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Abstract— Faulty joints in a robot manipulator adversely
affect the tracking control performance and compromise the
system’s stability; therefore, it is necessary to design a control
system capable of compensating for the effects of actuator faults
to maintain control efficacy. To this end, this paper presents
new amendments to the dynamical formulation of robot ma-
nipulators to account for latent actuator faults and over-
generated torques mathematically. Subsequently, a novel auto-
tuning subsystem-based fault-tolerant control (SBFC) mecha-
nism is designed to force joints’ states closely along desired
trajectories, while tolerating actuator faults, excessive torques,
and unknown modeling errors. Suboptimal SBFC gains are
determined by employing the JAYA algorithm (JA), a high-
performance swarm intelligence technique, standing out for
its capacity to continuously approach optimal control levels
without requiring meticulous tuning of algorithm-specific pa-
rameters, relying instead on its intrinsic principles. Notably,
this control framework ensures uniform exponential stability
(UES). The enhancement of accuracy and tracking time for
reference trajectories, along with the validation of theoretical
assertions, is demonstrated through simulation outcomes.

I. INTRODUCTION

When applied to high-degree-of-freedom (DoF) manipula-
tor systems, subsystem-based control decomposes a complex
and high-order system into subsystems and can assist in the
development of localized control strategies and the assess-
ment of stability at the subsystem level [1], [2]. However,
a new form of subsystem complexity is introduced based
on interconnected state- and time-variant uncertainties, as
well as joint faults, which are commonplace in real-world
industrial settings [3]. Failures in autonomous and intelligent
robotic systems can stem from various events, including
internal actuator issues, power supply system failures, or
wiring problems, impairing their performance, rendering
them incapable of carrying out their tasks and necessitating
the design of fault-tolerant control mechanisms to ensure
their continued safe operation without causing harm [4]–
[6]. As one potential remedy, many studies have focused on
passive fault-tolerant control (PFTC) to maintain operational
integrity and safety in applications that lack fault diagnosis
and active intervention sections [7]. In their work [8], Van
and Ge designed a passive fault-tolerant approach to mitigate
the rapid effects of faults for robotic manipulators based on
a robust backstepping control integrated with other methods.
Likewise, in pursuit of achieving both fast response and
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high-precision tracking performance, Anjum and Guo in [9],
proposed a PFTC system for robotic manipulators, built upon
a fractional-order adaptive backstepping approach.

Furthermore, considering the limitations imposed by the
magnitude of physical actuators, sensors, and interfacing
devices, it becomes imperative to account for control input
constraints [10]. Deviating from these constraints can result
in the emergence of undesirable vibrations, degradations in
system performance, and, in some cases, complete system
immobilization [11]. Nohooji, as outlined in [12], enhanced
the robustness of his neural adaptive proportional-integral-
derivative (PID) control for manipulators by incorporating
considerations of constrained behavior during system opera-
tion. Similarly, Yang et al. [13] developed an online integral
reinforcement learning strategy to address the challenges
of robust constrained control in nonlinear continuous-time
systems.

Furthermore, to overcome a formidable challenge for
subsystem-based control designers, managing the extensive
array of control gains that demand meticulous tuning is
imperative, as they exert a distinct impact on the system’s
transient and steady performance, even when deploying
highly effective and top-performing control methodologies.
As a promising solution to this challenge, population-based
optimization algorithms have gained popularity in recent
times due to their efficiency [14]. However, the improper
tuning of algorithm-specific parameters can lead to increased
computational effort or the attainment of suboptimal lo-
cal solutions [15]. In contrast to most other optimization
algorithms that necessitate the fine-tuning of algorithm-
specific parameters for updating particle positions, the JAYA
algorithm (JA) uniquely relies on its inherent principles to
adapt and optimize a wide range of problems [16]. The JA
was developed by Rao [17], with the primary objective of
addressing both constrained and unconstrained optimization
problems. It stems from an innovative swarm-based heuristic
introduced in the work by Nanda et al. [18]. Further, in
[19], Houssein and colleagues conducted an extensive review
of renowned optimization algorithms. Their investigation
revealed that in the task of function minimization, the
JA consistently outperformed these well-established swarm-
based algorithms, delivering markedly superior results in
terms of both precision and convergence speed. Interestingly,
in [20], Bansal and collaborators explored the capabilities
of three distinct optimization algorithms for fundamental
backstepping control of a single-link flexible joint manip-
ulator system. Similar to [19], their investigative findings
indicated that JA optimization consistently outperformed the

