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Abstract—Output regulation theory is a highly effective
method for achieving accurate time-varying command following,
but redesigning its control architecture for different time-
varying command profiles can be necessary. Yet, this often re-
sults in control architectures with gain matrices of significantly
increased dimensions. This paper focuses on model reference
adaptive control of uncertain dynamical systems. Specifically,
our contribution is a gradient descent-based term that alters
both reference model trajectories and the control signal to
enable time-varying command following. In contrast to output
regulation theory, the proposed term can follow every potential
time-varying command profile without specificity as the gain
of this term increases. In addition to the presented theoretical
results, illustrative numerical examples are included to show
the efficacy of the proposed gradient descent-based term for
time-varying command following.

I. INTRODUCTION

The control design process requires an accurate mathemat-
ical model of a physical system. However, there are instances
where an accurate mathematical model may not be possible
to obtain, such as poor linearizations, changes in the equation
of motion, degraded control output, simplified modeling as-
sumptions, or environmental disturbances. When this occurs,
problems arise in the control architecture implementation
that may lead to poor closed-loop system performance or
complete instability due to these uncertainties. Robust control
(e.g., see [1] and [2]) and adaptive control (e.g., see [3] and
[4]) provide effective solutions in addressing the negative
effect from these system uncertainties. This paper focuses on
the adaptive control approach due to its benefits over robust
control, such as online learning and requiring less accurate
system modeling.

Direct and indirect designs are two main classes of adap-
tive control architectures. While indirect designs first estimate
the unknown parameters of the dynamical system and then
utilize these estimates to tune the control parameters, direct
designs tune the control parameters online without explicitly
relying on unknown parameter estimation. In addition, direct
methods do not require persistent excitation, which is re-

quired for accurate parameter estimation for indirect design
methods. Because of these benefits, this paper contributes
to an important class of direct adaptive control architectures
called model reference adaptive control.

In control theory, output regulation is a highly effective
method for achieving accurate time-varying command fol-
lowing [5]. Yet, it can demand a redesign of the control
architecture to accommodate different time-varying command
profiles. For example, suppose output regulation is utilized to
design a controller that follows a sinusoidal command profile.
In that case, a new controller may be redesigned to follow
a sinusoidal command profile with a different frequency or
simply another command profile such as a ramp or parabola.
Because this process is not desired from a reconfigurability
standpoint, a solution to address this problem is to choose a
finite set of potential time-varying command profiles for the
dynamical system to follow while using output regulation the-
ory. Yet, this often results in control architectures with gain
matrices of significantly increased dimensions. We refer to
[6] and [7] for notable contributions using output regulation
theory for model reference adaptive control.

The contribution of this paper is a new term for model-
reference adaptive control architectures that alters both the
reference model trajectories and the control signal. Specif-
ically, this term is developed using the gradient descent
approach, which minimizes an error criterion capturing the
difference between the time rate of change of the reference
model state and the time rate of change of a given command
profile. The proposed term can follow every potential time-
varying command profile without specificity as the gain of
this term increases. In addition to the presented theoretical
results, illustrative numerical examples are included to show
the efficacy of the proposed gradient descent-based term for
time-varying command following.

Finally, a standard mathematical notation is used through-
out the paper. We denote R for the set of real numbers,
R+ for the set of positive real numbers, Rn for the set of
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n × 1 real column vectors, Rn×m for the set of n ×m

real matrices, Rn×n
+ for the set of positive-definite real

matrices. In addition, “≜” declares equality by definition,
(·)−1 declares the inverse, (·)T declares the transpose, and
tr(·) declares the trace.

II. MODEL REFERENCE ADAPTIVE CONTROL

This section presents the review of a standard model ref-
erence adaptive control architecture, where additional details
can be found in [3] and [4].

