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Abstract— In this paper, we study reachability of linear
systems with a finitely quantized input alphabet. We give
motivations for a new notion of reachability for this class of
systems, and propose a notion of local asymptotic reachability.
We then derive a sufficient condition and a necessary condition
for the proposed local asymptotic reachability, and present an
algorithmic procedure to verify these conditions.

Index Terms— Quantized systems, reachability, linear sys-
tems.

I. INTRODUCTION

In this paper, we study discrete-time, linear time invariant
systems where the input takes values in a finitely quantized
set. Such systems naturally arise in applications where the
underlying controlled plant is continuous while the controller
is digitally quantized. We are interested in the reachability of
this class of systems. Conventionally, a system is reachable
if for every state in its state space, the system can be driven
to this state from the origin under some control sequence in
finite time. As we shall see, conventional reachability does
not generalize well for systems with quantized inputs, moti-
vating us to study and propose new notions of reachability
for this class of systems.

Reachability of quantized systems has been studied [1],
[2], [3], [8]. In [1], the author studies linear systems with
integer inputs and shows that reachability is characterized
by whether a linear combination of the eigenvalues of the A
matrix is an integer. In [2], the authors study reachability
of quantized control systems and present conditions such
that the reachable set is dense for a class of driftless linear
systems. They also show results on the reachability of
nonlinear chained form systems. In [3], the authors derive
conditions regarding the existence of a finite input set such
that the reachable set is dense. Specifically, they show that
given a controllable pair (A,B), there exist a finite control
set such that the reachable set is dense in a compact set if and
only if A is invertible. In [8], the authors study reachability
of hybrid systems in a stochastic setting. They first set up
a stochastic automaton model of a hybrid system, and then
show that reachability of the model implies reachability of
the hybrid system.

More generally, linear systems with quantized input has
been studied extensively. For instance in [4], the author
studies the stabilization of linear systems when quantized
state information is available. The author shows that for any
quantized state feedback control law, for an unstable linear
system, the set of all initial conditions whose closed-loop
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trajectories tend to the origin has measure zero. The author
then studies a new notion of stabilization.

In this paper we continue our previous study on systems
over finite alphabets [6] [7]. We are interested in investigating
what is fundamentally lost in terms of reachability when the
control input is constrained to a finite set. We briefly point
out some of the distinctions between the current work and
the existing results: We study systems with any given finite
input set, while the results in [3] focus on the existence
of a quantized input set ensuring reachability. In [2], the
reachability of driftless systems is studied, while in this paper
we study systems with Schur stable A matrix. In [1] the
A matrix is assumed to be diagonalizable and the input is
assumed to be integers, while no such assumptions are made
here. Our main contributions are as follows.

1) We give the motivations of, and propose a new notion
of local asymptotic reachability for linear systems with
quantized input set.

2) We present both a sufficient condition and a necessary
condition for the proposed local asymptotic reachability.
If the sufficient condition is satisfied, then the reachable
set is dense in some neighborhood of the origin, while
if the necessary condition is satisfied the reachable set
is nowhere dense in the state space.

3) We provide an algorithm to facilitate the verification of
the proposed conditions.

Notation: We use N to denote the non-negative integers,
Z+ to denote the positive integers, R to denote the real
numbers, and C to denote the complex numbers. We use
AN to denote the collection of infinite sequences over set
A, that is AN = {f : N → A}. For a ∈ AN, we use at
to denote its tth component. We use {at}t∈I to denote the
subsequence over index set I ⊂ N. For v ∈ Rn, we use ‖v‖
to denote its Euclidean norm, and ‖v‖∞ to denote its infinity
norm. We use Br(v) = {x ∈ Rn|‖x − v‖ < r} to denote
the open ball centered at v with radius r. A neighborhood
of v is any set containing an open ball about v. For a square
matrix A, we use ‖A‖ to denote the induced 2-norm, and
‖A‖∞ to denote the induced infinity norm. We use ρ(A) to
denote the spectral radius of A, and we say that A is Schur
stable if ρ(A) < 1. For set A in Rn, we use |A| to denote the
cardinality of A, int(A) to denote the interior of A, cl(A) to
denote the closure of A, and conv(A) to denote the convex
hull of A. For sets S,R ⊂ Rn, and A ∈ Rn×n, AS denotes
the set {z ∈ Rn|z = Ax, for some x ∈ S}, S +R denotes
the set {x + r|x ∈ S, r ∈ R}, and S \ R denotes the set
{x|x ∈ S and x /∈ R}. We use d(v,S) = inf{‖v − α‖|α ∈
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S} to denote the distance between the point v and the set S,
and d(S,R) = inf{‖α − β‖|α ∈ S, β ∈ R} to denote the
distance between sets S and R. For w ∈ Cn, we use w∗ to
denote its complex conjugate.

II. PROPOSED NOTION OF REACHABILITY

A. Systems of Interest and Motivation

In this manuscript, we consider linear systems with quan-
tized control input

xt+1 = Axt +But, (1)

where t ∈ N is the discrete time index, xt ∈ Rn is the
state, and ut ∈ U ⊂ Rm, |U| < ∞, is the input. Set U is
a finitely quantized input alphabet. Matrices A ∈ Rn×n and
B ∈ Rn×m are given.

Next, we recall the definition of reachability: A state x is
reachable in time T ∈ N if there exists {ut}T−1

t=0 such that
when x0 = 0, xT = x, where xT =

∑T−1
t=0 AT−1−tBut.