2024 IEEE 63rd Conference on Decision and Control (CDC)
December 16-19, 2024. MiCo, Milan, Italy 

979-8-3503-1632-2/24/$31.00 ©2024 IEEE 7263



other methods in terms of fitness value.
In consideration of the critical significance of robust con-

trol in ensuring both the safety and performance of robotic
manipulators, this paper proposes a novel robust adaptive
subsystem-based control to maintain the system’s uniform
exponential stability (UES) while tolerating various actuator
faults, excessive torques, and unknown modeling errors. It
not only incorporates the management of joint failures but
also continuously improves the control parameters in subop-
timal levels by customizing the highly promising swarm in-
telligence technique (JA). Therefore, the present study offers
notable contributions to the field of robotics: (1) it introduces
an innovative model for joint torques across different types of
actuator functions: normal functioning (healthy mode), stuck
failure, performance loss (encompassing incipient and abrupt
faults), and saturation (excessive torque). Interestingly, this
model addresses the over-generated torques even by faulty
actuators; (2) it introduces a novel SBFC approach tailored
for robotic manipulators with n DoF, capable of tolerat-
ing diverse actuator faults, excessive torques, and unknown
modeling errors; (3) to tune the SBFC gains, a multi-
population and single-phase swarm intelligence technique
(JA) is amended, standing out for its capacity to continuously
approaches optimal control levels without the need for metic-
ulous tuning of algorithm-specific parameters, relying instead
on its intrinsic principles; (4) and the proposed control
strategy ensures the achievement of UES. The remaining
sections of this paper are organized as follows: In Section
II, the conventional model of an n DoF robotic manipulator
dynamic is augmented with comprehensive actuator fault
models and torque signal constraints. Section III outlines the
step-by-step design of the SBFC strategy and presents the
stability analysis. The effectiveness of the proposed strategy
is thoroughly investigated in the final section.

II. MODELING THE SYSTEM AND DEFINING THE
PROBLEM

A. N DoF Manipulator

Considering the typical robotic manipulator dynamics, as
detailed in [12], we have:

III(qqq)q̈qq =TTT −CCCmmm(qqq, q̇qq)q̇qq− fff (q̇qq)−GGG(qqq)−TTT LLL· (1)

In the given context, qqq ∈Rn represents the generalized joint
coordinate vector comprising ‘n’ joints. III(((qqq))) : Rn → Rn×n

characterizes the mass (inertia) properties, while CCCmmm(((qqq,,, q̇qq))) :
Rn × Rn → Rn×n accounts for the centrifugal and Cori-
olis forces. GGG(((qqq))) : Rn → Rn represents the gravitational
forces/torques, and fff (((q̇qq))) : Rn → Rn accounts for the re-
sistance encountered during movement. The vector TTT =
[T1, . . . ,Tn]

⊤ represents the generalized continuous torque
applied at the joints, and TTT LLL ∈ Rn signifies unaccounted-
for external disturbances that affect each joint. Notably,
the inertia matrix III(qqq) possesses the properties of being
symmetric, positive, and definite; thus, we can also say:

0 < Imin(III(qqq)−1)≤ ∥III(qqq)−1∥ ≤ Imax(III(qqq)−1), (2)

where ∥·∥ denotes the squared Euclidean norm, Imax(.)∈R+

and Imin(.)∈R+ represent the matrix III(qqq)−1’s maximum and
minimum eigenvalues, respectively.

B. Passive Faulty Dynamic Model

Next, we integrate the fault correction functionality into
the established control algorithm. To do so, we mathemat-
ically describe the actuator faults that may happen, as [6],
[21]:

TTT = TTT ccc + εεε(TTT sssaaattt −TTT ccc), (3)

where TTT ccc ∈ Rn represents the normal command control
during the system’s healthy state. We use εεε = diag(ε1, . . . ,εn)
and TTT sssaaattt ∈ Rn to characterize various types of actuator
failures, with t f signifying the period of fault occurrence.
When εi = 0, the corresponding actuator is functioning nor-
mally. When Tsat(i) ̸= 0 indicates a stuck failure. Meanwhile,
0< εi < 1 represents a performance loss. The behavior model
of the fault, when 0 < εi < 1, is extended, as follows:

εi = 1− e−γit t ∈ t f , γi > 0, (4)

where γi represents the rate of evolution of an undisclosed
fault. A small γi value indicates slow fault development,
termed an incipient fault. Conversely, a high γi value results
in the time course γi approximating a step form, classified
as an abrupt fault [22].

Remark (1): In this paper, we assume that εi ̸= 1. This
assumption is crucial because εi = 1 signifies an uncom-
pensatable fault in the ith actuator, resulting in a complete
loss of control access. In cases of such severe faults, control
strategies become impractical, necessitating the exploration
of mechanical alternatives. These alternatives are unrelated
to the concept of control strategies. They may involve
actions such as replacing or repairing the faulty actuator
or introducing an additional actuator to compensate for the
control failure, as discussed in [6].

C. Torque Signal Constraint

In addition to addressing actuator faults, our objective is
to account for the torque constraints to ensure they do not
exceed the specified nominal torque values. For i = 1, . . . ,n
joints to operate in compliance with the constraints imposed
on the control torque Ti(t) for each joint, whether in a healthy
or faulty state. This is achieved as follows:

S(Ti(t)) =


T̄i, T (t)≥ T̄i

T (t) T i ≤ T(t)≤ T̄i

T i T (t)≤ T i

· (5)

In this context, T̄i and T i denote the upper and lower nominal
torque bounds, respectively, of the permissible Ti(t) values
that can be generated. Consequently, we define:

SSS(((TTT ))) = [S1(T1(t)), . . . ,Sn(Tn(t))]⊤. (6)

To elaborate further, we define a constraint model as follows:

Si(Ti(t)) = s1i Ti(t)+ s2i, (7)

