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Abstract—We consider open games where players arrive ac-
cording to a Poisson process with rate λ and stay in the game for
an exponential random duration with rate µ. The game evolves
in continuous time where each player n sets an exponential
random clock and updates her action an ∈ {0, . . . ,K} when
it expires. The players take independent best-response actions
that, uninterrupted, can converge to a Nash Equilibrium (NE).
This models open multiagent systems such as wireless networks,
cloud computing, and online marketplaces. When λ is small, the
game spends most of the time in a (time-varying) equilibrium.
This equilibrium exhibits predictable behavior and can have
performance guarantees by design. However, when λ is too small,
the system is under-utilized since not many players are in the
game on average. Choosing the maximal λ that the game can
support while still spending a target fraction 0 < ρ < 1 of the
time at equilibrium requires knowing the reward functions. To
overcome that, we propose an online learning algorithm that the
gamekeeper uses to adjust the probability θ to admit an incoming
player. The gamekeeper only observes whether an action was
changed, without observing the action or who played it. We prove
that our algorithm learns, with probability 1, a θ∗ such that the
game is at equilibrium for at least ρ fraction of the time, and
no more than ρ + ε (µ, ρ) < 1, where we provide an analytic
expression for ε (µ, ρ). Our algorithm is a black-box method to
transfer performance guarantees of distributed protocols from
closed systems to open systems.

I. INTRODUCTION

In many practical systems, users or devices come and go,
creating an “open network”. A wireless device connects to the
network, transmits, and then disconnects [1]–[3]. Passengers
route their way to their destination and then leave the system
[4]. Yet the optimization of such systems traditionally con-
siders a static network with a fixed set of players. This static
optimization often guarantees that the system will exhibit good
performance at equilibrium. However, if the network is open,
these performance guarantees may not be relevant.

Large-scale system optimization calls for distributed algo-
rithms. It is infeasible to collect all network parameters in a
central server, and then compute the optimal solution in real
time. Such a centralized scheme also violates user privacy
and creates a cyber-security vulnerability since one server
controls millions of devices. In a distributed algorithm, players
take independent actions based on their local observations.
A distributed system can be modeled as a game, where the
reward function of a player guides her action choices. In this
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paper, we focus on best-response dynamics (BRD) as our
distributed protocol, where a player that updates her action
picks the best action given the current action profile and her
reward function. For many classes of games [5], [6], a static
set of players playing BRD converge to a Nash equilibrium
(NE) [7]. With a dynamic set of players, every incoming player
disrupts the convergence to this equilibrium.

If the arrivals are slow enough and players stay in the game
for long enough, then the game will spend most of the time
at equilibrium where it has static performance guarantees by
design. However, with slow arrivals, the average number of
players in the game is small which results in poor utilization.
If the arrivals are too fast, then the game will always be
far from equilibrium. An admission controller that decides
whether to admit incoming players can balance between time
at equilibrium and utilization. In a large-scale distributed
system, the admission controller has little knowledge about
the game and limited observations of the dynamics.

Formally, our objective is to find the maximal arrival rate λ∗

that the system can support under the constraint that it spends
at least a target fraction ρ of the time at equilibrium. Then the
admission controller can accept each player with probability
θ∗ = λ∗

λ , independently between players. However, calculating
λ∗ offline requires the manager to know the reward functions
of the players and to observe their actions. These requirements
are unrealistic for large-scale networks.

To overcome this challenge, we propose a simple online
algorithm that can learn θ∗ = λ∗

λ (even if it is non-unique).
Motivated by large-scale networks, we only require that the
admission controller (gamekeeper) can observe changes in the
action profiles, arrivals, or departures. Our algorithm does not
need to know the reward functions or observe the actions,
or even who changed the action profile or how. Observing
changes in the action profile is possible when the manager
can sense the interference in a wireless network, server loads
in cloud computing [8], or the total energy consumption.
Therefore, our algorithm is “plug and play” with distributed
protocols for many applications, converting their static perfor-
mance guarantees to the open network scenario.