A system is reachable if every state x ∈ Rn is reachable.
For reachability of system (1), we first make the following
observation.

Observation: No system (1) is reachable.
The reasoning for this observation is that the state space

Rn is uncountable, while the reachable states of system (1)
is countable due to |U| <∞.

Although system (1) is not reachable in the “conventional”
sense, the characteristics of the reachable set of different
systems (1) could be rather distinct. Specifically, for some
system (1), as shown in the following example, the collection
of reachable states is dense.

Example 1. f Consider a scalar system (1) with parameters
A = 1/2, B = 1, and U = {0, 1}. It is relatively
straightforward to show that every state x ∈ [0, 1] could
be approached by an input sequence

∑T−1
t=0 (1/2)T−1−tut

arbitrarily closely. On the other hand, if instead A = 1/4,
then there are “many” states, say within (1/3, 2/3), that can
not be approached closely by any input sequence. As we will
see in the following sections, the reachable set of the system
A = 1/4, B = 1, U = {0, 1} is actually nowhere dense.

B. Definition of Local Asymptotic Reachability

To better describe the characteristics of the reachable set of
system (1), we propose the following notions of reachability.
We begin with introducing a weaker notion of a state being
reachable.

Definition 1. Given system (1), a state x is asymptotically
reachable if for any ε > 0, there is T ∈ N and a sequence
{ut}T−1

t=0 , ut ∈ U such that when x0 = 0, ‖xT − x‖ < ε
under this input sequence.

Next we propose a notion of reachability for system (1). In
this manuscript, we mainly constrain our attention to systems
with Schur stable A matrix. In this case, since the input set
U is finite and consequently bounded, the reachable set is
bounded as well. Therefore we consider reachability around
the origin and propose the following notion.

Definition 2. A system (1) is locally asymptotically reach-
able if every state in some neighborhood of the origin is
asymptotically reachable.

Essentially, local asymptotic reachability means that every
state in some open ball around the origin can be approached
by an input sequence arbitrarily closely.

Next, we intend to characterize conditions for local asymp-
totic reachability. Particularly, we consider the following
problem of interest.
Question: Given a system (1), under what conditions of A,
B, and U such that it is locally asymptotically reachable ?

III. CONDITIONS FOR LOCAL ASYMPTOTIC
REACHABILITY

In this section, we propose both a sufficient condition and
a necessary condition for local asymptotic reachability of
system (1).

A. Statement of Conditions

We begin with some relevant definitions and notations.
Given a system (1), we use A to denote the set of all states
reachable from the origin,

A = {α ∈ Rn : α =

t∑
τ=0

At−τBuτ , uτ ∈ U , t ∈ N}, (2)

and use S to denote the convex hull of the closure of the
reachable set A,

S = conv(cl(A)). (3)

Next, we propose a sufficient condition, Theorem 1, and
a necessary condition, Theorem 2, for local asymptotic
reachability.
Theorem 1. Given system (1), assume ρ(A) < 1, for every
u ∈ U , −u ∈ U , and there is (ū1, ū2, . . . , ūn) ∈ Un
such that rank([Bū1 ABū2 · · · An−1Būn]) = n. Recall
S defined in (3). If S ⊆ AS + BU , then every state
x ∈ S is asymptotically reachable, and the system is locally
asymptotically reachable.
Theorem 2. Given system (1), assume ρ(A) < 1, A−1

exists, 0 ∈ U , and there is (ū1, ū2, . . . , ūn) ∈ Un such
that rank([Bū1 ABū2 · · · An−1Būn]) = n. Let Ũ =
U ∪ {u1 − u2 : u1 ∈ U , u2 ∈ U}, Ã = {α ∈ Rn : α =∑t
τ=0A

t−τBuτ , uτ ∈ Ũ , t ∈ N}, and S̃ = conv(cl(Ã)).
If d(AS̃, B(Ũ \ {0}) + AS̃) > 0, then the reachable set A
(2) is nowhere dense in Rn, and the system is not locally
asymptotically reachable.

Intuitively, we consider the smallest convex set S covering
the reachable states A and their limit points. If the convex
set S is contained within its own transition according to
the linear dynamics under all possible control inputs, then
for every state in S, we could find, recursively, a control
sequence to approach this state arbitrarily closely. Conse-
quently, the system is locally asymptotically reachable. On
the other hand, if the transitions of an augmented convex
set S̃ under zero input and nonzero control input are of
some positive distance apart, than there are open balls in
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the state space that are not reachable by any control input
sequence. We could further show that these unreachable open
balls occur arbitrarily closely to the origin, and the reachable
set is nowhere dense.

To better illustrate the proposed conditions, we present a
computational procedure to verify these conditions in Section
IV, and provide examples to demonstrate both conditions in
Section V.

B. Derivation of Main Results

We first establish the following observation that will be
instrumental in deriving the conditions for local asymptotic
reachability.

Lemma 1. Given system (1), assume for every u ∈ U ,
−u ∈ U , and there is (ū1, ū2, . . . , ūn) ∈ Un such
that rank([Bū1 ABū2 · · · An−1Būn]) = n. Let S =
conv(cl(A)) where A is defined in (2), then there is r > 0
such that Br(0) ⊆ S.

