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Abstract— Max-plus linear systems are suitable to model
discrete event systems with synchronization phenomena, but
not competition. In specific situations, competition can be intro-
duced by considering event-varying periodic parameters, which
allow us to model shared resources allocated in accordance to
a periodic schedule, thus obtaining a periodic max-plus linear
system. In this paper, we propose an extension of the geometric
approach to systems of such class. The new results can be used
to solve the model matching problem, so as to force a given
plant to match the output of a given model exactly. A geometric,
structural, necessary and sufficient condition for the solvability
of such problem is presented.

I. INTRODUCTION

Linear systems over the max-plus algebra, or max-plus
linear systems, are a powerful tool to model discrete
event systems where synchronization without competition
occurs [1]. Essentially, they are equivalent to Petri nets in
which each place has exactly one upstream transition and one
downstream transition, also called timed event graphs. More
information on the theory of max-plus dynamical systems
can be found in [2], [3]. Along the lines of [2] and seeking
for tools to solve specific control problems, several authors
have worked at the development of a structural geometric
approach for max-plus dynamical systems [4]–[9].

In this paper, we consider max-plus linear systems whose
linear structure is subject to event-varying modifications
which follow a periodic schedule and we refer to them as
periodic max-plus linear systems. Periodic max-plus linear
systems can be used to model, e.g., production processes
where the order of the actions to be accomplished changes
periodically to satisfy a repetitive production schedule or to
exploit shared resources. Dynamical systems which have a
periodically event-varying structure and are modeled as Petri
nets were first considered in [10]. Periodic max-plus dynam-
ical systems were used to model repetitive manufacturing
systems in [11], [12], where their evolution for events whose
index is a multiple of the period was studied by employing
a transformation into event-invariant systems.

Here, we intend to generalize the structural geometric
approach, introduced for linear systems over the conventional
algebra in [13], [14], to periodic max-plus linear systems
and to apply it to the problem of forcing the output of a
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given plant to match that of a given model. Such problem is
an extension of the well-known model matching problem
for classical systems, introduced in [15], whose solution
provides an efficient and viable control strategy in all the sit-
uations in which a desired output behavior can be represented
as the output of a suitable model [16]. Since the considered
systems are defined over a semiring, results and techniques
which were developed in the framework of systems over
rings [17] and semirings [5], [9] are relevant to our study. At
the same time, since the event-varying structure of max-plus
systems is akin to that exhibited by linear periodic systems,
the geometric methods developed in that framework [18],
[19] and in relation to the model matching problem [20]
provide useful hints. On the other hand, periodic max-plus
systems can be viewed as switching max-plus systems as
considered in [21], [22]. However, the fact that the switching
is constrained to follow a periodic schedule leads to introduce
geometric notions characterized by periodicity, thus marking
a basic difference with the more general switching case.

The contribution of this paper is to introduce novel geo-
metric notions that can be used to analyze, from a structural
point of view, the model matching problem for periodic max-
plus linear systems. This makes it possible to state conditions
for the solvability of the problem and to provide a procedure
to synthesize controllers, if any exists, that solves it, namely
controllers which forces the output of a given plant to match,
for any possible input, that of a given model.

The paper is organized as follows. In Section II, we
introduce the basic notions of the max-plus algebra and the
structure of periodic max-plus linear systems. In Section III,
we introduce the geometric approach for periodic max-plus
linear systems. In Section IV, we define the model matching
problem for periodic max-plus linear systems. In Section V,
we state structural geometric necessary and sufficient solv-
ability conditions for the model matching problems. Sec-
tion VI contains a practical application of the new results to
the matching problem. Section VII contains the conclusions.