A. Related Work

Admission control is one of the main tasks in networking
[1], [2], [4], [9], and learning algorithms for admission control
have been studied in [10], [11]. In [12], the load balancing
of server systems with an open network was studied. Effi-
cient load-oblivious distributed protocols are designed, that
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are shown to stabilize the system if this is feasible. Our
approach here is different since we design an admission
control algorithm for a given distributed protocol of the agents.
This distributed protocol is designed with static performance
(i.e., performance at equilibrium) in mind. Our motivation
is to show that the static performance guarantees of these
distributed protocols can be leveraged into the open network
case in a black-box manner. Our work is the first to introduce
online learning for admission control to games, to ensure that
the game is at equilibrium for a target fraction of the time.

Game theory offers an analytical framework to design and
analyze distributed protocols [13], [14]. Traditionally, game
theory is used to predict the outcome of the interaction
between selfish agents, via equilibria analysis. Then, mecha-
nism design builds protocols that have performance guarantees
that are robust to selfish behavior [15]. More recently, game
theory has been used to design distributed protocols between
programmed cooperative agents [16]–[22]. The latter is the
case for wireless networks, autonomous vehicles, or a team
of robots where all players are manufactured by the same
company, or follow a standard. With cooperative agents, the
reward functions do not model the players’ selfish objectives
but are designed to have a globally efficient NE.

Our work is also related to the literature on game control
[23]–[29], where a manager adjusts reward parameters online
(e.g., prices of resources) to achieve a global objective. How-
ever, our control of the game is only through the admission
of players without affecting their reward functions.

Distributed systems with a dynamic set of players are also
called “open multiagent systems” [30]–[33], and were studied
in a game-theoretic context [34], [35]. In this paper, we study
the control of such open multiagent systems. Specifically, we
are interested in admission control that guarantees that the
game spends a target fraction of the time at equilibrium.

II. PROBLEM FORMULATION

Consider a game with a time-varying set of players (i.e.,
an open game). There is an admission controller, or a “game-
keeper”, that decides if an arriving player is admitted into the
game. Admitting too many players causes the game to spend
a lot of time not at equilibrium, where no performance guar-
antees exist and behavior is unpredictable. Admitting too few
players results in an under-utilized system. The gamekeeper
optimizes the trade-off between user performance guarantees
and utilization by controlling the fraction of time that the game
is at equilibrium. The gamekeeper’s goal is to guarantee that
the game is at equilibrium for a 0 < ρ < 1 fraction of the
time by adjusting the admission probability θ.

Given some knowledge of the game, the designer can
calculate offline a ρ that optimizes an objective. Without such
knowledge, a wrapper algorithm can explore reasonable (e.g.,
high) values for ρ. In general, optimizing ρ is domain-specific
and leverages the structure of the application. Nevertheless, in
this paper, we assume ρ is an input to our algorithm.

A. The Open Game

Our game evolves in continuous time. At time t, the set of
players in the game is Nt = {1, . . . , Nt}. Each player has a
type ν ∈ {0, . . . , V } for a finite V . Each of the players in the
game at time t, n ∈ Nt, plays an action an,t ∈ {0, 1, . . . ,K}.
Players switch their actions asynchronously when their random
clock expires, as we explain below. We assume that the number
of players in the game is bounded by some finite capacity
Nmax. This capacity is typically a function of the infrastructure
and the physical limitations of the system. However, since our
goal is to propose an admission control, maintaining that no
more than Nmax players are in the game can be viewed as
part of the design and not as a modeling assumption.

To formalize a game with a dynamic set of players, we
assume that the game always has Nmax players, but some of
them are dummy players (type ν = 0) that represent empty
player slots, so they are not “in the game”. Then we can define
the action profile at time t as at ∈ {0, 1, . . . ,K}Nmax . We
define the reward function of player n from type ν as un (a) =
u (a; νn), for some non-negative function u. We assume that
u (a; 0) = 0 for all a, so dummy players obtain no rewards.
Without loss of generality, we assume that dummy players
play an = 0 so they do not affect other players.

We assume that the random arrivals of players follow a
Poisson process with rate λ. Each arriving player has a random
type νn = ν with probability pν > 0 for all ν ̸= 0,
independently between arrivals, and this player’s index is the
minimal n that had νn = 0 before the arrival (i.e., “empty
player slot”). An admitted player (νn ̸= 0) plays an = 0
before her first action update since only after admittance she
can deduce her best-response. An admitted player (νn ̸= 0)
departs the game after a random duration that is exponentially
distributed with rate µ. The arrival and departure processes of
different players are all independent of each other.