Proof: Write M := [Bū1 ABū2 · · · An−1Būn],
then M−1 exist. Let r = 1/‖M−1‖∞. Then for every
x ∈ Br(0) = {x ∈ Rn|‖x‖ < r}, we can show that
‖x‖∞ < r. Next, for every x ∈ Br(0), let c = M−1x where
c ∈ Rn. Then ‖c‖∞ < 1. Write c = [c1 c2 . . . cn]T , and
note x = Mc, then x =

∑n
i=1 ciA

i−1Būi. Since ‖c‖∞ < 1,
|ci| < 1 for every 1 ≤ i ≤ n. Consequently, for every
i ∈ {1, . . . , n}, ci ∈ conv({−1, 1}). Therefore,

ciA
i−1Būi ∈ conv({Ai−1B(−ūi), Ai−1Būi}),

∀ i ∈ {1, . . . , n}.
(4)

Next, we observe: For every k ∈ {1, . . . , n},
k∑
i=1

ciA
i−1Būi ∈ conv({

k∑
τ=1

Aτ−1Buτ , uτ ∈ {−ūτ , ūτ}}).

(5)
We use induction to show the above. Recall (4), (5)
holds for k = 1. Since (4) holds for i = 1 and
i = 2, and note that for any two sets V,W in
Rn, conv(V) + conv(W) ⊆ conv(V + W), then
c1Bū1 + c2ABū2 ∈ conv({

∑2
τ=1A

τ−1Buτ , u1 ∈
{−ū1, ū1}, u2 ∈ {−ū2, ū2}}), and therefore (5)
holds for k = 2. Assume (5) holds for some
2 ≤ k ≤ n − 1, for

∑k+1
i=1 ciA

i−1Būi =

ck+1A
kBūk+1 +

∑k
i=1 ciA

i−1Būi, since ck+1A
kBūk+1 ∈

conv({AkB(−ūk+1), AkBūk+1}) and
∑k
i=1 ciA

i−1Būi ∈
conv({

∑k
τ=1A

τ−1Buτ , uτ ∈ {−ūτ , ūτ}}), then∑k+1
i=1 ciA

i−1Būi ∈ conv({
∑k+1
τ=1A

τ−1Buτ , uτ ∈
{−ūτ , ūτ}}). Therefore (5) holds for k + 1. By
induction, (5) holds for all 1 ≤ k ≤ n. Consequently,
x =

∑n
i=1 ciA

i−1Būi ∈ conv({
∑n
τ=1A

τ−1Buτ , uτ ∈
{−ūτ , ūτ}}). For every 1 ≤ τ ≤ n, ūτ ∈ U , then −ūτ ∈ U
by assumption. Recall A (2), {

∑n
τ=1A

τ−1Buτ , uτ ∈
{−ūτ , ūτ}} ⊆ {

∑n
τ=1A

τ−1Buτ , uτ ∈ U} ⊆ A ⊆
cl(A). Consequently, conv({

∑n
τ=1A

τ−1Buτ , uτ ∈
{−ūτ , ūτ}}) ⊆ conv(cl(A)), and x ∈ S = conv(cl(A)).
Since this holds for every x ∈ Br(0), Br(0) ⊆ S.

Next we derive the sufficient condition for local asymp-
totic reachability.

Proof: (Theorem 1) Since ρ(A) < 1 and U is finite and
therefore bounded, then A (2) is bounded [6], and therefore
S = conv(cl(A)) is bounded. Let b > 0 be such that ‖x‖ <
b,∀x ∈ S. For any ε > 0, since ρ(A) < 1, there is T ∈ N
such that

‖AT ‖b < ε. (6)

Next, observe: Given state x ∈ S, for every k ∈ Z+, there
is (u1, u2, . . . , uk) ∈ Uk such that

x− (Bu1 +ABu2 + · · ·+Ak−1Buk) ∈ AkS. (7)

We use induction to show the above: For k = 1, since x ∈ S
and S ⊆ AS + BU , there is s ∈ S and u1 ∈ U such
that x = As + Bu1. Then x − Bu1 = As ∈ AS, and (7)
holds for k = 1. Assume (7) holds for some k ≥ 1, there
is (u1, u2, . . . , uk) ∈ Uk such that x − (Bu1 + ABu2 +
· · ·+ Ak−1Buk) ∈ AkS. Write w := x− (Bu1 + ABu2 +
· · ·+Ak−1Buk), then w = Aks for some s ∈ S. Since S ⊆
AS+BU , there is s̃ ∈ S and uk+1 ∈ U such that s = As̃+
Buk+1. Then w = AkBuk+1 + Ak+1s̃, and consequently
x− (Bu1 +ABu2 + · · ·+Ak−1Buk+AkBuk+1) = Ak+1s̃.
Therefore, there is (u1, u2, . . . , uk, uk+1) ∈ Uk+1 such that
x−(Bu1 +ABu2 + · · ·+Ak−1Buk+AkBuk+1) ∈ Ak+1S,
and (7) holds for k + 1. By induction, (7) holds for all
k ∈ Z+. Consequently, for the integer T satisfying (6), with
a slight change of notation, there is (ũ1, ũ2, . . . , ũT ) ∈ UT
such that x −

∑T
k=1A

k−1Bũk ∈ ATS. Given system (1)
with x0 = 0, and with the control sequence {ut}T−1

t=0 where
ut = ũT−t, 0 ≤ t ≤ T − 1, then xT =

∑T
k=1A

k−1Bũk.
Therefore, x − xT ∈ ATS, and there is some s ∈ S such
that x−xT = AT s. Then ‖x−xT ‖ = ‖AT s‖ ≤ ‖AT ‖‖s‖ <
‖AT ‖b < ε. Recall Definition 1, every state x ∈ S is
asymptotically reachable. Based on Lemma 1, there is r > 0
such that Br(0) ⊆ S. Recall Definition 2, system (1) is
locally asymptotically reachable.

