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Abstract— This work proposes a method to compute the
maximum value obtained by a state function along trajectories
of a Delay Differential Equation (DDE). An example of this
task is finding the maximum number of infected people in an
epidemic model with a nonzero incubation period. The variables
of this peak estimation problem include the stopping time and
the original history (restricted to a class of admissible histo-
ries). The original nonconvex DDE peak estimation problem
is approximated by an infinite-dimensional Linear Program
(LP) in occupation measures, inspired by existing measure-
based methods in peak estimation and optimal control. This
LP is approximated from above by a sequence of Semidefinite
Programs (SDPs) through the moment-Sum of Squares (SOS)
hierarchy. Effectiveness of this scheme in providing peak
estimates for DDEs is demonstrated with provided examples.

I. INTRODUCTION

This paper presents an algorithm to upper bound extreme
values of a state function attained along trajectories of a
Delay Differential Equation (DDE). The dynamics of a DDE
depend on a history of the state, in contrast to an Ordinary
Differential Equation (ODE) in which the dynamics are a
function only of the present values of state [1], [2], [3], [4].
This paper will involve analysis of DDEs in a state space
X ⊂ Rn over a time horizon T < ∞ with a single fixed
discrete bounded delay τ ∈ (0, T ).

Trajectory evolution of a DDE depends on an initial
history xh : [−τ, 0] → X rather than simply an initial
condition x0 ∈ X for a corresponding ODE. The evaluation
at time t for a trajectory starting with a history xh will be
denoted as x(t | xh). A function class H of histories may be
defined, allowing for the definition of differential inclusions
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of DDEs. A peak estimation problem may be defined on
a time-delay system to find the maximum value of a state
function p along system trajectories given a class of initial
histories H as

P ∗ = sup
t∗∈[0,T ], xh(·)

p(x(t∗ | xh)) (1a)

ẋ = f(t, x(t), x(t− τ)) ∀t ∈ [0, T ] (1b)
x(t) = xh(t) ∀t ∈ [−τ, 0] (1c)
xh(·) ∈ H. (1d)

The variables in Problem (1) are the stopping time t∗

and the initial history xh. Problem (1) is a DDE version of
the (generically nonconvex) ODE peak estimation program
studied in [5], [6]. The peak estimation task in (1) is an
instance of a DDE Optimal Control Problem (OCP) with a
free terminal time and a zero running (integrated) cost.

This work uses measure-theoretic methods in order to pro-
vide certifiable upper bounds on the peak value P ∗ from (1).
The first application of measure-theoretic methods towards
DDEs was in [7], in which the control input was relaxed
into a Young Measure [8] (probability distribution at each
point in time) [9]. This Young-Measure-based relaxed control
yields the OCP optimal value in the case of a single discrete
time delay under convexity, regularity, and compactness
assumptions. However, the Young Measure control programs
may result in a lower bound when there are two or more
delays in the system dynamics (there exist Young-Measure
solutions that do not correspond to OCP solutions) [10],
[11]. Adding new measures and constraints allows for the
construction of tight Young Measure OCP approximations
at the cost of significantly more complicated programs [12].

Occupation measures are nonnegative Borel measures that
contain all possible information about trajectory behavior,
and are a step beyond Young Measures in terms of ab-
straction and relaxation. The work of [13] proves that a
convex infinite-dimensional Linear Program (LP) in occu-
pation measures for an ODE OCP has the same optimal
value as the original OCP under compactness, convexity, and
regularity conditions. The problem of estimation of the peak
of the expected value of a given state function for stochastic
processes may be solved using occupation measures under
these same conditions [5]. The Moment-Sum of Squares
(SOS) hierarchy offers a sequence of outer approximations
(lower bounds on OCP/upper bounds on peak estimates)
as found through solving Semidefinite Programs (SDPs) of
increasing size [14]. The moment-SOS hierarchy has been
applied to dynamical problems including barrier functions
[15], OCPs [16], [17], peak estimation [6], [18], region of
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attraction estimation [19], reachable set estimation [20] and
distance estimation [21].

Use of the moment-SOS hierarchy towards analysis of
DDEs includes finding stability and safety certificates [22],
[23], [17]. Prior work on using occupation measures for
problems in time delays includes ODE-PDE models in
[24], [25], a Riesz-frame system in [26], and a gridded LP
framework for optimal control given a single history xh in
[27]. Peak estimation has been conducted on specific time-
delay systems such as the forced Liénard model [28] and
compartmental epidemic models [29].