A. Uncertain Dynamical System

We consider an uncertain dynamical system in the form
given by

ẋ(t) = Ax(t) +B
(
u(t) + θp(x(t))

)
, x(0) = x0, (1)

where x(t) ∈ Rn is the measurable state and u(t) ∈ Rm is
the control signal. The respective state and control matrices
A ∈ Rn×n and B ∈ Rn×m are known and controllable.
In addition, θp(x(t)) : Rn → Rm is a system uncertainty
that is composed of locally Lipschitz functions. A parametric
system uncertainty for θp(x(t)) is considered that takes the
form given by

θp(x(t)) =W T
p σp(x(t)). (2)

In (2), Wp ∈ Rs×m is an unknown weight and σp(x(t)) :

Rn → Rs is a known basis function.
We now consider the control signal in the form

u(t) = un(t) + ua(t), (3)

where un(t) ∈ Rm and ua(t) ∈ Rm respectively denote the
nominal and adaptive control signals. The nominal control
signal is given by

un(t) = −K1x(t) +K2c(t), (4)

where K1 ∈ Rm×n and K2 ∈ Rm×p respectively denote the
feedback and feedforward gain matrices. The gain matrix K1

needs to be chosen such that A − BK1 is Hurwitz and the
gain matrix K2 needs to be chosen such that

−E(A−BK1)
−1(BK2) = I (5)

holds, where E ∈ Rp×n denotes a subset of x(t) to be
followed for command tracking. In addition, the bounded
command profile is denoted by c(t) ∈ Rp and is assumed to
be continuously differentiable such that ċ(t) ∈ Rp is bounded
and measurable.

Note that the results of this paper require that ċ(t) is
measurable and this is not restrictive. To elucidate this point,
let cf(t) ∈ Rp and consider the low-pass filter given by

ċf(t) = −ζ(cf(t)− c(t)), cf(0) = cf0, (6)

where ζ ∈ R+. Because c(t) is bounded, it follows from the
input-to-state stability that cf(t) is bounded [8]. In addition,

ċf(t) is bounded as well due to the right side of (6) containing
only bounded terms. Therefore, when c(t) is not continuously
differentiable and ċ(t) is not measurable, cf(t) and ċf(t) can
respectively be used instead of c(t) and ċ(t) in the results
presented in this paper. When in use, the low-pass filter gain
ζ should be adjusted judiciously to allow cf(t) and ċf(t) to
respectively remain sufficiently close to c(t) and ċ(t).

B. Reference Model

A reference model is created to capture the desired closed-
loop system performance. It is constructed by focusing on the
behavior of (1) in the absence of system uncertainties (i.e.,
θp(x(t)) ≡ 0) and without an adaptive control signal (i.e.,
ua(t) ≡ 0). The reference model dynamics can now take the
form given by

ẋr(t) = Axr(t) +Bur(t), xr(0) = xr,0, (7)

where xr(t) ∈ Rn is the reference model state and ur(t) ∈
Rm is the reference model control signal that satisfies

ur(t) = −K1xr(t) +K2c(t). (8)

The final form of the reference model is determined by using
(8) in (7), which yields

ẋr(t) = Arxr(t) +Brc(t), (9)

where Ar ≜ A−BK1 ∈ Rn×n and Br ≜ BK2 ∈ Rn×m . In
addition, the Lyapunov equation given by

0 = AT
r P + PAr +R (10)

holds for some R ∈ Rn×n
+ and P ∈ Rn×n

+ .

From (5) and (9), it follows that

lim
t→∞

(
Exr(t)− c(t)

)
= 0 (11)

only when the command c(t) is constant (once again, details
in [4]). From a practical standpoint, (11) approximately holds
as well for the case when the command c(t) is slowly time-
varying, yet otherwise (11) does not hold. Output regulation
theory can be adopted for the nominal control design in order
to accurately following time-varying commands. However,
it can demand a redesign of the control architecture to
accommodate different time-varying command profiles or it
can result in nominal control architectures with gain matrices
of significantly increased dimensions. In contrast, we can
achieve time-varying command following through a gradient
descent approach in the next section.