We now shift our attention to the necessary condition
for local asymptotic reachability. First we make several
observations that will be useful in deriving the necessary
condition.

Lemma 2. Given a finite input set U ⊂ Rm, |U| < ∞,
and a sequence of control segments {uk}∞k=1, where uk =

{u(k)
t }

T(k)−1
t=0 , T(k) ∈ Z+, u(k)

t ∈ U ,∀ 0 ≤ t ≤ T(k) − 1.
For any l ∈ Z+, if T(k) ≥ l, ∀ k ∈ Z+, then there is
(u∗1, u

∗
2, . . . , u

∗
l ) ∈ U l such that

|{k ∈ Z+| u(k)
T(k)−1 = u∗1, u

(k)
T(k)−2 = u∗2, . . . ,

u
(k)
T(k)−l = u∗l }| =∞.

(8)

Proof: Since T(k) ≥ l, ∀ k ∈ Z+, we first note that
Z+ = {k ∈ Z+|(u(k)

T(k)−1, u
(k)
T(k)−2, . . . , u

(k)
T(k)−l) ∈ U

l} =⋃
u∈Ul{k ∈ Z+|(u(k)

T(k)−1, u
(k)
T(k)−2, . . . , u

(k)
T(k)−l) = u}. Next,
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assume

|{k ∈ Z+|(u(k)
T(k)−1, u

(k)
T(k)−2, . . . , u

(k)
T(k)−l) = u}| <∞,

∀ u ∈ U l.
(9)

Since |U l| < ∞, we have
∑

u∈Ul |{k ∈
Z+|(u(k)

T(k)−1, u
(k)
T(k)−2, . . . , u

(k)
T(k)−l) = u}| < ∞, which

contradicts with |Z+| = ∞. Therefore, assumption (9) is
false, and there is u∗ = (u∗1, u

∗
2, . . . , u

∗
l ) ∈ U l such that

|{k ∈ Z+| u(k)
T(k)−1 = u∗1, u

(k)
T(k)−2 = u∗2, . . . , u

(k)
T(k)−l =

u∗l }| =∞.
Lemma 3. Given system (1), assume A−1 exists, and 0 ∈ U .
Recall S defined in (3). If a state x ∈ Rn is asymptotically
reachable, then x ∈ AS +BU .

Proof: Since x is asymptotically reachable, recall
Definition 1, for every k ∈ Z+, there is T(k) ∈ N
and an input sequence uk = {u(k)

t }
T(k)−1
t=0 such that

‖
∑T(k)−1
t=0 AT(k)−1−tBu

(k)
t − x‖ < 1/k. Consequently, x =

limk→∞
∑T(k)−1
t=0 AT(k)−1−tBu

(k)
t . Since 0 ∈ U , without

loss of generality, let T(k) ≥ 1,∀k ∈ Z+. Recall Lemma
2, there is u∗ ∈ U such that

|{k ∈ Z+| u(k)
T(k)−1 = u∗}| =∞. (10)

Consider the infinite subsequence of {uk}∞k=1

corresponding to (10) and renaming it {ũk}∞k=1,

then for ũk = {ũ(k)
t }

T̃(k)−1
t=0 , have x =

limk→∞
∑T̃(k)−1
t=0 AT̃(k)−1−tBũ

(k)
t , ũ

(k)

T̃(k)−1
= u∗, ∀ k ∈

Z+. Recall A−1 exists by assumption, then

x = Bu∗ +A lim
k→∞

T̃(k)−2∑
t=0

AT̃(k)−2−tBũ
(k)
t . (11)

Recall (2),
∑T̃(k)−2
t=0 AT̃(k)−2−tBũ

(k)
t ∈ A, and conse-

quently limk→∞
∑T̃(k)−2
t=0 AT̃(k)−2−tBũ

(k)
t ∈ cl(A) ∈

conv(cl(A)) = S. Therefore, x ∈ AS +BU .
Lemma 4. Given system (1), assume A−1 exists, and 0 ∈
U . Recall S defined in (3). If a state x ∈ Rn is not
asymptotically reachable, and Ax /∈ (B(U \ {0}) + AS),
then Ax is not asymptotically reachable.

Proof: We prove by contradiction. Assume Ax is
asymptotically reachable, recall the derivation of Lemma
3, there is a sequence of control segments {uk}∞k=1,
where uk = {u(k)

t }
T(k)−1
t=0 , and u∗ ∈ U such that

Ax = limk→∞
∑T(k)−1
t=0 AT(k)−1−tBu

(k)
t , and u

(k)
T(k)−1 =

u∗, ∀ k ∈ Z+. Since A−1 exists by assumption, similar
to (11), have

Ax = Bu∗ +A lim
k→∞

T(k)−2∑
t=0

AT(k)−2−tBu
(k)
t . (12)

If u∗ ∈ (U \ {0}), recall S (3), then
limk→∞

∑T(k)−2
t=0 AT(k)−2−tBu

(k)
t ∈ cl(A) ⊆ S , and

therefore Ax ∈ (B(U \ {0}) +AS), which contradicts with
the hypothesis that Ax /∈ (B(U \{0}) +AS). Consequently,

u∗ /∈ (U \ {0}) and therefore u∗ = 0. Recall (12), and since
A−1 exists, have x = limk→∞

∑T(k)−2
t=0 AT(k)−2−tBu

(k)
t ,

which contradicts with x being not asymptotically reachable.
Consequently, the assumption of Ax being asymptotically
reachable is false.