7264



where

s1i =

{
1

|Ti(t)|+1 , Ti(t)≥ T i or Ti(t)≤ T i

1 T i ≤ Ti(t)≤ T̄i
(8)

and

s2i =


T i − Ti(t)

|Ti(t)|+1 , Ti(t)≥ T i

0 T i ≤ Ti(t)≤ T i

T i −
Ti(t)

|Ti(t)|+1 Ti(t)≤ T i

· (9)

It is evident that Eqs. (7), (8), and (9) imply Eq. (5). We have
s2i ≤ max(|T i|+ 1, |T i|+ 1) and s1i ≤ 1. In addition, if we
generally say sss1 = diag(s11, . . . ,s1n), and sss2 = [s21, . . . ,s2n]

⊤,
we can have from (3) and (6):

SSS(TTT ) = sss111TTT + sss222, (10)

By incorporating both the faulty dynamic model defined in
(3) and the torque constraints outlined in (10), we derive
a novel model for joint torques that encompasses both
actuator faults and torque constraints. This model is designed
to prevent the generation of excessive torques by faulty
actuators, as detailed below:

SSS(TTT ) =SSS(TTT ccc + εεε(TTT sssaaattt −TTT ccc)) = sss111TTT ccc + sss111εεε(TTT sssaaattt −TTT ccc)+ sss222

=sss1(IIIn×n − εεε)TTT ccc + sss111εεεTTT sssaaattt + sss2,
(11)

where IIIn×n ∈ Rn×n represents the identity matrix. Conse-
quently, the manipulator dynamics described in (1), incor-
porating the new fault model introduced in (11), can be
reformulated as follows:

q̈qq = III−1(qqq)[sss1(IIIn×n − εεε)TTT ccc + sss2 −CCCmmm(qqq, q̇qq)q̇qq− fff (q̇qq)−GGG(qqq)
−TTT LLL + sss1εεεTTT sssaaattt ]·

(12)

For convenience, we can consider:

λ̄λλ = sss1(IIIn×n − εεε) = diag(λ̄1, . . . , λ̄n), 0 < λ̄i ≤ 1
sssmax = sss2 + sss1εεεTTT sssaaattt ·

(13)

where we define a positive constant λ̄min < inf(λ̄i) (see
Remark 1). Then, the ultimate expression of the n DoF of a
robotic manipulator is, as follows:

q̈qq = III−1[λ̄λλTTT ccc + sssmax −CCCmmmq̇qq− fff −GGG−TTT LLL]· (14)

III. DESIGN OF THE SBFC STRATEGY

A. Adaptive SBFC Strategy

To apply the subsystem-based control methodology, the
dynamics of a manipulator robot, provided in (14), can be
transformed into a triangular feedback form as shown below:{

ẋxx1(t) = xxx2(t)

ẋxx2(t) = AAA1λ̄λλTTT ccc +ggg1(xxx, t)+∆∆∆1 (xxx, t)+TTT L
· (15)

Let us define two state variables xxx = [xxx1,xxx2]
⊤, xxx1 = qqq

as the position vector and xxx2 = q̇qq as the velocity vector.
The control torque input incorporates a non-zero coefficient
AAA1 = III−1(qqq). The term ggg1(xxx, t) can be considered established
functional elements derived from the system’s model, given
by III−1(qqq)(−CCCmmm(qqq, q̇qq)q̇qq−GGG(qqq)). Meanwhile, ∆∆∆1(xxx, t) charac-
terizes uncertain aspects arising from incomplete knowledge
of system parameters or modeling inaccuracies, expressed as

III−1(qqq)(− fff (q̇qq)+sssmax). In continuation of the preceding form,
we can define the tracking error eee = [eee111,eee222]

⊤, as follows:

eee1 = xxx1 − xxxd , eee2 = xxx2 − ẋxxd , (16)

where xxxd ∈Rn and ẋxxd ∈Rn are the position and velocity ref-
erence trajectories, and eee1 :Rn×Rn →Rn and eee2 :Rn×Rn →
Rn are the position and velocity tracking errors, respectively.
Now, we can transform the tracking system into a new form:

QQQ1 = eee1, QQQ2 = eee2 −κκκ1· (17)

We introduce the virtual control κκκ1 ∈ Rn, as follows:

κκκ1 =−1
2
(δ1 +ζ1φ̂1)QQQ1, (18)

where δ1 and ζ1 are positive constants. φ̂1 is an adaptive
function law, which is defined, as follows:

˙̂
φ1 =−k1σ1φ̂1 +

1
2

ζ1k1∥QQQ1∥2, (19)

where k1, ζ1, and σ1 are positive constants. By derivative of
(17) and considering (15) and (16), we will have:

Q̇QQ1 = QQQ2 +κκκ1

Q̇QQ2 = AAA1λ̄λλTTT ccc +ggg1(xxx, t)+∆∆∆1 (xxx, t)+TTT L − ẍxxd ·
(20)

where ẍxxddd ∈ Rn can be the desired acceleration of the ma-
nipulator robot. By assuming the function κκκ1 is smooth, we
introduce ∆∆∆1, as follows:

∆∆∆1 = ∆∆∆1(xxx, t)−
∂κκκ1

∂xxx1

dxxx1

dt
− ∂κκκ1

∂ φ̂1

dφ̂1

dt
· (21)

To prevent the complexity from growing unmanageable, as
discussed in Wang et al. [23], we considered the time deriva-
tive of the virtual control to be an element of uncertainty in
the system.

