [1], we allow the state to jump linearly at switches. The
jump depends on both modes before and after the switch.

C. Statistical stability properties

Definition 1 The MJLS is asymptotically 1st moment stable
(or asymptotically mean stable, abbreviated as AMS), if there
exists2 β ∈ KL such that for any x0 ∈ Rn, t ∈ R≥0,

|E(v(t))| ≤ β(∥x0∥, t), (2)

where v(t) = ∥x(t)∥.

Definition 2 The MJLS is asymptotically 2nd moment sta-
ble (or asymptotically mean square stable, abbreviated as
AM2S), if there exists β ∈ KL such that for any x0 ∈ Rn, t ∈
R≥0, the inequality (2) holds for v(t) = ∥x(t)∥2.

Definition 3 The MJLS is component-wise asymptotically
1st moment stable (abbreviated as CAMS), if there exists
β ∈ KL such that for any x0 ∈ Rn, t ∈ R≥0, the inequality
(2) holds for v(t) = xi(t) for any i = 1, . . . , n.

Definition 4 The MJLS is component-wise asymptotically
2nd moment stable (abbreviated as CAM2S), if there exists
β ∈ KL such that for any x0 ∈ Rn, t ∈ R≥0, the inequality
(2) holds for v(t) = xi(t)xj(t) for any i, j = 1, . . . , n.

Definition 5 The MJLS is almost surely globally asymptot-
ically stable (abbreviated as GAS a.s.), if for any x0 ∈ Rn,

Pr
(
lim
t→∞

∥x(t)∥ = 0
)
= 1.

2A function α : R≥0 → R≥0 is said to be of class K if it is continuous
and strictly increasing, α(0) = 0 and α(s) > 0 for all s > 0. A function
β : R≥0×R≥0 → R≥0 is said to be of class KL if β(·, t) is of class K for
each t ∈ R≥0, β(s, ·) is continuous and decreasing, and limt→∞ β(s, t) =
0 for each fixed s ∈ R≥0.
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III. RELATIONS BETWEEN DIFFERENT STABILITY
DEFINITIONS

The relations between the five stochastic stability proper-
ties are summarized in the following theorem.

Theorem III.1 For the MJLS (1), the implications depicted
by the arrows in Figure 1 hold, and any implications not
depicted by arrows fail.

CAMS

CAM2S

AMS

AM2S

GAS a.s.

(a)

(b)

(c) (d) (e) (f)

(g)

(h)

(i)

Fig. 1. The relations between stability properties

Except for the bidirectional implication (a), we define
¬(k) as the converse of an implication denoted by an arrow
(k). The truth of implications (b), (f), (h), and the failure of
implications ¬(b),¬(f),¬(h) are well-known results [4]. In
this work, the equivalence of (a) is proven by Lemma III.2.
The implication ¬(d) is then refuted by combining (a) and
¬(f), while the implication (g) is a straightforward result
of the fact that −∥x∥ ≤ xi ≤ ∥x∥ for any component
xi in the vector x. The implications (c), (d), (e), (f) are
consequences of the other true implications. The remaining
false implications, namely, ¬(c),¬(e),¬(g),¬(i), and the
hidden implications between CAMS and GAS a.s., will be
demonstrated by examples in Section V. It’s noteworthy that,
to disprove, for instance, ¬(c), we must find a MJLS that is
CAM2S but not CAMS. This involves establishing necessary
and sufficient conditions for component-wise asymptotic
moment stability, a topic discussed in the next section.

Lemma III.2 CAM2S and AM2S are equivalent.

Proof: To show CAM2S implies AM2S, we use the
relation that E(∥x∥2) = E(

∑n
i=1 x

2
i ) =

∑n
i=1 E(x

2
i ). To

show the other direction, we use the relation that |E(xixj)| ≤
E(|xixj |) ≤ 1

2E(x
2
i + x2

j ) ≤ E(∥x∥2).

IV. NECESSARY AND SUFFICIENT CONDITIONS FOR
CAMS AND CAM2S

Our necessary and sufficient conditions for component-
wise asymptotic moment stability is a natural consequence
of the following theorem, which provides exact formulae for
the component-wise 1st and 2nd moments of an MJLS.