Now we are ready to prove Theorem 2.
Proof: (Theorem 2) Given system (1), we first define

an augmented input set Ũ as

Ũ = U ∪ {u1 − u2 : u1 ∈ U , u2 ∈ U}, (13)

and consider the following augmented system

xt+1 = Axt +But, ut ∈ Ũ , (14)

where matrices A,B are identical to that of the original
system (1), and Ũ is defined in (13). Given system (14),
we observe: There is x̄ ∈ Rn such that

Akx̄ is not asymptotically reachable, ∀ k ∈ Z+, (15)

where asymptotic reachability in the above is with respect to
system (14). We show the above observation by considering
the eigenvalue-eigenvector pairs (λ, v) of A.

Case 1): λ ∈ R. Without loss of generality, let v ∈ Rn,
‖v‖ = 1, and span(v) = {av | a ∈ R}. Recall sets Ã and
S̃ defined in the statement of Theorem 2,

Ã = {α ∈ Rn : α =

t∑
τ=0

At−τBuτ , uτ ∈ Ũ , t ∈ N}, (16)

S̃ = conv(cl(Ã)). (17)

Since ρ(A) < 1 and Ũ (13) is finite, AS̃ is bounded. Define
c̄ ∈ R as:

c̄ = sup{c ∈ R|c = 〈x, v〉, x ∈ span(v) ∩AS̃}. (18)

where 〈·, ·〉 denotes the dot product in Rn. Since span(v)∩
AS̃ is bounded, c̄ is well-defined. Recall Lemma 1, and note
that for every u ∈ Ũ (13), −u ∈ Ũ , and that U ⊆ Ũ , then
there is r > 0 such that Br(0) ⊆ S̃. Consequently ABr(0) ⊆
AS̃. Since A−1 exists by assumption, there is r̃ > 0 such
that Br̃(0) ⊆ ABr(0). Rewrite r̃ as r, then there is r > 0
such that

Br(0) ⊆ AS̃. (19)

Since (r/2)v ∈ span(v) ∩AS̃, note 〈(r/2)v, v〉 = r/2 > 0,
and recall (18), we have

c̄ > 0. (20)

Note A−1 exists and ρ(A) < 1 by assumption, have 0 <
|λ| < 1. Recall d(AS̃, B(Ũ \ {0}) + AS̃) > 0 as stated in
the hypotheses of Theorem 2, let ε̄ be

ε̄ = min{1/2, 1− |λ|
2|λ|

,
d(AS̃, B(Ũ \ {0}) +AS̃)

4c̄
}, (21)

then 0 < ε̄ < 1. Recall (15), choose x̄ as

x̄ = (1 + ε̄)c̄v. (22)

Next we show that x̄ satisfies (15) by induction. For k = 1 in
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(15), we first show that x̄ = (1 + ε̄)c̄v /∈ AS̃ +BŨ . Assume
(1 + ε̄)c̄v ∈ AS̃, then (1 + ε̄)c̄v ∈ span(v) ∩ AS̃. Recall
(18), c̄ ≥ (1 + ε̄)c̄, and therefore ε̄c̄ ≤ 0, which contradicts
with ε̄ > 0 (21) and c̄ > 0 (20). Therefore the assumption
(1 + ε̄)c̄v ∈ AS̃ is false, and consequently

x̄ = (1 + ε̄)c̄v /∈ AS̃. (23)

Next, consider the distance d((1+ ε̄)c̄v, AS̃). Recall (18), for
(1−ε̄)c̄ < c̄, there is c1 with (1−ε̄)c̄ < c1 < c̄ such that c1 ∈
{c ∈ R|c = 〈x, v〉, x ∈ span(v) ∩ AS̃}. Consequently there
is x1 = c1v ∈ span(v)∩AS̃. Since x1 ∈ AS̃, we have d((1+
ε̄)c̄v, AS̃) ≤ d((1 + ε̄)c̄v, x1) = (1 + ε̄)c̄ − c1. Since c1 >
(1− ε̄)c̄, we have (1 + ε̄)c̄− c1 < 2ε̄c̄. Recall (21), (20), we
have 2ε̄c̄ ≤ d(AS̃, B(Ũ \ {0}) +AS̃)/2. Therefore, d((1 +
ε̄)c̄v, AS̃) < d(AS̃, B(Ũ \ {0}) +AS̃)/2. Consequently,
d((1+ε̄)c̄v, B(Ũ \{0})+AS̃) ≥ d(AS̃, B(Ũ \ {0}) +AS̃)−
d((1 + ε̄)c̄v, AS̃) > d(AS̃, B(Ũ \ {0}) +AS̃)/2 > 0.
Consequently,

(1 + ε̄)c̄v /∈ (B(Ũ \ {0}) +AS̃). (24)

Note that AS̃+BŨ = AS̃∪(B(Ũ \{0})+AS̃), by (23), (24),
we have x̄ = (1 + ε̄)c̄v /∈ AS̃ +BŨ . Recall Lemma 3, x̄ =
(1+ ε̄)c̄v is not asymptotically reachable w.r.t. (14). Next, we
show that Ax̄ /∈ (B(Ũ \ {0})+AS̃). Note Ax̄ = λ(1+ ε̄)c̄v,
recall (21), ε̄ ≤ 1−|λ|