II. PERIODIC MAX-PLUS SYSTEMS

The max-plus algebra is constructed by equipping the set
Rmax = R ∪ {−∞} with two operations ⊕, or sum, and ⊗,
or product, defined as a⊕b = max{a, b} for a, b ∈ Rmax and
a⊗b = a+b if a, b belong to R, or (−∞)⊗a = a⊗(−∞) =
−∞ for any a ∈ Rmax. Neutral elements for ⊕ and for ⊗
are ε = −∞ and e = 0 ∈ R, respectively. Since the product
⊗ distributes over the sum ⊕, the max-plus algebra Rmax is
a semiring.
R

n
max denotes the semimodule over Rmax that consists of

the set of n-tuples, or vectors, of elements of Rmax, equipped
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with the component-wise sum and the scalar product opera-
tions defined in the conventional way in terms of ⊕ and ⊗.
Given two vectors v and w of the same dimension or two
matrices A and B of the same dimensions, the partial order
relation v ≥ w, respectively A ≥ B, holds component-wise.
In this context, matrix multiplication, also denoted by ⊗, is
defined in the conventional way in terms of ⊕ and ⊗. As in
conventional algebra, the symbol ⊗ is often omitted.

The evolution of a discrete event system in which events
of n different types may occur can be modeled using
n-dimensional daters. A dater is a function d(.) : N →
R

n
max, whose value at k ∈ N is a vector d(k) =

(d1(k), . . . , dn(k))
� where the i-th component di(k) is the

time instant at which an event of the i-th type occurs for
the k-th time. Daters must be non-decreasing (i.e. such that
d(k+1) ≥ d(k) for each k ∈ N) to have a physical meaning.

A periodic max-plus linear system Σ of period ω ∈ N,
also said ω-periodic, is a dynamical object whose evolution
is defined by equations of the form

Σ ≡

⎧⎪⎨
⎪⎩
x(k) = A(k)x(k − 1)⊕B(k)u(k)

y(k) = C(k)x(k)

x(0) = ε

(1)

where k ∈ N is the event instance index, x(.) : N → X =
R

n
max is the dater of internal events, u(.) : N → U = R

m
max is

the dater of input events, y(.) : N → Y = R
p
max is the dater

of output events and A : N → R
n×n
max , B : N → R

n×m
max , and

C : N → R
p×n
max are ω-periodic functions. The semi-modules

X , U and Y are the state semimodule, the input semimodule
and the output semimodule of the system, respectively.

To better understand the behavior of Σ, it is useful to
remark that n types of internal events may happen and each
one is associated to a component of x. Similarly, the m
components of u correspond to the m types of input events,
and the p components of y correspond to the p types of output
events. More explicitly, if x(k) = (x1(k), ..., xn(k))

� ∈
R

n
max, then the internal event of type i, for i = 1, ..., n,

take place for the k-th time in the time instant xi(k) and
a similar interpretation holds for u(k) and for y(k). A
sequence {u(k)}k∈N is viewed as the input to Σ, while a
sequence {y(k)}k∈N is viewed as the output of Σ.

Recalling that the identity matrix In ∈ R
n×n
max in the

max-plus algebra has all its diagonal elements equal to e
and all the other elements equal to ε, we say that a system
of the form (1) is non-anticipative if A(k) ≥ In, for all
k ∈ N. Every physically realizable max-plus system is non-
anticipative, and the free evolution of its state is described
by a non-decreasing dater.

III. GEOMETRIC APPROACH

The geometric approach is a formal methodology for the
analysis and control of dynamic systems that has provided
effective and elegant solutions to many control problems,
such as the disturbance decoupling problem and the model
matching problem. This approach has been introduced for
stationary systems over the conventional algebra in [13], [14]

and later extended to systems over rings in [23]–[25] and
systems over semirings in [2], [4]–[7].

In this section, we present an extension of the geometric
approach to periodic max-plus linear systems. The ideas we
develop herein are akin, in the sense specified below, to
those employed in the framework of conventional algebra
in the case of periodic systems [19], [18] and in the case
of switched systems over digraphs [26]. A key concept of
the geometric approach is that of invariant semimodule.
However, in the case of periodic systems, it is not convenient
to consider a single semimodule as an invariant for the
system throughout its evolution. Instead, it is less conser-
vative and more effective to introduce a periodic sequence
of semimodules which enjoy of a specific invariance property
and which are associated to specific event indices. Such idea
is formalized in the following definition.