The contributions of this paper are:
• A theory of Measure-Valued (MV)-solutions to DDEs

with multiple histories (in H) and free terminal time
• A measure LP that upper-bounds problem (1)
• A convergent sequence of Linear Matrix Inequalities

(LMIs) (and resultant SDPs) to the measure upper-
bound

To the best of our knowledge, this is the first work that treats
peak estimation of time-delay systems.

This paper is organized as follows: Section II formal-
izes notation and summarizes concepts in measure theory,
time-delay, occupation measures, and ODE peak estimation.
Section III defines an MV-solution for free-terminal-time
DDE solutions to create a measure-LP that upper-bounds
(1). Section IV reviews the Moment-SOS hierarchy and
applies it to finding SDPs to upper-bound the peak-estimation
measure LP. Section V provides two examples of DDE peak
estimation. Section VI concludes the paper.

II. PRELIMINARIES

A. Notation

The n-dimensional real Euclidean vector space is Rn. The
set of natural numbers is N, and the set of n-dimensional
multi-indices is Nn. The degree of a multi-index α ∈ Nn is
|α| =

∑n
i=1 αi. The set of polynomials with real coefficients

in an indeterminate x is R[x]. Each polynomial p(x) ∈ R[x]
has a unique representation in terms of a finite index set
J ⊂ Nn and coefficients {pα}α∈J with pα ̸= 0 as p(x) =∑

α∈J pα (
∏n

i=1 x
αi
i ) =

∑
α∈J pαx

α. The degree of a
polynomial deg p(x) is equal to maxα∈J |αj |. The subset
of polynomials with degree at most d is R[x]≤d ⊂ R[x].

B. Analysis and Measure Theory

Let X be a topological space. The set of continuous
functions over a space X is C(X), and its subcone of
nonnegative functions over X is C+(X). The subset of once-
differentiable functions over X is C1(X) ⊂ C(X). A single-
variable function g(t) is Piecewise Continuous (PC) over the
domain [a, b] if there exist B ∈ N\{0} and a finite number
of time-breaks t0 = a < t1 < t2 < · · · < tB < b = tB+1

such that the function g(t) is continuous in each interval
[tk, tk+1) for k = 0..B. The class of PC functions from the
time interval [−τ, 0] to X is PC([−τ, 0], X).

The set of nonnegative Borel measures over X isM+(X).
A pairing exists between functions p ∈ C(X) and mea-
sures µ ∈ M+(X) by Lebesgue integration with ⟨p, µ⟩ =

∫
X
p(x)dµ(x). This pairing is a duality pairing and defines

an inner product between C+(X) and M+(X) when X is
compact. The µ-measure of a set A ⊆ X may be defined
in terms of A’s indicator function (IA(x) = 1 if x ∈ A
and IA(x) = 0 otherwise) as µ(A) = ⟨IA(x), µ(x)⟩. The
quantity µ(X) is called the mass of µ, and µ is a probability
distribution if µ(X) = 1. The support of µ is the set of all
points x such that all open neighborhoods Nx ∋ x satisfy
µ(Nx) > 0. Two special measures are the Dirac delta and the
Lebesgue measure. The Dirac delta δx with respect to a point
x ∈ X obeys the point-evaluation pairing ⟨p, δx⟩ = p(x)
for all p ∈ C(X). The Lebesgue (volume) distribution has
the definition ⟨p, λX⟩ =

∫
X
p(x)dx. Further details about

measure theory are available in [30].
Given spaces X and Y , the projection πx : X × Y → X

is the map (x, y) 7→ x. For measures µ ∈ M+(X) and
ν ∈M+(Y ), the product measure µ⊗ ν ∈M+(X × Y ) is
the unique measure satisfying (µ⊗ ν)(A×B) = µ(A)ν(B)
for all subsets A ⊆ X, B ⊆ Y . For two measures µ, ξ ∈
M+(X), the measure µ dominates ξ (ξ ≤ µ) if ξ(A) ≤
µ(A), ∀A ⊆ X . To every dominated measure ξ ≤ µ there
exists a slack measure ξ̂ ∈M+(X) such that ξ + ξ̂ = µ.