2|λ| , and consequently |λ|(1 + ε̄)c̄ < c̄.
Recall (18), there is c2 with

|λ|(1 + ε̄)c̄ < c2 < c̄ (25)

such that c2 ∈ {c ∈ R|c = 〈x, v〉, x ∈ span(v) ∩ AS̃}.
Consequently there is x2 = c2v ∈ span(v) ∩ AS̃. Since S̃
is convex, AS̃ is also convex. Since 0 ∈ Ũ , and ∀ u ∈ Ũ ,
−u ∈ Ũ , we have

{cv||c| ≤ c2} ⊆ AS̃. (26)

Consequently Ax̄ ∈ AS̃. Since d(AS̃, B(Ũ \ {0}) +AS̃) >
0, have Ax̄ /∈ (B(Ũ \ {0}) + AS̃). Since x̄ is not asymp-
totically reachable w.r.t. (14), by Lemma 4 Ax̄ is not
asymptotically reachable, and x̄ (22) satisfies (15) for k = 1.
Next, assume Akx̄ is not asymptotically reachable for some
k ≥ 1. Since |λ| < 1, we have |λk+1(1 + ε̄)c̄| < |λ|(1 + ε̄)c̄.
Recall (25) (26), we have Ak+1x̄ ∈ AS̃, and therefore
Ak+1x̄ /∈ (B(Ũ \ {0}) + AS̃). Recall Lemma 4, Ak+1x̄ is
not asymptotically reachable. By induction, x̄ (22) satisfies
(15) for all k ∈ Z+ when λ ∈ R.

Case 2): λ ∈ C \ R. Let v∗ be the complex conjugate of
the eigenvector v. Write λ = reiθ, v = w + iu, then

Ak(v + v∗) = 2rk(w cos(kθ)− u sin(kθ)), k ∈ Z+ (27)

where 0 < r < 1, −π ≤ θ < π, w ∈ Rn, u ∈ Rn. Since AS̃
is bounded, without loss of generality, let Ak(v+v∗) /∈ AS̃.
Define k̄ ∈ Z+ as

k̄ = max{k ∈ Z+|Ak(v + v∗) /∈ AS̃}. (28)

Recall (19) (27), {k ∈ Z+|Ak(v + v∗) /∈ AS̃} is
finite and k̄ is well-defined. If d(Ak̄(v + v∗), AS̃) >
d(AS̃, B(Ũ \ {0}) +AS̃)/2, define a function f : [0, 1] →

R as: f(s) = d(s · Ak̄(v + v∗), AS̃), s ∈ [0, 1]. Then it can
be shown that f : [0, 1] → R is continuous. Thus the range
of f is an interval [c, d] for some c, d ∈ R. Since f(0) = 0,
f(1) = d(Ak̄(v + v∗), AS̃), there is s̄ ∈ (0, 1) such that
f(s̄) = d(s̄ ·Ak̄(v+v∗), AS̃) = 1

2d(AS̃, B(Ũ \ {0}) +AS̃).
Let ᾱ be

ᾱ =

 s̄, if d(Ak̄(v + v∗), AS̃) >

d(AS̃, B(Ũ \ {0}) +AS̃)/2,
1, otherwise.

(29)

Recall (15), choose x̄ as

x̄ = ᾱAk̄(v + v∗), (30)

where k̄ is given in (28) and ᾱ is given in (29). We
will show x̄ satisfies (15) by induction. For k = 1, re-
call (29), have d(x̄, AS̃) ≤ 1

2d(AS̃, B(Ũ \ {0}) +AS̃),

and x̄ /∈ AS̃. Consequently d(x̄, B(Ũ \ {0}) + AS̃) ≥
d(AS̃, B(Ũ \ {0}) +AS̃) − d(x̄, AS̃) > 0, and therefore
x̄ /∈ B(Ũ \ {0}) +AS̃. Consequently x̄ /∈ BŨ +AS̃. Recall
Lemma 3, x̄ is not asymptotically reachable w.r.t. (14). Recall
(28), for every m ∈ Z+, Ak̄+m(v + v∗) ∈ AS̃. Since AS̃ is
convex, 0 ∈ AS̃, and ᾱ (29) satisfies 0 < ᾱ ≤ 1, we have

Amx̄ = ᾱAk̄+m(v + v∗) ∈ AS̃, ∀ m ∈ Z+. (31)

Therefore Ax̄ ∈ AS̃, and therefore Ax̄ /∈ B(Ũ \ {0}) +
AS̃. Recall Lemma 4, Ax̄ is not asymptotically reachable,
i.e. x̄ (30) satisfies (15) for k = 1. Next, assume Akx̄ is
not asymptotically reachable for some k ≥ 1, recall (31),
Ak+1x̄ ∈ AS̃, and therefore Ak+1x̄ /∈ B(Ũ \ {0}) + AS̃.
Recall Lemma 4, Ak+1x̄ is not asymptotically reachable.
By induction, x̄ (30) satisfies (15) for all k ∈ Z+ when
λ ∈ C \ R.