Theorem IV.1 Consider an m-mode MJLS (1) where
(σ, T ) ∼ Markov(p0,Π, q). For any initial state x(0) =
x0 ∈ Rn, it holds that

E(x(t)) = U(t)(p0 ⊗ x0), (3)

E
(
x(t)x(t)⊤

)
= vec−1

(
V (t)

(
p0 ⊗ vec(x0x

⊤
0 )

))
, (4)

where U(t) ∈ Rn×mn is the solution to the matrix-valued
linear ordinary differential equation

d

dt
U(t) = U(t)(Ā1− Q̄1+ B̄1Q̄1), U(0) = 1⊤m⊗In, (5)

and V (t) ∈ Rn2×mn2

is the solution to the matrix-valued
linear ordinary differential equation

d

dt
V (t) = V (t)(Ā2−Q̄2+B̄2Q̄2), V (0) = 1⊤m⊗In2 , (6)

with matrices

Ā1=diag(A1, · · · , Am),

Ā2=diag(A1 ⊗ In+In ⊗A1, · · · , Am ⊗ In+In ⊗Am),

B̄1=

 π11B11 · · · πm1Bm1

...
. . .

...
π1mB1m · · · πmmBmm

,
B̄2=

 π11B11 ⊗B11 · · · πm1Bm1 ⊗Bm1

...
. . .

...
π1mB1m ⊗B1m · · · πmmBmm ⊗Bmm

,
Q̄1=diag(q)⊗ In,

Q̄2=diag(q)⊗ In2

Proof: Let Φ(t, s) ∈ Rn×n be the random state
transition matrix from time s to t. We have E(x(t)|σ(0) =
i) = E(Φ(t, 0)x0|σ(0) = i) = E(Φ(t, 0)|σ(0) = i)x0. Thus
in order to find E(x(t)), we first compute E(Φ(t, 0)|σ(0) =
i).

Condition on the first switch instance t1 = s and first
mode-to-go σ(t1) = j. If s > t, then

E(Φ(t, 0)|σ(0) = i, t1 = s > t, σ(t1) = j) = eAit.

Otherwise when s ≤ t, then

E(Φ(t, 0)|σ(0) = i, t1 = s ≤ t, σ(t1) = j)

= E(Φ(t, s)|σ(s) = j)Bije
Ais

= E(Φ(t− s, 0)|σ(0) = j)Bije
Ais,

where we have used the property that Markov process is
memoryless and time-invariant. Hence, we conclude that

E(Φ(t, 0)|σ(0) = i)

=
∑
j∈M

πij

∫ ∞

0

qie
−qisE(Φ(t, 0)|σ(0)= i,t1=s,σ(t1)=j)ds

=

∫ ∞

t

qie
−qiseAitds

+
∑
j∈M

πij

∫ t

0

qie
−qisE(Φ(t− s, 0)|σ(0) = j)Bije

Aisds

= e(Ai−qiIn)t
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+ qi
∑
j∈M

πij

∫ t

0

E(Φ(t− s, 0)|σ(0) = j)Bije
(Ai−qiIn)sds, (7)

where we have used the fact that Ai is commutative with
In so that e−qiseAis = e(Ai−qiIn)s. By defining Uk(τ) :=
E(Φ(τ, 0)|σ(0) = k) ∈ Rn×n for any τ ∈ R≥0, k ∈ M, we
can re-write (7) as

Ui(t)=e(Ai−qiIn)t+qi
∑
j∈M

πij

∫ t

0

Uj(t−s)Bije
(Ai−qiIn)sds. (8)

Differentiate (8) with respect to t, we have

d

dt
Ui(t)=e(Ai−qiIn)t(Ai − qiIn) + qi

∑
j∈M

πij

(
Bije

(Ai−qiIn)t

+

∫ t

0

∂

∂t
Uj(t− s)Bije

(Ai−qiIn)sds
)
, (9)

where we have used the fact that Uj(0) = E(Φ(0, 0)|σ(0) =
j) = In, and the property that d

dte
Mt = MeMt = eMtM .