The pushforward of a map Q : X → Y along a measure
µ is Q#µ, with the relation ⟨z,Q#µ⟩ = ⟨z ◦Q,µ⟩ holding
for all z ∈ C(Y ). Given η ∈ M+(X × Y ), the projection-
pushforward πx

#η is the x-marginalization of η. The pairing
of p ∈ C(X) with πx

#η may be equivalently expressed as
⟨p, πx

#η⟩ = ⟨p, η⟩. The adjoint of a linear map L : C(X)→
C(Y ) is a mapping L† : M(Y ) → M(X) satisfying
⟨Lp, ν⟩ = ⟨p,L†ν⟩ for all p ∈ C(X) and ν ∈M(Y ).

C. Time Delay Systems

Given a PC state history t 7→ xh(t), t ∈ [−τ, 0], a unique
forward trajectory x(t | xh) of (1b) exists on t ∈ [0, T ] if
the function (t, x0, x1) 7→ f(t, x0, x1) is locally Lipschitz
in all variables. Such locally Lipschitz dynamics satisfy a
smoothing property: the order of trajectory time-derivatives
that are continuous will increase by 1 every τ time steps [4].

The behavior of time-delay systems may change and
bifurcate as the time delays change. A well-studied example
of ẋ = −x(t − τ) in which the system is stable (to x = 0)
for all bounded PC histories with τ ∈ [0, π/2), has bounded
oscillations for some initial histories at τ = π/2 (e.g.
constant xh in time), and is unstable (divergent oscillations
to ±∞) for all similar histories with τ > π/2 [4].

Problem (1) involves a class of histories H. In this paper,
we will impose that H is graph-constrained,

Definition 2.1: The history class H is graph-constrained
if H is the set of histories whose graph lies within a given
set H0 ⊆ [−τ, 0]×X ,

H = {xh ∈ PC([−τ, 0], X) | (t, xh(t)) ∈ H0 ∀t ∈ [−τ, 0]},

and there are no other continuity restrictions on histories.

D. Occupation Measures

The occupation measure associated with an interval
[a, b] ⊂ R and a curve t 7→ x(t) ∈ PC([a, b], X) is the

5289



pushforward of the Lebesgue distribution (in time) λ[a,b]

along the curve evaluation. Such an occupation measure
µx(·) ∈ M+([a, b] × X) satisfies a relation for all v ∈
C([a, b]×X) :

⟨v, µx(·)⟩ =
∫ b

a
v(t, x(t))dt. (2)

Occupation measures can be extended to controlled dy-
namics. Let U ⊂ Rm be a set of input-values and define the
following controlled dynamics (with ∀t ∈ [0, T ] : u(t) ∈ U )

ẋ(t) = f(t, x(t), u(t)). (3)

The occupation measure of a trajectory of (3) given a
stopping time t∗, a distribution of initial conditions µ0 ∈
M+(X0) with X0 ⊂ X and a measurable control u(·)
(such that u(t) is a probability distribution over U for each
t ∈ [0, t∗]) for sets A ⊆ [0, T ], B ⊆ X, C ⊆ U is

µ(A×B × C | t∗) = (4)∫
X0

∫
[0,t∗]

IA×B×C ((t, x(t | x0, u(·)), u(t)) dtdµ0(x0).

A linear operator Lf may be defined for every v ∈
C1([−τ, T ]× Rn) by

Lfv(t, x) = ∂tv(t, x) + f(t, x, u) · ∇xv(t, x). (5)

A distribution of initial conditions µ0 ∈ M+(X0), free-
terminal-time values µp ∈M+([0, T ]×X), and occupation
measures µ ∈M+([0, T ]×X ×U) from (4) are connected
together by Liouville’s equation for all v ∈ C1([0, T ]×X)

⟨v, µp⟩ = ⟨v(0, x), µ0(x)⟩+ ⟨Lfv, µ⟩ (6a)

µp = δ0 ⊗ µ0 + πtx
#L

†
fµ. (6b)

Equation (6b) is a shorthand notation for (6a) when applied
to all C1 functions v. Note that the πtx

# marginalizes out the
input u in the occupation measure µ. Any µ as part of a
tuple of measures (µ0, µp, µ) satisfying (6) is referred to as
a relaxed occupation measure.

III. PEAK MEASURE PROGRAM

This section will formulate a measure-valued LP which
upper-bounds Problem (1) in objective.