C. Adaptive Control

The closed-loop system dynamics can be written in a new
form by considering (1), (2), and (3) as

ẋ(t) = Arx(t) +Brc(t) +B
(
ua(t) +W T

p σp(x(t))
)
. (12)

In (12), the goal of the adaptive control signal ua(t) is
to suppress the negative effect of the system uncertainty
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W T
p σp(x(t)) such that the state of (12) approaches the state of

(9). To this standpoint, the adaptive control signal is chosen
to take the form

ua(t) = −Ŵ T
p (t)σp(x(t)), (13)

where Ŵp(t) ∈ Rs×m is the estimate of the unknown weight
Wp that satisfies the parameter adjustment mechanism of the
form given by

˙̂
Wp(t) = γσp(x(t))e

T(t)PB, Ŵp(0) = Ŵp0. (14)

In (14), the learning rate is denoted as γ ∈ R+ and dictates
the rate of adaption for the adaptive control signal. The error
is now defined as

e(t) ≜ x(t)− xr(t) ∈ Rn, (15)

which has corresponding dynamics of

ė(t) = Are(t)−BW̃T
p (t)σp(x(t)), e(0) = e0. (16)

In (16), the weight error is defined as

W̃p(t) ≜ Ŵp(t)−Wp ∈ Rs×m , (17)

which also has corresponding dynamics of

˙̃Wp(t) = γσp(·)eT(t)PB, W̃p(0) = W̃p0. (18)

Note that the trajectories of the error dynamics given by
(16) and the weight error dynamics given by (18) are then
bounded, and limt→∞ e(t) = 0. Note also that the structure
of the adaptive control signal (13) and parameter adjustment
mechanism (14) are determined through a Lyapunov stability
analysis that considers the error (15) and weight error (17).

A gradient descent approach is implemented in the next
section to aid time-varying command following. This objec-
tive is achieved by altering the dynamics of the reference
model, which also requires an adjustment to be made in
the nominal control signal. This allows for the stability
of the closed-loop system maintained and the condition
limt→∞ e(t) = 0 is preserved.

III. GRADIENT DESCENT-BASED MODEL
REFERENCE ADAPTIVE CONTROL

This section introduces a gradient descent-based term
to enable time-varying command profile following and the
corresponding stability of the closed-loop system.

A. Gradient Descent Minimization

The reference model control signal given by (8) is updated
to

ur(t) = −K1xr(t) +K2c(t) + ug(t), (19)

where ug(t) ∈ Rm is defined as

ug(t) ≜ BTψr(t). (20)

In (20), the low-pass filter state ψr ∈ Rn satisfies the
dynamics given by

ψ̇r(t) = −µ(ψr(t)− ϕr(t)), ψr(0) = ψr,0, (21)

where µ ∈ R+ is the low-pass filter gain and ϕr(t) ∈ Rn

is the proposed gradient descent-based term (details below).
The updated reference model is constructed by using (20)
in (19) and then using the resulting expression in (7). This
yields

ẋr(t) = Arxr(t) +Brc(t) +BBTψr(t), (22)

where (22) represents the reference model referred to in
this section. Rather than directly implementing the gradi-
ent descent-based term ϕr(t) in (20), its low-pass filtered
state ψr(t) is utilized instead. While gradient descent is a
powerful method for online function minimization problems,
oscillations may be induced [9]–[11]. During the develop-
ment process of this research paper, we have observed such
oscillations as well when we directly employ the gradient
descent-based term in (20). Motivated by this standpoint, we
have introduced the low-pass filter given by (21) and use the
low-pass filtered version of this term in (20). This discussion
also implies that the low-pass filter gain µ should not be high.

The proposed gradient descent-based term for (21) takes
the form

ϕr(t) = −ξAT
r E

T(EArxr(t) + EBrc(t)

+EBBTψr(t)− ċ(t)
)

(23)

where ξ ∈ R+ is the gradient descent gain. The structure of
the term in (23) is a result of the gradient descent process
for minimizing an error criterion of the difference between
the reference model state time rate of change and the given
command profile time rate of change. With this being said,
we now present the first theorem of this paper, where its
proof will be reported elsewhere.