Up to this point, we have shown (15) by choosing x̄
according to either (22) or (30), depending on whether the
eigenvalue λ is real or not. Next, we show that A (2) is
nowhere dense. For every α ∈ cl(A), given ε > 0, since
ρ(A) < 1, there is K ∈ Z+ such that

‖AK x̄‖ < ε/3. (32)

Since A (2) is bounded, there is b > 0 such that ‖α‖ <
b,∀ α ∈ A. Since ρ(A) < 1, there is L ∈ Z+ such that

‖AL‖b < ε/3. (33)

Since α ∈ cl(A), there is {uk}∞k=1, where uk =

{u(k)
t }

T(k)−1
t=0 , u(k)

t ∈ U , 0 ≤ t ≤ T(k) − 1, such that α =

limk→∞
∑T(k)−1
t=0 AT(k)−1−tBu

(k)
t . Since 0 ∈ U , w.l.o.g.

let T(k) ≥ L,∀ k ∈ Z+. Recall Lemma 2, and similar
to the derivation of Lemma 3, there is {uk}∞k=1, where
uk = {u(k)

t }
T(k)−1
t=0 , u(k)

t ∈ U , 0 ≤ t ≤ T(k) − 1, and
(u∗1, u

∗
2, . . . , u

∗
L) ∈ UL such that

α = lim
k→∞

T(k)−1∑
t=0

AT(k)−1−tBu
(k)
t ,

u
(k)
T(k)−1 = u∗1,u

(k)
T(k)−2 = u∗2, . . . , u

(k)
T(k)−L = u∗L,∀ k ∈ Z+.

(34)
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Let δ ∈ Rn be

δ =

L∑
l=1

Al−1Bu∗l +AK x̄. (35)

Recall (34), there is N ∈ Z+ such that
‖
∑T(k)−1
t=0 AT(k)−1−tBu

(k)
t − α‖ < ε/3,∀ k ≥ N. For

any k ≥ N , ‖δ − α‖ ≤ ‖
∑T(k)−1
t=0 AT(k)−1−tBu

(k)
t −

α‖ + ‖δ −
∑T(k)−1
t=0 AT(k)−1−tBu

(k)
t ‖ < ‖δ −∑T(k)−1

t=0 AT(k)−1−tBu
(k)
t ‖ + ε/3. Recall (34),

(35), we have δ −
∑T(k)−1
t=0 AT(k)−1−tBu

(k)
t =

AK x̄ − AL
∑T(k)−L−1
t=0 AT(k)−L−1−tBu

(k)
t . Note that∑T(k)−L−1

t=0 AT(k)−L−1−tBu
(k)
t ∈ A, and recall (32),

(33), we have ‖δ −
∑T(k)−1
t=0 AT(k)−1−tBu

(k)
t ‖ < 2ε/3.

Thus δ ∈ Bε(α), where δ is given in (35). Next, we
show δ /∈ cl(A) by contradiction. Assume δ ∈ cl(A),
then as in previous arguments, there is {wk}∞k=1, where
wk = {w(k)

t }
T(k)−1
t=0 , w(k)

t ∈ U , 0 ≤ t ≤ T(k) − 1, and
(w∗1 , w

∗
2 , . . . , w

∗
L) ∈ UL such that

δ = lim
k→∞

T(k)−1∑
t=0

AT(k)−1−tBw
(k)
t ,

w
(k)
T(k)−1 = w∗1 ,w

(k)
T(k)−2 = w∗2 , . . . , w

(k)
T(k)−L = w∗L, k ∈ Z+.

(36)
Recall (35), we have AK x̄ = δ −∑L
l=1A

l−1Bu∗l = limk→∞(
∑L
l=1A

l−1B(w∗l −
u∗l ) +

∑T(k)−L−1
t=0 AT(k)−1−tBw

(k)
t ). Recall Ũ

(13), define {w̃k}∞k=1, where w̃k = {w̃(k)
t }

T̃(k)−1
t=0 ,

w̃
(k)
t ∈ Ũ , 0 ≤ t ≤ T̃(k) − 1, as

T̃(k) = T(k),

w̃
(k)

T̃(k)−l
= (w∗l − u∗l ) ∈ Ũ , l ∈ {1, 2, . . . , L},

w̃
(k)

T̃(k)−l
= w

(k)
T(k)−l, l ∈ {L+ 1, . . . , T̃(k)}.

Then we have AK x̄ = limk→∞
∑T̃(k)−1
t=0 AT̃(k)−1−tBw̃

(k)
t ,

consequently AK x̄ is asymptotically reachable with respect
the augmented system (14), which contradicts with (15), and
therefore the assumption δ ∈ cl(A) is false. Consequently,
δ /∈ cl(A). To briefly summarize, for every α ∈ cl(A), and
given any ε > 0, there is δ ∈ Bε(α) such that δ /∈ cl(A).
Therefore int(cl(A)) = ∅, and A (2) is nowhere dense.
Similarly, since 0 ∈ A, for any open ball Bε(0), there
is δ ∈ Bε(0) that is not asymptotically reachable. Recall
Definition 2, system (1) is not asymptotically reachable.

IV. ALGORITHMIC VERIFICATION OF THE CONDITIONS
FOR LOCAL ASYMPTOTIC REACHABILITY

In this section, we present a computational procedure
to verify the conditions for local asymptotic reachability
proposed in Section III. Particularly, we present an algorithm
to approximate the convex set S = conv(cl(A)) arbitrarily
closely. In this section, we assume that the matrix A of
system (1) is Schur stable. The computational procedure is
shown in the following.