Assumption (1): If we assume the uncertainties are
bounded but vary, there exists a continuously smooth and
positive function r1 : Rn →R+ constrained within the uncer-
tainty bound denoted as ∆̄∆∆1. In addition, there are positive
parameters Ω1, Dmax, Λ1, and ḡmax ∈ R+, which may also
be unknown such that:

∥∆∆∆1∥ ≤ Λ1r1 , ∥TTT L∥ ≤ Dmax

∥ẍxxd∥ ≤ Ω1, ∥ggg1(xxx, t)∥ ≤ ḡmax·
(22)

Consequently, the actual control TTT ccc is proposed, as follows:

TTT ccc =
−1
2

(δ2 +ζ2φ̂2)Imin
−1QQQ2, (23)

where δ2 and ζ2 are positive constants, and we know Imin
from (2). φ̂2 is an adaptive function law, which is defined,
as follows:

˙̂
φ2 =−k2σ2φ̂2 +

1
2

ζ2k2∥QQQ2∥2, (24)

where k2, ζ2, and σ2 are positive constants. Assume the
adaptive law errors for (19) and (24) are φ̃ j = φ̂ j − φ ∗

j for
j = 1,2, considering that there are the positive and unknown
constants φ ∗

1 and φ ∗
2 ∈ R+ to compensate for the adaptive

estimation errors, as follows:

φ
∗
1 =ζ

−1
1

φ
∗
2 =ζ

−1
2 [1+2λ̄

−1
min(µ1Λ

2
1 +ν1D2

max +ν2Ω
2
1 +ν3ḡ2

max)]·
(25)
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Fig. 1: The interconnection among various sections of the proposed control system.

Apart from ζ1 and ζ2 ∈R+, which are used as control design
parameters, all remaining parameters in (25) are assumed
positive but unknown constants. Now, we can obtain:

˙̃
φ j =−k jσ jφ̃ j +

1
2

ζ jk j∥QQQ j∥2 − k jσ jφ
∗
j · (26)

Lemma (1) [24]: According to the general solution of
the given linear first-order ordinary differential equations in
(19) and (24), by choosing an initial condition φ̂ j(t0) > 0,
given that the exponential component of φ̂ j is monotonically
decreasing, and considering the positivity of k j, σ j, and ζ j,
we assert that, for all t ≥ t0 = 0, it is possible to ensure
φ̂ j(t)> 0.

Definition (1) [24], [25]: For any initial condition xxx(t0), if
α , β , and µ̃ ∈R+ exist, the tracking error eee between the state
xxx and the reference states xxxrrr = [xxxddd , ẋxxddd ]

⊤ converges uniformly
and exponentially to a defined region g(τ), such that:

∥eee∥= ∥xxx(t)− xxxrrr(t)∥ ≤ βe−α(t−t0)∥xxx(t0)− xxxrrr(t0)∥+ µ̃

g(τ) := {eee | ∥eee∥ ≤ τ = µ̃}·
(27)

B. JAYA Algorithm-based Parameter Tuning

Given the eight gains in the SBFC, denoted as k1, k2,
δ1, δ2, ζ1, ζ2, σ1, and σ2, it is necessary to tune each
within an iterative function based on the multipopulational
JA. Let us consider each gain to be associated with c ∈R+.
In this paper, the JA commences by initializing two positive
collections of gains of control, known as the initial popula-
tion, through a random process. For each individual within
this population, the cost function is calculated, based on
the standard deviation of the position and velocity tracking
errors ē =

√
∥eee1∥2 +∥eee2∥2 representing the target objective

function to be minimized. The top-performing candidate
(cbest ) is determined as the one with the most favorable value
(referred to as ēbest), while the other (the poorest performer)
is identified as the candidate (cworst ) with the least favorable
value (referred to as ēworst). Next, these values are iteratively
adjusted to find the new candidate (cnew) in the following
iterative function:

cnew = c+ r1(cbest − c)− r2(cworst − c), (28)

where cnew ∈ R+ is the updated random c. Further, r1 and
r2 ∈ [0,1] are the two random numbers for each variable
during the iteration, and cbest and cworst are replaced with
cnew if it gives a better ē than ēbest or worse ē than ēworst
values, respectively. All accepted function values at the end
of the iteration are maintained, and these values become the
input to the next iteration.

Remark (2): The expression r1(cbest − c) represents the
inclination of the solution to approach the best solution,
while the expression −r2(cworst − c) signifies the propensity
of the solution to eschew the worst solution.

Remark (3): According to the details provided in this
paper, all gain parameters must be both positive and finite.
To ensure adherence to this requirement, we must first
choose initial populations for these parameters to be positive.
Then, by following this approach and referring to (28),
while bearing in mind that c > 0, we can suggest random
c be larger than r2cworst−r1cbest

1−r1+r2
, as well. In this way, we

can guarantee that all newly generated values for cnew will
remain positive. Furthermore, by incorporating the principle
constraint outlined in Eq. (5), we can impose constraints
on the JA to prevent it from producing gains that exceed
a predetermined threshold, as necessary.