A. Assumptions

The following assumptions will be imposed on the peak
estimation Problem (1):

A1 The set [−τ, T ]×X is compact with τ < T ;
A2 The function f is Lipschitz inside [0, T ]×X2;
A3 Any trajectory x(· | xh) with xh ∈ H such that x(t |

xh) ̸∈ X for some t ∈ [0, T ] also satisfies x(t′ | xh) ̸∈
X for all t′ ≥ t;

A4 The objective p is continuous;
A5 The history class H is graph-constrained by H0 ⊂

[−τ, 0]×X .
In the case where τ > T , the delayed state t 7→ x(t− τ)

is fully specified in time [0, T ] without requiring dynamical
information, and (1) reduces to a peak estimation problem
over ODEs. All tracked histories in H are bounded due

to assumption A1 (since the range X is compact). The
nonreturn assumption A3 ensures that a trajectory cannot
leave and then return to X to produce a lower value of p,
given that the occupation-measure-based techniques used in
this paper can only track trajectories while they are in X
(Remark 1 of [21]).

B. Measure-Valued Solution

The initial set X0 is the t = 0+ slice of H0. Equation
(7) describes the measures (µh, µ0, µp, µ̄0, µ̄1, ν) that will be
used to form a free-terminal-time MV-solution to the DDE
(1b) with multiple histories (in H):

History µh ∈M+(H0) (7a)
Initial µ0 ∈M+(X0) (7b)
Peak µp ∈M+([0, T ]×X) (7c)

Occupation Start µ̄0 ∈M+([0, T − τ ]×X2) (7d)

Occupation End µ̄1 ∈M+([T − τ, T ]×X2) (7e)
Time-Slack ν ∈M+([0, T ]×X) (7f)

The joint (relaxed) occupation measure µ̄ ∈M+([0, T ]×
X2) is constructed from the sum µ̄ = µ̄0 + µ̄1. An MV
solution to the DDE in (1b) is a set of measures from
(7) that satisfies three types of constraints: History-Validity,
Liouville, Consistency.

1) History-Validity: The first History-Validity constraint
is that µ0 should be a probability distribution over the
initial state condition (at t = 0). The second is that the
history measure µh should represent an averaged occupation
measure of histories that are defined between [−τ, 0], which
implies that the t-marginal of µh should be Lebesgue-
distributed. The two History-Validity constraints are,

⟨1, µ0⟩ = 1, πt
#µh = λ[−τ,0]. (8)

2) Liouville: The true occupation measure (t, x0, x1) 7→
µ̄(t, x0, x1) has a time t, a current state x0 = x(t | xh), and
an external input x1 ∈ X with x1(t) = x(t−τ | xh). Use of
the Liouville equation in (6) applied to the joint occupation
measure µ̄ = µ̄0 + µ̄1 leads to

µp = δ0 ⊗ µ0 + πtx0

# L
†
f (µ̄0 + µ̄1). (9)

3) Consistency: The x1 input of f from the Liouville
equation (9) is not arbitrary; it should be equal to a time-
delayed x1(t) = x0(t−τ). This requirement will be imposed
by a Consistency constraint.

Lemma 3.1: Let x(·) be a solution to (1b) for some history
xh with an initial time of 0 and a stopping time of t∗ ∈
[0, T ]. Then the following two integrals are equal for all
ϕ ∈ C([0, T ]×X):(∫ t∗

0

+

∫ min(T,t∗+τ)

t∗

)
ϕ(t, x(t− τ))dt

=

(∫ 0

−τ

+

∫ min(t∗,T−τ)

0

)
ϕ(t′ + τ, x(t))dt′. (10)

Proof: This follows from t′ ← t− τ .
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Equation (10) inspires a consistency constraint for the free-
terminal-time MV-solution in (7). The left-hand-side of (10)
may be generalized to

⟨ϕ(t, x1), µ̄0(t, x0, x1) + µ̄1(t, x0, x1)⟩+ ⟨ϕ(t, x), ν(t, x)⟩,
(11)

in which µ̄0 is supported in times [0,min(t∗, T − τ)], µ̄1 is
supported in times [T − τ, t∗] if t∗ > T − τ , and the slack
measure ν implements the [t∗,min(T, t∗ + τ)] limits. The
right-hand-side of (10) may be interpreted as

⟨ϕ(t+ τ, x), µh(t, x)⟩+ ⟨ϕ(t+ τ, x0), µ̄0(t, x0, x1)⟩. (12)

Define Sτ as the shift operator Sτϕ(t, x) = ϕ(t + τ, x).
With an abuse of notation, the pushforward operation Sτ