Now, note that ∂
∂tUj(t− s) = − ∂

∂sUj(t− s). Meanwhile, it
follows from integration by parts that

−
∫ t

0

∂

∂s
Uj(t− s)Bije

(Ai−qiIn)sds=Uj(t)Bij −Bije
Ai−qiInt

+

∫ t

0

Uj(t− s)Bije
(Ai−qiIn)s(Ai − qiIn)ds. (10)

By plugging (10) into (9), we conclude

d

dt
Ui(t) = e(Ai−qiIn)t(Ai − qiIn)

=

e(Ai−qiIn)t+qi
∑
j∈M

πij

∫ t

0

Uj(t− s)Bije
(Ai−qiIn)sds


× (Ai − qiIn) + qi

∑
j∈M

πijUj(t)Bij

= Ui(t)(Ai − qiIn) + qi
∑
j∈M

πijUj(t)Bij ,

where we have used (8) on the right-hand side for the
last equality. By defining U(t) =

[
U1(t) · · · Um(t)

]
, we

recover the matrix-valued differential equation (5). Finally,

E(x(t)) = E(Φ(t, 0))x0

=

(∑
i∈M

E(Φ(t, 0)|σ(0) = i)(p0)i

)
x0

=
[
U1(t) · · · Um(t)

]  (p0)1x0

...
(p0)mx0

 ,

and we recover the expression (3).
To find E

(
x(t)x(t)⊤

)
, we first compute

E
(
x(t)x(t)⊤|σ(0) = i

)
= E

(
Φ(t, 0)x0x

⊤
0 Φ(t, 0)

⊤|σ(0) =
i
)
. Apply similar analysis for the derivation of (7), we

conclude that

E
(
Φ(t, 0)x0x

⊤
0 Φ(t, 0)

⊤|σ(0) = i
)

= e−qiteAitx0x
⊤
0 e

A⊤
i t + qi

∑
j∈M

πij

∫ t

0

e−qisE∗
ij(s)ds. (11)

with E∗
ij(s) := E

(
Φ(t − s, 0)Bije

Aisx0x
⊤
0 e

A⊤
i sB⊤

ijΦ(t −
s, 0)⊤|σ(0) = j

)
. Now, vectorize both sides of (11) and use

the identity that vec(Mxx⊤M⊤) = (M⊗M) vec(xx⊤), we
conclude that

E
(
Φ(t, 0)⊗ Φ(t, 0)|σ(0) = i

)
vec(x0x

⊤
0 )

= e−qit
(
eAit ⊗ eAit

)
vec(x0x

⊤
0 )

+qi
∑
j∈M

πij

∫ t

0

e−qisE
(
Φ(t− s, 0)⊗ Φ(t− s, 0)|σ(0)=j

)
× (Bij ⊗Bij)

(
eAis ⊗ eAis

)
vec(x0x

⊤
0 )ds.

Since this equation holds for any x0 ∈ Rn, by defining
Vk(τ) := E

(
Φ(τ, 0)⊗Φ(τ, 0)|σ(0) = k

)
, we conclude that

Vi(t) = e−qit
(
eAit ⊗ eAit

)
+ qi

∑
j∈M

πij

∫ t

0
e−qisVj(t− s) (Bij ⊗Bij)

(
eAis ⊗ eAis

)
ds. (12)

Similar to the previous analysis, we aim to take time
derivative of Vi(t). First, note the identity that

d

dt

(
eAit ⊗ eAit

)
=
(
eAitAi

)
⊗ eAit + eAit ⊗

(
eAitAi

)
=
(
eAit ⊗ eAit

)
(Ai ⊗ In + In ⊗Ai). (13)

Meanwhile, integration by parts gives

−
∫ t

0

e−qis

(
∂

∂s
Vj(t− s)

)
(Bij ⊗Bij)

(
eAis ⊗ eAis

)
ds

= −e−qisVj(t− s) (Bij ⊗Bij)
(
eAis ⊗ eAis

)
|t0

+

∫ t

0

(
d

ds
e−qis

)
Vj(t− s)(Bij ⊗Bij)

(
eAis ⊗ eAis

)
ds

+

∫ t

0

e−qisVj(t− s) (Bij ⊗Bij)
d

ds

(
eAis ⊗ eAis

)
ds

= −e−qit (Bij ⊗Bij)
(
eAit ⊗ eAit

)
+ Vj(t) (Bij ⊗Bij)

+

∫ t

0

e−qisVj(t− s) (Bij ⊗Bij)
(
eAis ⊗ eAis

)
× (Ai ⊗ In + In ⊗Ai − qiIn2) ds,

where we have used the identity (13) and the fact that
Vj(0) = E

(
Φ(0, 0) ⊗ Φ(0, 0)|σ(0) = j

)
= In2 . Hence, we

obtain
d

dt
Vi(t) = e−qit

(
eAit ⊗ eAit

)(
Ai ⊗ In + In ⊗Ai − qiIn2

)
+ qi

∑
j∈M

πij

(
Vj(t) (Bij ⊗Bij)