The players in the game act asynchronously. To model this,
we assume that each player n inside the game has a random
exponential clock cn with rate 1, which is independent of all
the other clocks. When cn expires at time t, player n updates
her action using best-response dynamics (BRD):

an,t ∈ argmax
an∈{1,...,K}

un (an,a−n,t) (1)

where ties are arbitrarily broken. An action profile
(
a∗n,a

∗
−n

)
is a NE at time t if an,t = argmax

an∈{1,...,K}
un (an,a−n,t) for all

n ∈ Nt. We define E∗ as the set of all (a,ν) such that a is a
NE given ν, which includes all possible NE of the open game,
for all ν ∈ {0, 1, . . . , V }Nmax . We call an “unhappy” player
that would switch an action given the opportunity to play a
“deviator”. Let Dt be the number of deviators at time t. Due to
the exponential clocks, the decisions of players become more
frequent when the system is more congested, as in practice.

Finally, we state our assumption on the open game.

Definition 1. We say that an open game is non-degenerate if
for every n, a−n and ν such that νn ̸= 0, there exists an a′n
such that u ((a′n,a−n) ; νn) > u ((0,a−n) ; νn) = 0.
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This assumption implies that every incoming player, of
any type and in any action profile, has at least one action
that is preferable to doing nothing. Without this assumption,
players may have no reason to join the game. Then, the
open game might degenerate in the sense that it stays at
equilibrium forever despite the arrival of new players. With
this assumption, any incoming player is a deviator until she
updates her action from an = 0. In practice, it takes a while
for a player to measure the environment and compute her best-
response, which can only be done after the player is admitted
(e.g., a drone gets permission to fly and observes the location
of nearby drones). Technically, our analysis holds as is if any
arrival increases Dt by at least one for whatever reason.

B. The Controlled Dynamics

The main challenge is that the gamekeeper does not know
the reward functions of the players and cannot observe their
actions. In large-scale systems, it is infeasible to collect data
from all over the network, even if privacy is not an issue.
The gamekeeper also cannot supervise the players’ behavior,
that are making independent decisions locally. This is the case
with distributed cooperative agents or with selfish players that
are unwilling to coordinate. We therefore only assume that the
gamekeeper can observe if the action profile has changed, or
if a player arrives or leaves the game. For example, if each
action is a resource choice, this assumption would hold if the
gamekeeper can monitor the loads on the resources. Based on
this minimal feedback, the gamekeeper learns to control the
admission probability θ such that asymptotically, the game will
be at equilibrium a ρ fraction of the time, with small error.

Next, we define the action and type profile process:

Definition 2. Define the set of action profiles A =
{0, 1, . . . ,K}Nmax and the set of type profiles V =
{0, 1, . . . , V }Nmax . Define the random process in continuous
time Xt (θ) ≜ (at,νt) ∈ A × V , where θ ∈ [0, 1] is a fixed
admission probability that the gamekeeper uses (see Algorithm
1). We also denote x = (a,ν) and X = A×V for shorthand.

The process Xt (θ) can be thought of as the union of all the
absorbing Markov chains of the “closed” games (one for each
type profile), connected through the perturbations of arrivals
and departures. This is formalized next and proved in [36]:

Proposition 3. If θ > 0, then Xt (θ) is a continuous time
ergodic Markov chain with a unique stationary distribution
π (θ). Let X l (θ) be the jump (embedded) process of Xt (θ)
for integers l ≥ 0. Then X l (θ) is an ergodic Markov chain
with a unique stationary distribution φ (θ).