#

applied to a measure (such as µh) will have the expression

⟨ϕ, Sτ
#µh⟩ = ⟨Sτϕ, µh⟩ = ⟨ϕ(t+ τ, x), µh(t, x)⟩. (13)

The Consistency constraint inspired by Lemma 3.1 is

πtx1

# (µ̄0 + µ̄1) + ν = Sτ
#(µh + πtx0

# µ̄0). (14)

Remark 1: Equation (14) may also be written as
πtx1

# (µ̄0 + µ̄1) ≤ Sτ
#(µh + πtx0

# µ̄0) with slack ν.

C. Measure Program

An infinite-dimensional LP in terms of the measures from
(7) to upper-bound Problem (1) is,

p∗ = sup ⟨p, µp⟩ (15a)
⟨1, µ0⟩ = 1 (15b)
πt
#µh = λ[−τ,0] (15c)

µp = δ0 ⊗ µ0 + πtx0

# L
†
f (µ̄0 + µ̄1) (15d)

πtx1

# (µ̄0 + µ̄1) + ν = Sτ
#(µh + πtx0

# µ̄0) (15e)

Measure Definitions from (7). (15f)

Remark 2: Membership in the history class H is imposed
by the History-Validity constraint (15c) and through support
of µh in (7a).

Definition 3.1: An MV-solution to the DDE (1b) with
free-terminal-time and histories in H is a tuple of measures
that satisfy (15b)-(15f) and (7a)-(7f).

Theorem 3.2: Under assumptions A1-A5, (15) will upper
bound (1) with p∗ ≥ P ∗ when H is graph-constrained.

Proof: This proof will proceed by demonstrating that
every (t∗, xh) candidate from (1) may be expressed by a
unique MV-solution from Defn. 3.1. The history measure
µh is the [−τ, 0] occupation measure of x(t), and the initial
measure µ0 is the Dirac-delta δxh(0+). The peak measure µp

is the Dirac-delta δt=t∗⊗δx=x(t∗|xh). The relaxed occupation
measures (µ̄0, µ̄1, ν) will now be considered. For conve-
nience, define z(t) = (t, x(t | xh), x(t−τ | xh)) as the delay
embedding of the trajectory x(t | xh). In the case where
t∗ ∈ [0, T − τ ], then µ̄0 is the [0, t∗] occupation measure
of z(t), µ̄1 is the zero measure, and ν is the [t∗, t∗ + τ ]
occupation measure of (t, x(t− τ | xh)). Alternatively when
t∗ ∈ (T − τ, T ], µ̄0 is the [0, T − τ ] occupation measure of

z(t), µ̄1 is the [T − τ, t∗] occupation measure of z(t), and
ν is the [t∗, T ] occupation measure of (t, x(t − τ | xh)).
All of the measures in (7) have been defined for each input
(t∗, xh), which proves that p∗ ≥ P ∗.

IV. PEAK MOMENT PROGRAM

This section will briefly review the moment-SOS hierarchy
[14] in order to approximate-from-above Program (15) by a
sequence of finite-dimensional SDPs.

A. Review of Moment-SOS Hierarchy

Let µ ∈M+(X) be a measure, and let α ∈ Nn be a multi-
index. The α-moment of µ is the pairing mα = ⟨xα, µ⟩. The
moment sequence m = {mα}α∈Nn is the infinite collection
of moments of µ. A unique (Riesz) linear functional Lm

exists operating on each polynomials p =
∑

α∈J pαx
α ∈

R[x] as Lm(p) =
∑

α∈J pαmα for a finite index set J ⊂
Nn.

A set is Basic Semialgebraic (BSA) if it is defined by
a finite number of polynomial inequality constraints, such
as by K = {x ∈ Rn | gk(x) ≥ 0 : k = 1 . . . Nc} ⊆
Rn. The measure µ is supported on K if µ ∈ M+(K).
Given a polynomial g =

∑
γ∈J gγx

γ , the localizing matrix
M[gm] induced by the constraint g(x) ≥ 0 with respect to
the moment sequence m is the infinite-dimensional matrix
indexed by α, β ∈ Nn as M[gm]α,β = Lm(xα+βg) =∑

γ∈Rn gγmα+β+γ . The moment matrix M[m] is the local-
izing matrix associated with g = 1. The matrix M[Km] is
the block-diagonal matrix comprised of M[m] and M[gkm]
for k = 1 . . . Nc.