The block diagram shown in Fig. 1 illustrates the inter-
action among the SBFC system sections. As depicted in the
figure, the system computes variables related to subsystem-
based transformation upon receiving reference trajectories. In
addition, the adaptation mechanisms estimate upper bounds
for disturbances, uncertainties, and actuator failures. Then,
the calculated values from the subsystem-based transfor-
mation component, along with the parameters estimated
through online adaptation update laws, are received by the
proposed controller. Subsequently, the standard control com-
mand, denoted as TTT ccc, is generated for the novel correction
fault model, which incorporates torque constraints. The input
constraint section, SSS(((TTT ))), ensures that both faulty and normal
torque values do not surpass the defined constraints. Notably,
the eight gains of the adaptation law and controller are
automatically adjusted using the JA block in accordance with
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a cost function that includes the motion sensor data of the
robot manipulator and the reference trajectories.

C. Stability Analysis

Theorem (1): Consider the adaptive algorithm presented
in Eq. (19), and (24), the faulty dynamic model for the
robotic manipulator in Eqs. (14), and the control input as
given in (23). It is assumed that under these conditions, the
states xxx111 and xxx222 can attain the reference trajectories xxxddd and
ẋxxddd through UES, as defined in Definition (3).

Proof: A Lyapunov function is suggested as follows:

V1 =
1
2

λ min[QQQ⊤
1 QQQ1 + k−1

1 φ̃
2
1 ]· (29)

where we define λ̄min a positive constant that is less than the
infimum of λ̄i provided in (13). After differentiating V1 and
inserting (20), we obtain:

V̇1 = λ minQQQ⊤
1 [QQQ2 +κκκ1]+ k−1

1 λ minφ̃1
˙̃
φ1· (30)

By using the Cauchy–Schwarz and the squared Euclidean
norm concepts:

V̇1 ≤
1
2

λ min(∥QQQ1∥2 +∥QQQ2∥2)+λ min(QQQ⊤
1 κκκ1 + k−1

1 φ̃1
˙̃
φ1)· (31)

Then, by considering the definition of φ ∗
1 in (25), we achieve:

V̇1 ≤
1
2

λ min∥QQQ2∥2 +
1
2

λ minζ1φ
∗
1 ∥QQQ1∥2 +λ minQQQ⊤

1 κκκ1

+ k−1
1 λ minφ̃1

˙̃
φ1·

(32)

Now, by inserting ˙̃
φ1 and κκκ1 from (26) and (18), we obtain:

V̇1 ≤
1
2

λ min∥QQQ2∥2 +
1
2

λ minζ1φ
∗
1 ∥QQQ1∥2 − 1

2
λ minδ1∥QQQ1∥2

− 1
2

λ minζ1φ̂1∥QQQ1∥2 −λ minσ1φ̃
2
1 +

1
2

λ minζ1∥QQQ1∥2
φ̃1

−λ minσ1φ
∗
1 φ̃1·

(33)

Because φ̃1 = φ̂1 −φ ∗
1 :

V̇1 ≤
1
2

λ min∥QQQ2∥2 − 1
2

λ minδ1∥QQQ1∥2 −λ minσ1φ̃
2
1

−λ minσ1φ
∗
1 φ̃1·

(34)

After dividing λ minσ1φ̃ 2
1 into 1

2 λ minσ1φ̃ 2
1 + 1

2 λ minσ1φ̃ 2
1 , and

considering (29), we obtain:

V̇1 ≤−Ψ1V1 +
1
2

λ min∥QQQ2∥2 − 1
2

λ minσ1φ̃
2
1

−λ minσ1φ
∗
1 φ̃1,

(35)

where Ψ1 = min[δ1, k1σ1]. As − 1
2 λ̄minσ1φ̂ 2

1 ≤ 0, we elim-
inate it and reach:

V̇1 ≤−Ψ1V1 +
1
2

λ̄min∥QQQ2∥2 +
1
2

λ̄minσ1φ
∗
1

2· (36)

Likewise, the Lyapunov function V2 is suggested as follows:

V2 =V1 +
1
2
[QQQ⊤

2 QQQ2 + k−1
2 λ̄minφ̃

2
2 ]· (37)

By differentiating V2 and inserting (20), we obtain:

V̇2 ≤−Ψ1V1 +
1
2

λ̄min∥QQQ2∥2 +
1
2

λ̄minσ1φ
∗
1

2 + k−1
2 λ̄minφ̃2

˙̃
φ2

+QQQ⊤
2 [AAA1λ̄λλTTT ccc +ggg1(xxx, t)+∆∆∆1 (xxx, t)+TTT L − ẍxxd ]·

(38)

Then, by inserting TTT ccc from (23):