III. ONLINE LEARNING ADMISSION CONTROL

In this section, we present our admission control algorithm
(Algorithm 1) and its convergence guarantees (Theorem 4).
The admission mechanism is simple - each arriving player is
admitted at random with probability θl. The probability θl is
updated every “jump”, which occurs every time one out of
three events occur: action switch, arrival, or departure. The

Unknown

 Interaction

Unknown Game

Fig. 1. Open game control

parameter θ∗ that leads to the system being at equilibrium ex-
actly ρ fraction of the time is unknown. Hence, the gamekeeper
decreases θl if it thinks the game is not at equilibrium and
increases θl otherwise. To this end, the gamekeeper estimates
whether the game was at equilibrium solely based on sl, which
indicates if a player switched her action between the l-th jump
at time tl and the l+1-th jump at time tl+1. This results in bias
and noise that are unique to our open game control setting and
require a novel convergence analysis [36]. The factor tl+1− tl
in (5) is the time spent in this action profile, and is necessary
since we want the stationary distribution of the continuous-
time Markov chain, Xt (θ), to spend a ρ fraction of the time
at equilibrium, and not that of X l (θ).

Our main result (proved in [36]) shows that by using
Algorithm 1, the game will eventually be at equilibrium
approximately a ρ fraction of the time, with an error ε (ρ, µ).

Theorem 4. Let {ηl} be the non-increasing step-size sequence
of the gamekeeper such that

∑∞
l=0 ηl =∞ and

∑∞
l=0 η

2
l <∞.

Let 0 < ρ < 1, which is an input to Algorithm 1. Define the
stationary equilibrium probability as

πE (θ) =
∑

(a,ν)∈E∗

π(a,ν) (θ) (2)

where E∗ is the set of all NE and π (θ) is the stationary
distribution of Xt (θ) = (at,νt). Assume that πE (1) < ρ.
Assume a non-degenerate open game (Definition 1). Then, θl
in Algorithm 1 converges with probability 1 as l → ∞ to a
set Θ∗ of θ∗ such that ρ ≤ πE (θ

∗) ≤ ρ+ ε (ρ, µ), where

ε (ρ, µ)

1− ρ
= max

0≤θ≤θH
min
n∗

∑Nmax
n=n∗+1

(λθ
µ )

n

n!

λθ
∑Nmax−1

n=0

(λθ
µ )

n

n!

+ µn∗ + λθ

1 + µn∗ + λθ
(3)

and 0 < θH ≤ 1 is calculated in Algorithm 1.

Theorem 4 argues about the stationary distribution of
Xt (θl) when θl has converged. Thus, the fraction of time
spent at equilibria will approximate ρ asymptotically in time.
We show numerically fast convergence in Section IV. Never-
theless, an open system is a long-term service with no time
limit (e.g., cloud computing, wireless networks), so its steady
state behavior is more important than its convergence time.

The error ε (ρ, µ) stems from the learning: the gamekeeper
has to estimate if the game is at equilibrium based only on
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action deviations as feedback. This estimation is biased, and
the bias depends on the stationary equilibrium probability and
the estimation error which depend on the game (i.e., reward
functions). Therefore, as long as the game is unknown, the
algorithm cannot zero this bias, which results in ε (ρ, µ) > 0.

The error bound ε (ρ, µ) is also necessary to calibrate
Algorithm 1 that cannot guarantee otherwise that at least a
ρ fraction of the time will be spent at equilibrium since it
overestimates the time the game spends at equilibrium.

We assume that πE (1) < ρ since otherwise we cannot admit
more players to reduce πE (θ) below ρ + ε (ρ, µ) with their
perturbations. Nevertheless, if πE (1) ≥ ρ then no admission
control is needed since θ∗ = 1 is optimal: all arriving players
are accepted and the game still spends more than ρ fraction of
the time at equilibrium. Algorithm 1 does not need to know
if πE (1) < ρ, and will converge to θ∗ = 1 if πE (1) > ρ.

Remark 5 (Monotone πE (θ)). In non-pathological scenarios,
the stationary probability of being at equilibrium πE (θ) is
decreasing in θ since incoming players perturb the system,
so the faster the arrivals are the less time the game is
at equilibrium. Then, Theorem 4 implies that Algorithm 1
converges to the unique θ∗ such that πE (θ

∗) = ρ up to the
error ε (ρ, µ). This θ∗ is the maximal admission probability
such that πE (θ

∗) ≥ ρ, so it maximizes the average number of
players in the game given the time at equilibrium constraint.
However, to keep our result general, we do not assume that
πE (θ) is decreasing so θ∗ does not have to be unique.