Let {m̃α}α∈Nn be a sequence of real numbers. If there
exists some measure µ̃ ∈ M+(K) such that ∀α ∈ Nn :
⟨xα, µ⟩ = m̃α then µ̃ is a representing measure for m̃, and
m̃ is a moment-sequence for µ̃. Such a representing measure
(if it exists) could be nonunique. The stronger condition
that there is a unique representing measure for m̃ is called
moment determinacy. A necessary condition for m̃ to have a
representing measure is that the block-diagonal matrix M[m̃]
is Positive Semidefinite (PSD). This necessary condition
is also sufficient if K satisfies an Archimedean condition
(stronger than compactness, equivalent after a ball constraint
R − ∥x∥22 ≥ 0 is added to K for sufficiently large R > 0 if
K is compact). In general we will call m̃ a pseudo-moment
sequence.

The order-d truncation of M[Km] (for d ∈ N and
expressed as Md[Km]) keeps entries of degree ≤ 2d, and
preserves the top-corner of each matrix in the block-diagonal.
The moment matrix Md[m] is a PSD matrix of size

(
n+d
d

)
assuming a monomial basis for x is employed. The size of
each truncated localizing matrix Md[gkm] is

(
n+d−⌈dk/2⌉
d−⌈dk/2⌉

)
,

where dk = deg gk. The moment-SOS hierarchy is the
process of increasing the degree d → ∞ when forming
moment programs associated to measure LPs.

B. Moment Program

Additional assumptions are required in order to approxi-
mate (15) using the moment-SOS hierarchy:
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A6 The sets H0, X0, and X are Archimedean BSA sets.
A7 Both p and f are polynomials.

Let the measures (µh, µ0, µp, µ̄0, µ̄1, ν) have associated
pseudo-moment sequences (mh,m0,mp, m̄0, m̄1,mν) re-
spectively. Let α ∈ Nn and β ∈ N be multi-indices that
define monomial test functions xα

0 t
β . For each multi-index

tuple (α, β), the operator Liouαβ(m
0,mp, m̄0, m̄1) may be

derived from the linear relations induced by the Liouville
equation (15d) (in which δβ0 = 1 is a Kronecker delta):

0 = ⟨xα, µ0⟩δβ0 + ⟨L(xα
0 t

β), µ̄0 + µ̄1⟩ − ⟨xαtβ , µτ ⟩. (16)

Similarly, the operator Consαβ(mh,mν , m̄0, m̄1) may be
derived from the consistency constraint (15e) by

0 =⟨xα
1 t

β , µ̄0 + µ̄1⟩+ ⟨xαtβ , ν⟩ − ⟨xα(t+ τ)β , µh⟩ (17)

− ⟨xα
0 (t+ τ)β , µ̄0⟩.

Given a degree d ∈ N, the dynamics degree d̃ ≥ d may
be defined as d̃ = d+ ⌊deg f/2⌋.

Problem 4.1: Program (15) is upper-bounded by the fol-
lowing order-d LMI in pseudo-moments:

p∗d =max Lmp(p) (18a)

m0
0 = 1 (18b)

∀(α, β) ∈ Nn+1
≤2d :

mh
β =

∫ 0

−τ
tβdt = −(−τ)β+1/(β + 1) (18c)

Liouαβ(m
0,mp, m̄0, m̄1) = 0 (18d)

Consαβ(mh,mν , m̄0, m̄1) = 0 (18e)

Md((X0)m
0), Md̃((H0)m

h) ⪰ 0 (18f)
Md(([0, T ]×X)mp) ⪰ 0 (18g)

Md̃(([0, T − τ ]×X2)m̄0) ⪰ 0 (18h)

Md̃(([T − τ, T ]×X2)m̄1) ⪰ 0 (18i)
Md̃(([0, T ]×X)mν) ⪰ 0. (18j)

The objective (18a) is the pseudo-moment version of ⟨p, µp⟩.
Constraints (18c) and (18b) are History-Validity constraints
from (8) when applied to the pseudo-moments (mν ,m0).
Constraints (18d) and (18e) are the Liouville and Consistency
constraints respectively. Constraints (18f)-(18j) are support
constraints necessary for the pseudo-moments to have repre-
senting measures.

Boundedness of all moments of measures in (7) is required
to obtain convergence of (18) to (15) as d→∞.

Lemma 4.2: All measures from (7) in an MV-solution
(Defn. 3.1) are bounded under assumptions A1-A7.