Definition 1: An ω-periodic sequence of semimodules is a
function V(.) that associates to each possible event instance
index k ∈ N a subsemimodule V(k) ⊆ R

n
max and that fulfils

the property V(k) = V(k + ω) for all k ∈ N.
Since ω-periodic sequences of semimodules are widely

used in the following, it is convenient to introduce some
notation to improve the readability of the provided results.
When no confusion arises, we refer to ω-periodic sequences
of semimimodules simply as semimodules or ω-periodic
semimodules. For instance, we will refer to both V(.) and X
as semimodules, but the first is a sequence of semimodules,
while the latter is a proper semimodule.

We say that an ω-periodic semimodule E(.) is a subsemi-
module of a semimodule X , and denote such relation as
E(.) ⊆ X , if E(k) ⊆ X for each k ∈ N. Moreover, given
two ω-periodic subsemimodules E(.) and I(.) we say that:

− E(.) is finitely generated if, for all k ∈ N, E(k) is
finitely generated;

− E(.) is equal to I(.), or E(.) = I(.), if E(k) = I(k)
for all k ∈ N;

− E(.) is contained in I(.), or E(.) ⊆ I(.), if E(k) ⊆ I(k)
for all k ∈ N;

− an ω-periodic semimodule S(.) is the sum of E(.) and
I(.), if S(k) is the sum of E(k) and I(k) for all k ∈ N;

− an ω-periodic semimodule R(.) is the intersection of
E(.) and I(.), or R(.) = E(.)∩I(.), if R(k) = E(k)∩
I(k) for all k ∈ N.

Now, we can use the notion of ω-periodic semimodule to
develop a geometric approach for periodic max-plus systems.
Note that, in doing this, we mark a substantial difference
with respect to the geometric approach for classical invariant
systems [13], [14] or switching systems [21], [22].

Definition 2 (Invariant semimodule): Given an
ω-periodic max-plus linear system Σ of the form (1),
an ω-periodic semimodule V(.) ⊆ X is said to be an
A-invariant semimodule, or, equivalently, an invariant
semimodule for Σ, if for all k ∈ N and for all v ∈ V(k−1),
A(k)v belongs to V(k).

Definition 3 (Controlled invariant semimodule): Given
an ω-periodic max-plus linear system Σ of the form (1), an
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ω-periodic semimodule V(.) ⊆ X is said to be an (A,B)-
invariant semimodule, or, equivalently, a controlled invariant
semimodule for Σ, if for all k ∈ N and for all v ∈ V(k− 1)
there exists u ∈ R

m
max such that A(k)v ⊕B(k)u belongs to

V(k).
Given an ω-periodic max-plus linear system Σ of the

form (1) and an ω-periodic subsemimodule K(.) contained
in its state semimodule X , the set of all the (A,B)-invariant
semimodules contained in K(.) is a semi-lattice with respect
to inclusion and sum of semimodules, so a maximum element
of that set, denoted by V∗

K(.), exists. The following algorithm
allows to compute V∗

K(.) under suitable hypotheses.
Theorem 1: Let K(.) ⊆ R

n
max be a ω-periodic semimod-

ule. Letting

A−1(k + 1)(Y) = {v ∈ R
n
max, such that A(k + 1)v ∈ Y}

and

Vr−1(k + 1)� ImB(k + 1) = {x ∈ R
n
max for which there

exists u ∈ R
m
max such that x⊕B(k + 1)u ∈ Vr−1(k + 1)} ,

the sequence of ω-periodic semimodules Vr(.) defined by

V0(k) = K(k)
Vr(k) = Vr−1(k) ∩A−1(k + 1)(Vr−1(k + 1)