Algorithm 1 Compute approximations of S = conv(cl(A))

Input: Matrices A, B, set U , approximation tolerance
ε > 0

1: Compute: b > 0 such that ‖x‖∞ < b,∀x ∈ cl(A)
2: Compute: N ∈ N such that ‖AN‖∞b < ε/4
3: Compute: AN = {x ∈ Rn :
x =

∑t
τ=0A

t−τBuτ , uτ ∈ U , t ∈ {0, 1, . . . , N}}
4: Compute: B = {x ∈ Rn : ‖x‖∞ ≤ ε/2}
5: Compute: S = conv(AN )
6: Compute: S̄ = conv(AN + B)
7: Return: S, S̄

We make the following observation of the computed
polytopes S and S̄.
Observation: Given system (1) with Schur stable matrix A
and S defined in (3), the S and S̄ returned by Algorithm 1
satisfy the following:

• S ⊂ S ⊂ S̄.
• For any x ∈ S, there is x′ ∈ S such that ‖x−x′‖∞ < ε.
• For any x ∈ S̄, there is x′′ ∈ S such that ‖x−x′′‖∞ <
ε.

Essentially, S is an inner approximation of S and S̄ is an
outer approximation of S. We can also specify the difference
between S and S as well as the difference between S̄ and
S to be arbitrarily small by choosing the approximation
tolerance ε. With the computed approximations S and S̄, we
could use them to verify the conditions for local asymptotic
reachability. Specifically, for Theorem 1: If S̄ ⊆ AS +BU ,
then S ⊆ AS+BU ; for Theorem 2: Let S̃, ¯̃S be the returned
values from Algorithm 1 with the input (A,B, Ũ), where
Ũ is given in (13), if d(A ¯̃S, B(Ũ \ {0}) + A ¯̃S) > 0, then
d(AS̃, B(Ũ \ {0}) +AS̃) > 0.

Here we comment on the complexity of Algorithm 1: The
upper bound b could be computed in constant time [5]. Given
an approximation tolerance ε, the input sequence length N
is in the order of logρ(A) ε, where ρ(A) < 1 is the spectral
radius of matrix A. The time complexity to compute the set
AN is in the order of |U|N , and therefore the complexity to
compute the convex hulls S and S̄ is in the order of N |U|N .

Remark: From another point of view, we are presenting a
method to approximately identify the reachable set of system
(1). Particularly, if the hypotheses in Theorem 1 are satisfied,
then every state in S = conv(cl(A)) is asymptotically
reachable. On the other hand, any state outside of S is
not asymptotically reachable. Essentially, S contains exactly
the asymptotically reachable states. Therefore, Algorithm
1 approximately identifies all the asymptotically reachable
states of system (1).

V. ILLUSTRATIVE EXAMPLES

In this section, we present a locally asymptotically reach-
able system, Example 3, and another one, Example 2, that
is not asymptotically reachable.
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Example 2. Consider a system (1) with parameters with

parameters: A =

[
0.4 0.3
0 0.5

]
, B =

[
−0.5

1

]
, U =

{0, 1}. We use Algorithm 1 to verify the hypotheses in
Theorem 2.

Fig. 1: A plant that is not locally asymptotically reachable.

As shown in the above figure, with approximation tol-
erance ε = 0.2, the blue polytope represents S̃ and the
red polytope represents ¯̃S as stated in Section IV. Note
that S̃ and ¯̃S are inner and outer approximations of S̃ (17)
respectively. The scattered points represent elements of Ã
(16). The green polytopes represent the set BŨ + A ¯̃S, and
the green polytope with thicker lines represent the set A ¯̃S.
As shown in Figure 1, d(A ¯̃S, B(Ũ \ {0}) + A ¯̃S) > 0.
Consequently, the hypotheses of Theorem 2 are satisfied and
the reachable set A (2) is nowhere dense in R2.

Example 3. Consider a system (1) with parameters: A =[
0.91 0.1

0 0.92

]
, B =

[
1 0
0 1

]
, U = {[0 0]T , [0 1]T , [0 −

1]T , [−0.2 0.2]T , [0.2 − 0.2]T }. We run Algorithm 1 and
present the following result:

Fig. 2: A locally asymptotically reachable plant.

In the above figure, the blue polytope S represents an
inner approximation of S (3) with N = 5 in Algorithm
1. The green polytopes represent the set BU +AS, and the
scattered points represent elements of A (2). As shown in the
figure S ⊆ BU + AS, and consequently, by the derivation
of Theorem 1, the system is locally asymptotically reachable
and the reachable set A (2) is dense in some neighborhood
of the origin.

VI. CONCLUSION AND FUTURE WORK

In this paper, we motivate and propose a notion of local
asymptotic reachability for linear systems with finite input al-
phabet. We characterize the proposed local asymptotic reach-
ability by deriving both a sufficient condition and a necessary
condition for reachability. The proposed conditions involve
considering the convex hull of the closure of the reachable
states and its transition under the linear dynamics. We also
present an algorithm to help verify the proposed conditions.
Future work will aim to further develop and generalize
the proposed conditions such that they could be applied to
identify local asymptotic reachability for more systems, and
will try to potentially arrive at a necessary and sufficient
condition for reachability. We would also like to investigate
how likely it is that no reachability guarantees can be given
for an arbitrary system using the conditions proposed in
this manuscript. We also plan to study reachability with
finite length input sequences whereas the current manuscript
mainly considers the asymptotic behaviors. Towards a more
practical end, we wish to identify real life scenarios where
the proposed results in this manuscript could be applied.
Finally, we would like to study the impact of disturbances in
the system and if the proposed conditions may be extended
for non-Schur systems.
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