Proof: Boundedness of a measure’s mass and support
is a sufficient condition that all of the measure’s moments
are bounded. Assumption A1 ensures compactness, with the
requirement from Defn. 2.1 that H0 ⊆ [−τ,X] and X0 ⊆
X . The remainder of this proof will involve finding upper
bounds on the masses of all measures in (7).

The initial measure µ0 has a mass of 1, and the history
measure µh has a mass of τ by the History-Validity con-
straints (15b) and (15c). Substitution of the test function
v(t, x) = 1 in the Liouville (15d) leads to ⟨1, µp⟩ =
⟨1, µ0⟩ = 1. Since T is finite, the moment ⟨t, µp⟩ ≤

⟨1, µp⟩ (supt∈[0,T ] t) = T is also finite. Use of the test
function v(t, x) = t into the Liouville (15d) yields ⟨t, µp⟩ =
⟨1, µ̄0 + µ̄1⟩ ≤ T . Because µ̄0 and µ̄1 are both nonnegative
Borel measures, it holds that ⟨1, µ̄0⟩ ≤ T and ⟨1, µ̄1⟩ ≤ T .
The final constraint involves substitution of ϕ(t, x) = 1 into
the Consistency (15e), resulting in

⟨1, µ̄0 + µ̄1⟩+ ⟨1, ν⟩ = ⟨1, µh⟩+ ⟨1, µ̄0⟩ (19)
⟨1, ν⟩ = ⟨1, µh⟩ − ⟨1, µ̄1⟩ = τ − ⟨1, µ̄1⟩.

Given that µ̄1 and ν are nonnegative Borel measures and
cannot have negative masses, the mass ⟨1, ν⟩ is constrained
within [0, τ ]. All masses are demonstrated to be finite, thus
proving boundedness.

Remark 3: Neglecting the History-Validity constraint
(15c) allows for µh in (19) to have infinite mass, violating
the boundedness principle.

Theorem 4.3: The optima in (18) will converge as
limd→∞ p∗d = p∗ to (15) under assumptions A1-A6.

Proof: This follows from Corollary 8 of [31] under the
boundedness condition in Lemma 4.2.

Remark 4: Assumption A6 can be generalized to cases
where the sets (H0, X0, X) are the unions of BSA sets. As
an example, consider H0 = H1

0 ∪ H2
0 in which πtH1

0 =
[−τ,−τ̃ ] and πtH2

0 = [−τ̃ , 0] for some τ̃ ∈ (0, τ). Then
the pseudo-moments mh = mh

1 + mh
2 can be implicitly

constructed from Md((H
1
0 )m

h
1 ), Md((H

2
0 )m

h
2 ) ⪰ 0.

C. Computational Complexity

Table I lists the size of the order-d PSD moment
matrices associated with the pseudo-moment sequences
(mh,m0,mp, m̄0, m̄1,mν).

TABLE I: Size of Moment Matrices in LMI (18)

Matrix: Md(m
0) Md̃(m

p) Md(m
h)

Size:
(n+d

d

) (n+1+d
d

) (n+1+d̃

d̃

)
Matrix: Md(m̄

0) Md̃(m̄
1) Md(m

ν)

Size:
(2n+1+d̃

d̃

) (2n+1+d̃

d̃

) (n+1+d̃

d̃

)
The largest size written in Table I is

(2n+1+d̃
d̃

)
, which

occurs with the pseudo-moment sequences (m̄0, m̄1) associ-
ated to the two joint occupation measures (µ̄0, µ̄1). Equality
constraints between entries of the moment matrices must be
added to convert the LMI into an SDP for use in symmetric-
cone Interior Point Methods. The per-iteration complexity of
solving an SDP derived from an order-d LMI involved in the
moment-SOS hierarchy scales as O(n6d) [14] with n. In the
case of LMI (18), the complexity of solving (18) will scale
approximately as (2n+ 1)6d̃ (based on m̄0, m̄1).

V. NUMERICAL EXAMPLES

All experiments were developed in MATLAB 2021a,
and code is available at https://github.com/
Jarmill/timedelay. Dependencies include Gloptipoly
[32], YALMIP [33], and Mosek [34] in order to formulate
and solve moment-SOS LMIs and SDPs.
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In this section, a notational convention where (x1, x2)
correspond to coordinates of x ∈ X will be used. All
sampled histories in visualizations are piecewise-constant
inside H0 with 10 randomly-spaced jumps between [−τ, 0].