+

∫ t

0

e−qisVj(t− s) (Bij ⊗Bij)
(
eAis ⊗ eAis

)
× (Ai ⊗ In + In ⊗Ai − qiIn2) ds

)
= Vi(t)

(
Ai ⊗ In + In ⊗Ai − qiIn2

)
+ qi

∑
j∈M

πijVj(t) (Bij ⊗Bij)

where we have used (12) on the right-hand side for the
last equality. By defining V (t) =

[
V1(t) · · · Vm(t)

]
, we

recover the matrix-valued differential equation (6). Finally,

vec
(
E
(
x(t)x(t)⊤

))
= E

(
Φ(t, 0)⊗ Φ(t, 0)

)
vec(x0x

⊤
0 )

=

(∑
i∈M

E
(
Φ(t, 0)⊗ Φ(t, 0)|σ(0) = i

)
(p0)i

)
vec(x0x

⊤
0 )
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=
[
V1(t) · · · Vm(t)

]  (p0)1 vec(x0x
⊤
0 )

...
(p0)m vec(x0x

⊤
0 )


and we recover the expression (4).

Unlike the upper bounds provided by [11] for the moment,
the formulae (3) and (4) are exact for the component-wise
moment. This advantage stems from our departure from the
multiple Lyapunov function approach in our analysis. It has
also come to the authors’ attention that similar formulae for
the 1st and 2nd moment appear in [3] and [1, Chapter 3].
However, it is crucial to note that the MJLSs considered in
those works do not account for state jumps at switches and do
not allow impulses. Therefore, our results are more general
and applicable in a broader context.

Based on Theorem IV.1, we immediately have the follow-
ing corollaries.

Corollary IV.2 The MJLS (1) is CAMS (resp. CAM2S) if
and only if the matrix Ξ1 := Ā1 − Q̄1 + B̄1Q̄1 (resp. Ξ2 :=
Ā2 − Q̄2 + B̄2Q̄2) is Hurwitz.

Corollary IV.3 The MJLS (1) is CAMS (resp. CAM2S) if
and only if it is CAMS (resp. CAM2S) with exponential decay
rates (i.e., β(s, t) = α(s)e−λt for some α ∈ K, λ > 0.)

Corollary IV.2 provides a necessary and sufficient condi-
tion for CAMS and CAM2S. Corollary IV.3, on the other
hand, suggests that component-wise asymptotic moment sta-
bility is the same as component-wise exponential moment
stability for MJLS.

V. EXAMPLES

In this section, we test stochastic stability of four numer-
ical examples using our stability criteria. All examples have
only 2 modes and we assume that the switching signal obeys
the same Markov process with data p0 =

[
1
0

]
, Π =

[
0 1
1 0

]
,

q =
[
1
1

]
. The first three examples are used to disprove some

implications in Theorem III.1 and we further assume that
the state does not jump at switches; i.e., Bi,j = In for all
i, j ∈ {1, 2}. The last example consists of all unstable flow
and all unstable jumps, yet we show that the system has all
the five stochastic stability properties.

A. GAS a.s. but not CAMS example
Consider a one dimensional example with A1 =

0.25, A2 = −0.3. Intuitively, as the expected total activation
time of mode 1 and mode 2 converge on the long run,
and because the state decays at a faster rate in mode 2
compared with the growth rate in mode 1, it is expected
that asymptotically the state should converge to 0. This
is consistent with the conclusion drawn by [4, Section 4]
that this system is GAS a.s.. On the other hand, it is not
difficult to compute that Ξ1 =

[−0.75 1
1 −1.3

]
, which is not

Hurwitz. Hence, by Corollary IV.2, this system is not CAMS.
The 1st and 2nd moments, both theoretically computed and
statistically estimated, are plotted in Figure 2. As a result, this
example disproves the implication from GAS.a.s. to CAMS
in Figure 1.
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Fig. 2. 1st moment plot (left) and 2nd moment plot (right) for the first
example. Solid curves are the computed values by (3), (4). Dotted curves
are the statistical averages from 5000 Monte Carlo simulations. The thinner
dashed curve is a sample trajectory of x(t).