V̇2 ≤−Ψ1V1 +
1
2

λ̄min∥QQQ2∥2 +
1
2

λ̄minσ1φ
∗
1

2

− 1
2

λ̄minδ2∥QQQ2∥2 − 1
2

λ̄minζ2φ̂2∥QQQ2∥2 +QQQ⊤
2 ggg1

+QQQ⊤
2 ∆∆∆1 −QQQ⊤

2 ẍxxd +QQQ⊤
2 TTT L + k−1

2 λ̄minφ̃2
˙̃
φ2·

(39)

Now, by assuming that µ1, ν1, ν2, and ν3 are positive
constants, according to Young’s inequality, we can argue:

QQQ⊤
2 ∆∆∆1 ≤ µ1Λ

2
1∥QQQ2∥2 +

1
4

µ
−1
1 r2

1

QQQ⊤
2 TTT L ≤ ν1D2

max∥QQQ2∥2 +
1
4

ν
−1
1

−QQQ⊤
2 ẍxxd ≤ ν2Ω

2
1∥QQQ2∥2 +

1
4

ν
−1
2

QQQ⊤
2 ggg1(xxx, t) ≤ ν3ḡ2

max∥QQQ2∥2 +
1
4

ν
−1
3 ·

(40)

Because we have φ ∗
2 from (25), we can obtain:

V̇2 ≤−Ψ1V1 +
1
2

λ̄minσ1φ
∗
1

2 +
1
4

µ
−1
1 r2

1 +
1
2

λ minζ2φ
∗
2 ∥QQQ2∥2

− 1
2

λ̄minδ2∥QQQ2∥2 − 1
2

λ̄minζ2φ̂2∥QQQ2∥2 +
1
4

ν
−1
1 +

1
4

ν
−1
2

+
1
4

ν
−1
3 + k−1

2 λ̄minφ̃2
˙̃
φ2·

(41)

In addition, by inserting ˙̃
φ2 from (26) into

V̇2 ≤−Ψ1V1 +
1
2

2

∑
k=1

λ̄minσkφ
∗
k

2 +
1
4

µ
−1
1 r2

1 −
1
2

λ̄minδ2∥QQQ2∥2

+
1
4

3

∑
k=1

ν
−1
k −λ minσ1φ̃

2
1 −λ minσ1φ

∗
1 φ̃1·

(42)

Like (36), and firm (37), we can obtain:

V̇2 ≤−Ψ2V2 +
1
4

µ
−1
1 r2

1 +
1
4

3

∑
k=1

ν
−1
k +

1
2

2

∑
k=1

λ̄minσkφ
∗
k

2, (43)

where Ψ2 = min[Ψ1, λ̄minδ2, k2σ2]. Thus, considering
V =V2, we can argue:

V =
1
2

λ̄minQQQ⊤
ϒQQQ+

1
2

λ̄minφ̃φφ
⊤KKK−1

φ̃φφ , (44)

where:
QQQ =

[
QQQ1
QQQ2

]
, ϒ =

[
1 0
0 λ̄

−1
min

]
,

φ̃φφ =

[
φ̃1
φ̃2

]
, KKK−1 =

[
k−1

1 0
0 k−1

2

]
·

(45)

Thus, according to (43), we obtain:

V̇ ≤−Ψ2V +
1
4

µ
−1
1 r2

1 + µ̃, (46)

where µ̃ = 1
4 ∑

3
k=1 ν

−1
k + 1

2 ∑
2
k=1 λ̄minσkφ ∗

k
2. In this section,

we should recall the following solution (see Lemma 1):

V̇ = ΨV +µr

V = eΨtV (0)+
∫ t

0
eΨ(t−τ)

µr(τ)dτ·
(47)

In the same way, we can solve (46), as follows:

V ≤V (t0)e−{Ψ2(t−t0)}+
1
4

µ
−1
1

∫ t

t0
e{−Ψ2(t−T )}r2

1 dT

+ µ̃

∫ t

t0
e{−Ψ2(t−T )} dT ·

(48)
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Considering (37), we know: 1
2 QQQ⊤

2 QQQ2 ≤ V2 = V . Thus, we
can interpret (48) as follows:

∥QQQ∥2 ≤2V (t0)e−{Ψ2(t−t0)}+
1
2

µ
−1
1

∫ t

t0
e{−Ψ2(t−T )}r2

1 dT

+2 µ̃ Ψ2
−1·

(49)

Both µ1, and Ψ2 are positive constants dependent on des-
ignable control gains that are freely chosen to satisfy the
following condition: 1

2 < µ1Ψ2. To continue the stability
proof, we define a continuous operator Z(·), as follows:

Z(ι) =
1
2

1
µ1(Ψ2 − ι)

> 0, ι ∈ [0,Ψ2)· (50)

It is evident that by increasing ι , Z(ι) increases, meaning
that: Z(ι)≥ Z(0) = 1

2
1

µ1Ψ2
. Because µ1 is a positive constant,

it becomes evident that we can find a small positive value ῑ ∈
ι which ῑµ1 <

1
2 . By knowing that 1

2 < µ1Ψ2, we can obtain:

0 < ῑ < 1
2µ1

. Then, we can obtain: 0 < Z(ῑ) = 1
2

µ
−1
1

Ψ2−ῑ
< 1. If

we say Z̄ = Z(ῑ), by multiplying eῑ(t−t0) by (49), we reach:

∥QQQ∥2eῑ(t−t0) ≤2V (t0)e−(Ψ2−ῑ)(t−t0)+2µ̃Ψ
−1
2 eῑ(t−t0)

+
1
2

µ
−1
1

∫ t

t0
e−Ψ2(t−T )+ῑ(t−t0)r2

1 dT ·
(51)

Because 0≤ ῑ <Ψ2, we can eliminate the decreasing element
e−(Ψ2−ῑ)(t−t0) from (51):

∥QQQ∥2eῑ(t−t0) ≤2V (t0)+2µ̃Ψ
−1
2 eῑ(t−t0)

+
1
2

µ
−1
1

∫ t

t0
e−(Ψ2−ῑ)(t−T )r2

1eῑ(t−t0) dT ·
(52)

We represent the non-decreasing and continuous functions
E0 and E1, as follows:

E0(t) = sup
ω∈[t0,t]

[∥QQQ(ω)∥2eῑ(ω−t0))]

E1(t) = sup
ω∈[t0,t]

[(r2
1)e

ῑ(ω−t0)]·
(53)

Then, by considering Eqs. (52) and (53), we achieve:

∥QQQ∥2eῑ(t−t0) ≤2V (t0)+
1
2

µ
−1
1

Ψ2 − ῑ
E1 +2µ̃Ψ

−1
2 eῑ(t−t0)· (54)

Because E1 is non-decreasing, the left-hand side of Eq. (54)
will also not decrease. Hence, with respect to the definition
of E0 in Eq. (53), we can conclude:

E0 ≤2V (t0)+
1
2

µ
−1
1

Ψ2 − ῑ
E1 +2µ̃Ψ

−1
2 eῑ(t−t0)· (55)

By defining E = max(E0,E1), we can obtain:

E0 ≤ 2V (t0)+ Z̄E +2µ̃Ψ
−1
2 eῑ(t−t0), (56)

such that both E0 and E are not decreasing. By choosing Ψ2
large enough, which relies on control gains, and selecting ῑ

small enough, it becomes possible to ensure the existence

of a sufficiently large Ψ2 > ι∗ > ῑ such that
∗
Z = Z(ι∗) and

satisfy the following condition [24]:
∗
Z > Z̄ , 0 <

∗
Z < 1 =⇒ Z̄E ≤

∗
ZE0· (57)

(57) is justified when we have ι∗ ≥ E0
E ψ2 − (ῑ +ψ2) which

is straightforward. Incorporating Eq. (57) into Eq. (56), we
arrive at:

E0 ≤ 2V (t0)+
∗
ZE0(t)+2µ̄Ψ

−1
2 eῑ(t−t0)· (58)

Afterward, we obtain:

E0 ≤
2V (t0)+2µ̃Ψ

−1
2 eῑ(t−t0)

1−
∗
Z

· (59)

Concerning the definition (53), we obtain:

∥QQQ∥2 ≤
2V (t0)e−ῑ(t−t0)+2µ̃Ψ

−1
2

1−
∗
Z

· (60)

It is significant that:

sup
t∈[t0,∞]

(
2V (t0)e−ῑ(t−t0)

1−
∗
Z

)≤ 2V (t0)

1−
∗
Z
· (61)

Consequently, by Definition (1), it is evident from Eq. (60)
that ||QQQ|| is uniformly and exponentially stable towards a
specific ball G (τ̄0) when employing the SBFC approach,
such that:

G (τ̄0) :=

QQQ | ∥QQQ∥ ≤ τ̄0 =

√√√√2µ̃Ψ
−1
2

1−
∗
Z

 · (62)

Remark (4): To the best of the authors’ knowledge,
there are no explicit upper or lower limits to the DoF for
the SBFC-applied manipulator. Although the stability of
the manipulator is ensured under the conditions defined
for faulty actuators, it is important to note that an increase
in the number of faulty actuators deteriorates the tracking
accuracy of the manipulator’s end-effector. Therefore,
until the tracking accuracy of the end-effector is deemed
satisfactory, there are no constraints on the DoF and the
number of faulty actuators for the proposed control strategies.

IV. NUMERICAL VALIDITY

To evaluate the efficacy of the proposed methodology, we
applied it to the 2-DoF vertical plane robot featured in the
work by Humaloja et al. [26] with link lengths 1m and 0.8m.
The robotic manipulator dynamic and the SBFC strategy
were implemented, running at a 10-KHz frequency. The
modeling of the unknown friction and external disturbance
term is represented, as:

∆∆∆111 +TTT LLL =

[
0.6sin(0.8q̇1q2)+3sin(2t)
−1.6sin(1.8q2)+1.3sin(0.7q̇2)−0.2q2

]
· (63)

The system’s desired trajectory, based on radians, is chosen
as follows:

xxxddd = [sin(t/4π)−1,sin(t/4π +
π

3
)]T · (64)

In this case study, we examined a fault model that occurred in
both actuators, as represented in Fig. 2, where both actuators
were initially in healthy and normal condition for up to
10 seconds. The effectiveness of JA and tracking control
during this healthy task is illustrated in Fig. 3. The JA
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Fig. 2: Actuator fault occurrence (seconds): normal: [0,10]; one faulty actuator: [10,15], and two faulty actuators: [15,∞].