Remark 6 (Equilibrium Existence). Assuming that a NE
exists is not technically needed since an empty game is trivially
at equilibrium. In the extreme case where the game has no NE
other than when it is empty, the algorithm will force the game
to be empty around a fraction ρ of the time. When equilibria
exist for most type profiles, and the dynamics converge to
these equilibria, the algorithm will not force the game to be
empty a fraction ρ of the time, because then together with the
non-trivial equilibria time, the fraction of time at equilibrium
will exceed ρ + ε (ρ, µ). In fact, if πE (θ) is decreasing in
θ, the algorithm will let as many players in as possible such
that the fraction of time at equilibrium is approximately ρ.
Therefore, the faster convergence to equilibrium is, the higher
the admission rate θ∗ will be. With cooperative distributed
players, the designer can ensure that the dynamics converge
to an existing equilibrium for most type profiles ν ∈ V .

IV. NUMERICAL SIMULATIONS

Consider players that each is a wireless link - a pair of
a transmitter and a receiver, such that transmitter n uses the
transmission power Pn. The signal to noise and interference
ratio (SINR) at link n’s receiver is defined as Γn (P ) =

gn,nPn

N0+
∑

m gm,nPm
, where gm,n is the channel gain between

transmitter m and receiver n, and N0 is the channel noise
variance. The type νn of player n is the location of transmitter
n and receiver n on a 2D disk with radius r, as specified in
the figures. The transmitter’s location was chosen uniformly

Algorithm 1 Online Open Game Control
Initialization: Let (a0,ν0) ∈ X . Set l = 0 and tl = 0 for all
integers l ≥ 0. Let {ηl} be a non-increasing positive sequence
such that

∑∞
l=0 ηl =∞ and

∑∞
l=0 η

2
l <∞. Set θ0 = 1.

Input: 0 ≤ ρ ≤ 1, λ, µ, Nmax.
Calibration:

1) Compute 0 < θH ≤ 1 such that πE (θH) < ρ using

πE (θ) ≤ 1−

1−
(λθ

µ )
Nmax

Nmax!∑Nmax
n=0

(λθ
µ )

n

n!

λθ.

2) Compute ρ̃ ≜ ρ+ ε (ρ, µ) for ε (ρ, µ) as defined in (3).
3) Compute θL > 0 such that πE (θL) > ρ̃ using πE (θ) ≥

1∑Nmax
n=0

(λθ
µ )

n

n!

.

For all continuous time t ≥ 0:
1) If the clock cn expires for some player n:

a) Player n selects a new action aU
n according to

aU
n ∈ argmax

an∈{1,...,K}
un (an,a−n,t) . (4)

b) If
(
aU
n,a−n,t

)
̸= at, then set tl+1 = t and sl = 1

(switch detected).
2) If a new player arrives:

a) If Nt < Nmax then admit the player with proba-
bility θl, and reject otherwise.

b) If Nt = Nmax then: with probability θl, discard an
existing player at random and admit the arriving
player, and reject otherwise.

c) If the player was admitted: set tl+1 = t and sl = 0.
3) If a player leaves: set tl+1 = t and sl = 0.
4) If tl+1 > 0 (i.e., the l + 1-th jump event has occurred)

then update the admission probability

θl+1 = Π[θL,θH ] (θl + ηl (tl+1 − tl) (1− sl − ρ̃)) (5)

and then update l ← l + 1, where Π[θL,θH ] is the
Euclidean projection into [θL, θH ].

End

at random on the disk, and its transmitter location was chosen
uniformly at random within radius rn of the receiver, where
rn was chosen uniformly at random on [1, 1.1] independently
between links. The locations were stored as floating points
(i.e., discrete with high resolution). The channel gains were
chosen as gm,n = min

{
∥xT,m − xR,n∥−2

, 1
}

where xT,m

is the location of transmitter m and xR,n is the location of
receiver n. Hence, the channel gains {gn,m} are a function of
the types. Let ∆ > 0 and let Pmax = K∆ be the maximal
transmission power possible. The action set of player n is

An = {Pmax} ∪ {i∆ | i = 0, . . . ,K, Γn (i∆,P−n) ≥ γ∗
n}

where γ∗
n is the target SINR chosen in advance. Hence, the

action set is constrained by the actions of others, given by
P−n. However, player n does not need to know P−n, since
it only affects Γn (P ) through the interference

∑
m gm,nPm,
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which player n can measure. In all experiments, we used γ∗
n =

10 for all n with ∆ = 10−5 and K = 105. There was no
noticeable difference in the results for a finer ∆.