B. CAMS but not CAM2S example

Now we alter the dynamics of mode 1 of the example in
Section V-A so that A1 = 0.2. Because the divergence rate
becomes slower, by a similar argument as for the previous
example we again conclude GAS a.s.. On the other hand,
we have Ξ1 =

[−0.8 1
1 −1.3

]
which is Hurwitz, and Ξ2 =[−0.6 1

1 −1.6

]
which is not Hurwitz. Hence, by Corollary IV.2,

this system is CAMS but not CAM2S. Similar to the previous
example, the 1st and 2nd moments are plotted in Figure 3. As
a result, this example disproves the implications ¬(c),¬(i)
in Figure 1. With the equivalence (a), we further disprove
the implication ¬(e).
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Fig. 3. 1st moment plot (left) and 2nd moment plot (right) for the 2nd
example. Same explanation as for Figure 2.

C. CAMS but not AMS example

Consider a two dimensional example with A1 =
[
0 −1
1 0

]
,

A2 =
[

0 1
−1 0

]
. It can be intuitively understood that on the

phase plane, the state x(t) rotates counter clockwise in mode
1 and clockwise in mode 2. Therefore, ∥x(t)∥ is constant and
the system is not AMS, nor GAS a.s.. However, it can be
computed that

Ξ1 =

[−1 −1 1 0
1 −1 0 1
1 0 −1 1
0 1 −1 −1

]
which is Hurwitz. Hence, by Corollary IV.2, this system is
CAMS. Intuitively, as t increases, the state x(t) will tend to
be “uniformly” distributed on the unit circle of radius ∥x(0)∥
on the phase plane. Thus, while ∥x(t)∥ remains constant,
component-wisely |E(xi)| converges to 0. The component-
wise 1st and 2nd moments are plotted in Figure 4. As a
result, this example disproves the implication ¬(g) and the
implication from CAMS to GAS a.s. in Figure 1.
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Fig. 4. 1st moment plot (left) with blue, cyan curves meaning x1, x2

respectively, and 2nd moment plot (right) with blue, cyan and orange curves
meaning x2

1, x
2
2, x1x2 respectively, for the 3rd example. Same explanation

as for Figure 2.

D. CAMS example with all unstable flow and jumps

Motivated by the example in [19], we consider a two
dimensional example with A1 =

[−1.9 0.6
0.6 −0.1

]
, A2 =[

0.1 −0.9
0.1 −1.4

]
, B11 = B12 =

[
1.1 0
0 0.9

]
, B21 = B22 =

[
0.9 0
0 1.1

]
.

The flow of the system is all unstable, since both Ai matrices
have eigenvalues with positive real parts. Meanwhile, all
jumps of the system are unstable as well, since all Bij

matrices have eigenvalues with magnitude larger than 1.
Nevertheless, it can be computed that

Ξ1 =

[−2.9 0.6 1.1 0
0.6 −1.1 0 0.9
0.9 0 −0.9 0.1
0 1.1 −0.9 −2.4

]
,

Ξ2 =


−4.8 0.6 0.6 0 1.21 0 0 0
0.6 −3 0 0.6 0 0.99 0 0
0.6 0 −3 0.6 0 0 0.99 0
0 0.6 0.6 −1.2 0 0 0 0.81

0.81 0 0 0 −0.8 0.1 0.1 0
0 0.99 0 0 −0.9 −2.3 0 0.1
0 0 0.99 0 −0.9 0 −2.3 0.1
0 0 0 1.21 0 −0.9 −0.9 −3.8

 .

Both of them are Hurwitz. Hence, by Corollary IV.2, this
system is both CAMS and CAM2S. The component-wise
1st and 2nd moments are plotted in Figure 4. In addition,
by Theorem III.1, this system is also AMS, AM2S and GAS
a.s.. In particular, GAS a.s.. means that despite all unstable
flow and jumps, each solution will eventually converge to 0
with probability 1.
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Fig. 5. 1st moment plot (left) and 2nd moment plot (right) for the 2nd
example. Same explanation as for Figure 4.

VI. CONCLUSION

In this work, we introduced and studied component-wise
asymptotic moment stability for continuous-time MJLSs. we
found exact formulae for the component-wise 1st and 2nd
moment, from which we obtain necessary and sufficient

conditions for the system to be component-wise asymptotic
moment stable. In the numerical simulation, we show that
our stability criteria can even be used to conclude stochastic
stability of a system with all unstable flow and jumps. In
the future work, we can extend our analysis to randomly im-
pulsive switched systems whose impulsive switching signals
are generated by semi-Markov processes, and to randomly
switched diffusion.
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