commenced by initializing two positive collections of gains
of control, through a random process. The step time for
updating the candidates of the JA was set at 0.0001 seconds.
This means that during each step, the control gains are
updated to converge to the suboptimal values. The best
SBFC gains obtained at 0.13 seconds for the mentioned
manipulator and the specified task are as follows: δ1 = 62,
δ2 = 75, ζ1 = 0.2, ζ2 = 3.5, σ1 = 5.6, σ2 = 1.9, k1 = 1.4, and
k2 = 0.96. This depiction indicates that control parameters
were suitably tuned, leading to the cost function in Fig.
3(a) reaching a minimum value at 0.25 sec. Fig. 3(b) also
illustrates the potential for position tracking using SBFC, in
the presence of uncertainties, in the healthy actuator mode,
following parameter tuning.

Fig. 3: Cost function (a) and tracking position error (b)

Fig. 4 illustrates the torque efforts generated by healthy and
faulty joints to maintain control performance. The torque
effort significantly decreased until 10 seconds before faults
occurred (see Fig. 2). The first actuator experiences a variety
of faults after 10 seconds, while faults in the second actuator
begin at 15 seconds, although each actuator fault affects the
other actuator as well. This results in the generation of more
frequent torque to compensate for faults. The severe faults
for the first and second actuators occur at 20 and 15 seconds,
respectively. It demonstrates the effectiveness of the designed
constraints, even for faulty actuators, in preventing torques
larger than the defined nominal values (80Nm). Despite these
challenges, control performance is successfully maintained
for around 26 seconds. This is evidenced by the fact that,
although the last faults persist without further change, the
adaptation control efforts generated by the actuators decrease

significantly, ultimately reaching the control goal. Fig. 5
illustrates the system’s response to the fault model mentioned
in Fig. 2 in terms of the objective function and position
tracking error. This demonstrates its capability to effectively
reduce tracking errors to zero, even in the presence of faults
in both actuators.

Fig. 4: Torque effort generated by healthy and faulty joints.

Fig. 5: Cost function (a) and tracking position error (b)

To investigate the performance of the SBFC method,
we applied the same conditions to two other fault-tolerant
control methods as provided in [27] and [28], which ensured
asymptotic stability under identical tasks. All tasks were
subject to uncertainties as defined in (63) and followed
the reference trajectory (64). Additionally, we attempted to
obtain suboptimal values for all three control algorithms
using both Teaching Learning (TL) based optimization and
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JA. Neither parameter optimization method requires specific
algorithmic parameters. However, unlike JA, which consists
of one phase, TL involves two phases, making JA simpler
to implement. Despite SBFC demonstrating stronger stabil-
ity (UES), results summarized in Table I indicate superior
tracking performance when employing JA-tuning SBFC for
the studied manipulator.

TABLE I: Tracking performance of the SBFC and fault-
tolerant control methods provided in [27] and [28] tuned by
JA and TL parameter optimization algorithms under various
actuators’ statuses.

Actuators’ Tracking SBFC [27] [28]
status criteria approach approach approach

Normal

JA-tuning error (rad) 000...000000000999 000...000000111222 000...000000222555
TL-tuning error (rad) 000...000000111333 000...000000111999 000...000000444555
JA-tuning time (sec) 000...111333 000...222111 000...222555
TL-tuning time (sec) 000...222444 000...222222 000...222999

one-faulty

JA-tuning error (rad) 000...000000111222 000...000000333111 000...000000333000
TL-tuning error (rad) 000...000000111555 000...000000333555 000...000000333555
JA-tuning time (sec) 111...111 222...888111 222...222
TL-tuning time (sec) 111...111333 333...222222 222...333555

two-faulty

JA-tuning error (rad) 000...000000111888 000...000000333666 000...000000333888
TL-tuning error (rad) 000...000000333555 000...000000555888 000...000000444222
JA-tuning time (sec) 111...222222 222...999333 222...333555
TL-tuning time (sec) 222...333333 444...000333 333...444555

V. CONCLUSIONS

This study mathematically developed the conventional N-
DoF robot manipulator dynamic model to address various
types of actuator functions: normal operation (healthy mode),
stuck failure, performance degradation (including both in-
cipient and abrupt faults), and saturation (over-generated
torque). Moreover, to ensure the joints’ states track desired
trajectories despite unknown modeling errors, external dis-
turbances, and actuator faults, a novel SBFC mechanism was
proposed. The parameters of this mechanism were tuned
using a multi-population and single-phase swarm intelligence
technique. This technique is distinguished by its ability to
continuously approach optimal control levels without the
need for meticulous tuning of algorithm-specific parameters,
relying instead on its inherent principles. Ultimately, the use
of the SBFC ensured UES for N-DoF manipulators in the
presence of uncertainties and actuator faults. Looking for-
ward, this generic control methodology opens new avenues
for application across various robotic dynamics, suggesting
broader implications for future research.

REFERENCES

[1] W.-H. Zhu, Virtual Decomposition Control: Toward Hyper Degrees of
Freedom Robots. STAR, vol. 60, 2010.
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