Theorem 1. The proposed term ϕr(t) is the negative
gradient of the cost function1 as

ϕr(t) = −ξ ∂J(·)
∂xr(·)

, (24)

whose cost function is given by

J(·) = 1

2
(Eẋr(t)− ċ(t))T(Eẋr(t)− ċ(t)). (25)

The reference model in (22) can follow various time-
varying command profiles without specificity as the gain ξ

increases. This is owing to the fact that this gain multiplies
the negative gradient of the cost function J(·) according to
(24), which allows for faster online minimization of this cost
function. Concurrently, potential oscillations induced by the

1One needs to choose Exr(0) = c(0) to achieve Exr(t) = c(t) when
J(·) = 0. Because, J(·) = 0 implies Eẋr(t) = ċ(t), where taking the
integral of both sides we have Exr(t) − Exr(0) = c(t) − c(0). Under
Exr(0) = c(0), this expression now yields Exr(t) = c(t).
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gradient descent process are filtered through (21). We refer
to Section IV for the numerical examples of the effectiveness
of the proposed gradient descent-based term.

B. Closed-Loop System Stability

To ensure the closed-loop system stability and the condi-
tion limt→∞ e(t) = 0, we change the nominal control signal
given by (4) to

un(t) = −K1x(t) +K2c(t) + ug(t), (26)

which also changes (12) to

ẋ(t) = Arx(t)+Brc(t)+BB
Tψr(t)+B

(
ua(t)+W

T
p σp(x(t))

)
.

(27)
Now with the error signal given in (15), one can write the
identical error dynamics given in (16). Note that because the
error dynamics do not change, the adaptive control signal
given in (13) and the parameter adjustment mechanism given
in (14) remain the same. Finally, we make the following
assumption that is required for the following theorem of this
paper.

Assumption 1. The matrix given by

Az≜

[
Ar BBT

−µξAT
r E

TEAr −µ(I + ξAT
r E

TEBBT)

]
∈ R2n×2n,

(28)
is Hurwitz.

We are now ready to present the second main theorem of
this paper, where its proof will be reported elsewhere.

Theorem 2. Consider the uncertain dynamical system
given by (1) with (2) and the control signal given by (3)
with (26), (20), (13), (14), (22), and (21). The trajectories
of the error dynamics given by (16) and the weight error
dynamics given by (18) are then bounded. If, in addition,
Assumption 1 holds, the trajectories of the reference model
dynamics given by (22) and the low-pass filter dynamics (21)
are also bounded, and limt→∞ e(t) = 0.

IV. ILLUSTRATIVE NUMERICAL EXAMPLES

Two numerical examples are now presented to demonstrate
the efficacy of the proposed gradient descent-based model
reference adaptive control architecture for following time-
varying command profiles.

A pendulum system with unity parameters is considered
for command profile testing, where x1(t) is the angular
position (i.e., x1(t) ≡ 0 denotes the pendulum arm pointing
in the downwards direction) and x2(t) is the angular velocity.
Specifically, A =

[
0 1
−1 0

]
and B =

[
0
1

]
are considered for

(1). In addition, the presented example focuses on regulating
the angular position of the pendulum, and therefore, we set
E = [1 0]. For the nominal control signal gain matrices, we
choose K1 = [0.1547 0.8017], K2 = [1.1547]. Furthermore,
R = I is used to solve the Lyapunov equation given in (10).
For the injected uncertainty, we use Wp = [1 2]T for the

unknown weight and σp(x(t)) = x(t) for the known basis
function, where the learning rate is set to γ = 15. Finally,
all initial conditions are set to zero.

We are now ready to present the two aforementioned
numerical examples, where a sinusoidal command profile is
considered for the first one and a parabola command profile
is considered for the second one.