The reward function of player n is un (P ) = Pmax − Pn,
so players pick the minimal transmission power that satisfies
their SINR constraint. This power control setting is a game,
where the actions of one player affect the reward of others.
This scenario is the discretized version of the one in [3].
In our open game case, when a link tries to connect to the
network, the gamekeeper can admit or reject it. In a large-
scale network, the reward functions and actions are unknown
to the gamekeeper since it does not have the time or capacity
to collect all locations (types) and transmission powers.

Performance was averaged over 1000 realizations. The
shaded blue region includes one standard deviation below
and above the average. In each realization, θ0 was chosen
uniformly at random on [0, 1]. The initial action of an admitted
player was Pn = 0. We used ρ̃ = ρ+ 0.25 (1− ρ) which as-
sumes ε (ρ, µ) ≤ 0.25 (1− ρ). We simulated the most difficult
case of θL = 0, θH = 1. The x-axis is time in “seconds”, and
we used λ = 1, so a “second” is the average arrival rate. The
gamekeeper’s step size sequence was ηl =

0.3
l0.7 .

Fig. 2 shows the convergence of our algorithm for two
different scenarios. Our algorithm converges fast, since from
around t = 104 on the fraction of time at equilibrium is close
to ρ. The bias, which is the gap between where the blue curve
converges to and the target ρ shown in red, at t = 2 · 104, is
~1.24% in Fig. 2(a) and ~3.78% in Fig. 2(b), which are both
better than the worst case bound of Theorem 4.

Fig. 3 shows the minimal reward and the sum of rewards
of our algorithm compared to an alternative admission control.
Allowing too many players in increases the interference which
leads to large interference and zero reward for all. The alterna-
tive admission control uses no gamekeeper but adjusts Nmax

to match the average number of players in the game with the
gamekeeper, which was ∼ 8. This represents classic admission
control that controls the number of players in the game
directly. We see that even though both algorithms maintain the
same number of players on average, the gamekeeper achieves
both a better sum of rewards and a better minimal reward.
This demonstrates that the improvement in performance by
the gamekeeper is not only due to limiting the number of
players but also because it maintains equilibrium for the vast
majority of the time. The results in [3] imply that best-response
dynamics converge to a NE. Interestingly, this NE is optimal
in the sense that it minimizes the total transmission power
under the SINR constraints if these are feasible. Hence, the
fraction of time the system is optimal for the players inside
the game is lower bounded by the fraction of time the game
spends in a NE, as guaranteed by our algorithm.

V. CONCLUSIONS

While most distributed protocols are designed for a static set
of agents, in many applications the set of agents is dynamic.
Examples include wireless networks, cloud computing, trans-
portation, and online marketplaces. A distributed protocol is

typically designed such that the agents converge to an efficient
equilibrium. This paper was motivated by converting the static
performance guarantees of such protocols at equilibrium to
this dynamic setting. This is achieved by designing a novel
online admission control algorithm that treats the original
distributed protocol, modeled as a game, as a black box.
The algorithm adjusts online the probability θl to admit an
incoming player. Our proposed algorithm only requires the
manager (gamekeeper) to observe action switches, or if a
player arrived or left the game. The gamekeeper does not need
to know the reward functions of the players or observe their
actions. We proved that our algorithm guarantees that the game
is at equilibrium at least a target fraction ρ of the time and
no more than ρ+ ε (ρ, µ), providing a bound for ε (ρ, µ). The
parameter ρ is set by the gamekeeper to optimize the tradeoff
between user performance and system utilization.

Our work introduces the concept of controlling the ad-
mission of open games, which brings together game theory
and queuing theory. The model presented here is only the
first step towards unleashing the potential of these techniques.
Extending our results beyond best-response dynamics would
make them more broadly applicable.
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