A. Delayed Flow System

A time-delayed version of the Flow system from [15] is

ẋ(t) =

[
x2(t)

−x1(t− τ)− x2(t) + x1(t)
3/3

]
. (20)

Figure 1 plots the delayed Flow system (20) without lag
(τ = 0 in blue) and with a lag (τ = 0.75 in orange) starting
from the constant initial history xh(t) = (1.5, 0), ∀t ∈
[−τ, 0] (black circle).

-1 -0.5 0 0.5 1 1.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Single Point, Constant History

 = 0

=0.75

Fig. 1: Comparison of delayed Flow systems (20) with lags
τ = 0 and τ = 0.75 in times t ∈ [0, 20]

The time-zero set of allowable histories is X0 = {x ∈ R2 |
(x1 − 1.5)2 + x2

2 ≤ 0.42}. The history class H will be the
set of functions xh ∈ PC([−τ, 0]) whose graphs (t, x(t))
are contained within the cylinder H0 = [−0.75, 0] × X0.
No further requirements of continuity are posed on histories
in H. The considered peak estimation aims to find the
minimum value of x2 (maximize p(x) = −x2) for trajec-
tories following (20) starting from H0, within the state set
X = [−1.25, 2.5]×[−1.25, 1.5] and time horizon T = 5. The
first five bounds on the maximum value of −x2 by solving
(18) are p∗1:5 = [1.25, 1.2183, 1.1913, 1.1727, 1.1630].

Figure 2 plots trajectories and peak information associated
with this example. The black circle is the initial set X0. The
initial histories inside X0 are plotted in grey. These sampled
histories are piecewise constant with 10 uniformly spaced
jumps (moving to a new point uniformly sampled in X0)
within [−0.75, 0]. The cyan curves are the DDE trajectories
of (20) starting from the grey histories. The red dotted line is
the p∗5 bound on the minimum vertical coordinate of a point
on any trajectory starting from H up to T = 5.

B. Delayed Time-Varying System

This example involves peak estimation of a DDE version
of the time-varying Example 2.1 of [6]

ẋ(t) =

[
x2(t)t− 0.1x1(t)− x1(t− τ)x2(t− τ)
−x1(t)t− x2(t) + x1(t)x1(t− τ)

]
. (21)

Fig. 2: Minimize x2 on the delayed Flow system (20)

The considered support parameters are τ = 0.75, T = 5,
and X = [−1.25, 1.25]× [−0.75, 1.25]. The time-zero set is
the disk X0 = {x ∈ R2 | (x1 + 0.75)2 + x2

2 ≤ 0.32}. The
only restriction on allowable histories H is that their graphs
are contained in the history set H0 = [−0.75, 0]×X0.

Solving the SDP associated with the LMI (18) to maximize
the peak function p = x1 yields the sequence of five bounds
p∗1:5 = [1.25, 1.25, 1.1978, 0.8543, 0.718264618]. Figure 3
plots system trajectories and the p∗5 bound on x1 using the
same visual convention as Figure 2 (black circle X0, grey
histories xh(t), cyan trajectories x(t | xh), red dotted line
x1 = p∗5).

Fig. 3: Maximize x1 on the delayed time-varying (21)

Figure 4 plots the corresponding trajectory and bound
information in 3d (t, x1, x2). The black circles denote the
boundary of H0. The history structure inside H0 between
times [−0.75, 1] is clearly visible in grey.

The peak estimation of p = x2 under the same system
parameters leads to the sequence of five bounds p∗1:5 =
[1.25, 1.25, 0.9557, 0.9138, 0.9112].

VI. CONCLUSION

This paper presented a formulation of MV-solutions for
free-terminal-time DDEs with multiple histories (Definition
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Fig. 4: A 3d plot of (21) and its x1 bound

3.1). These MV-solutions are formed by the conjunction of
Validity, Liouville and Consistency constraints. These MV-
solutions may be used to provide upper bounds on peak
estimation problems over DDEs by Program (15).

A vital area for future work is determining the conditions
under which P ∗ = p∗ between (1) and (15). Other areas for
future work include applying MV-solutions to other prob-
lems (such as optimal control and reachable set estimation),
analyzing systems with multiple time-delays, improving ap-
proximation quality by spatio-temporal partitioning [35], de-
veloping MV-solutions for discrete-time systems with large
time delays, handling graph-constrained history classes H
that have additional requirements (e.g., constant xh in time),
and formulating MV-solutions for DDEs with other types
of time delays (e.g., proportional, distributed, unknown-but-
bounded, time-varying).
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