A. Following Sinusoidal Command

The first case presented here is of a sinusoidal signal for
command following. Figures 1 and 2 respectively display the
position command following performance and the control
signal for the standard model reference adaptive control
architecture as described in Section II. Though the standard
architecture suppresses the negative effect of system uncer-
tainties in the sense that the angular position asymptotically
approaches the reference model position, the angular position
experiences a large error when compared to the time-varying,
sinusoidal command profile.

We now present the numerical results for the proposed
gradient descent-based model reference adaptive control ar-
chitecture as described in Section III. Figures 3 and 4 respec-
tively display the position command following performance
and the control signal, where the gains ξ = 165 and µ = 0.35

are chosen to allow Assumption 1 to hold. The proposed
architecture maintains the system uncertainty suppression
seen for the standard adaptive case, while also following the
sinusoidal command profile sufficiently close. Lastly, Figure
5 displays the change in the reference model angular position
performance when the gradient gain is altered from ξ = 0 to
ξ = 165. Here, it is clear that improved command following
performance is seen as we increase ξ.

B. Following Parabola Command

The second case presented here is of a parabola sig-
nal for command following. Figures 6 and 7 respectively
display the position command following performance and
the control signal for the standard model reference adaptive
control architecture as described in Section II. Once again,
the standard architecture suppresses the negative effect of
system uncertainties in the sense that the angular position
asymptotically approaches the reference model position, but
the angular position again experiences a large error when
compared to the time-varying parabola command profile.

Now we give the numerical results for the proposed gradi-
ent descent-based model reference adaptive control architec-
ture as described in Section III. Figures 8 and 9 respectively
display the position command following performance and the
control signal, where the gains ξ = 120 and µ = 0.2 are
chosen to allow Assumption 1 to hold. The proposed archi-
tecture can again maintain the system uncertainty suppression
seen for the standard adaptive case, while also following the
parabola command profile sufficiently close. Lastly, Figure 10
displays the change in the reference model angular position
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Fig. 1. Sinusoidal command following performance for the standard model
reference adaptive control architecture.
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Fig. 2. Control signal for the standard adaptive control architecture for the
sinusoidal command following case.
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Fig. 3. Sinusoidal command following performance for the gradient descent
model reference adaptive control architecture.

performance when the gradient gain is altered from ξ = 0 to
ξ = 120. It is again clear that improved command following
performance is seen as we increase ξ.

V. CONCLUSION

This paper proposed a new term for model reference adap-
tive control architectures to aid in time-varying command
following. This was accomplished by updating both the ref-
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Fig. 4. Control signal for the gradient descent adaptive control architecture
for the sinusoidal command following case.
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Fig. 5. Changes in the reference model angular position state as a function
of ξ for the sinusoidal command following case.

erence model trajectories and the control signal. In particular,
the proposed term was determined by using the gradient
descent approach for minimizing an error criterion. The
error criterion that was implemented captured the difference
between the reference model state time rate of change and the
given command profile time rate of change. The key focus of
the proposed gradient descent term was to aid in time-varying
command profile following, where improved performance is
seen as the gain of this term increases. As compared to
output regulation theory, the proposed term does not require
a redesign of the control architecture for accommodating
different time-varying command profiles, which provides a
unique benefit by allowing any time-varying command profile
to be followed without specificity. Illustrative numerical
examples were further presented to demonstrate the benefits
of the gradient descent-based approach.

Future research will consider applying the proposed gra-
dient descent approach to the recently proposed symbiotic
control framework [12] to allow for efficient time-varying
command following. It will also be directed towards the
implementation of state-dependent design gains to allow for
automatic adjustments when following time-varying com-
mand profiles.
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Fig. 6. Parabola command following performance for the standard model
reference adaptive control architecture.
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Fig. 7. Control signal for the standard adaptive control architecture for the
parabola command following case.
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Fig. 8. Parabola command following performance for the gradient descent
model reference adaptive control architecture.
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