�ImB(k + 1)) k ∈ N

(2)

has the following properties:
1) Vr(.) ⊆ Vr−1(.) for all r ∈ N;
2) Denoting V∞(.) = limr→∞Vr(.) =

⋂
r∈N

Vr(.), then
every (A,B)-invariant ω-periodic semimodule con-
tained in K(.) is also contained in V∞(.);

3) If Vr(.) = Vr−1(.) then Vr−1(.) is an (A,B)-invariant
ω-periodic semimodule and, in such case, V∞(.) =
Vr−1(.) = V∗

K(.).
Proof: (1) Follows from the definition of the sequence

of ω-periodic semimodules.
(2) Let P(.) ⊆ K(.) = V0(.) be an (A,B)-invariant

ω-periodic semimodule and assume that, for some r ∈ N, we
have P(.) ⊆ Vr−1(.). Then, since P(k) ⊆ A−1

i (k+1)(P(k+
1)�ImB(k+1)) ⊆ A−1

i (k+1)(Vr−1(k+1)�ImB(k+1)),
we also have P(k) ⊆ Vr(k) and the conclusion follows by
induction.

(3) If Vr(.) = Vr−1(.), the invariance of Vr(.) is a
direct consequence of equation (2). In this case the equality
V∞(.) = Vr−1(.) is obvious and V∞(.) = V∗

K(.) follows
from (2).

Remark 1: The sequence (2) does not provide a general
algorithm for the computation of V∗

K(.), as it does not
necessarily converge in a finite number of steps. This fact,
that applies also to systems over rings, marks an important
difference with respect to systems over a field, for which a
construction algorithm is available [13], [14].

Remark 2: If K(.) is finitely generated, it follows from
[27, Corollary 86] that all the semimodules Vk(.) in the
sequence (2) are finitely generated. Their generators can be
computed by using a general elimination algorithm [28] as
the set of solutions of appropriate equations of the form
Dx = Cx [5].

Definition 4: Given an ω-periodic max-plus linear system
Σ of the form (1), an ω-periodic semimodule V(.) ⊆ X is
said to be an (A,B)-invariant semimodule of feedback type
for Σ if there exists an ω-periodic matrix F (.) : N → R

m×n
max

such that (A(k)⊕B(k)F (k))v belongs to V(k) for all v ∈
V(k − 1), for all k ∈ N.

In the framework of systems with coefficients in a field,
controlled invariance of feedback type and controlled invari-
ance are equivalent properties [13], [14]. However, for sys-
tems with coefficients in a semiring, or in a ring, invariance
of feedback type is a stronger condition [24], [5].

IV. PROBLEM STATEMENT

In this section, we introduce the problem we tackle in
this paper. The objective is to control the input of a max-
plus periodic plant to obtain an output equal to that of a
given model of the same kind for each possible input of the
model. We give two formulations of the problem. The first
one does not impose any constraints on the structure of the
control sequence that possibly solves the problem, while the
second formulation requires a solution which consists of a
feedback-forward scheme.

Problem 1 (Model Matching Problem): Given a non-
anticipative ω-periodic max-plus linear system

ΣP ≡
⎧⎨
⎩

xP (k) = AP (k)xP (k − 1)⊕BP (k)uP (k)
yP (k) = CP (k)xP (k)
xP (0) = ε

(3)
of the form (1), called the plant, and a non-anticipative
ω-periodic max-plus linear system

ΣM ≡
⎧⎨
⎩

xM (k) = AM (k)xM (k − 1)⊕BM (k)uM (k)
yM (k) = CM (k)xM (k)
xM (0) = ε

(4)
of the form (1), called the model, with xP : N → R

nP
max,

xM : N → R
nM
max, uP : N → R

mP
max, uM : N → R

mM
max

and yP , yM : N → R
p
max, the Model Matching Problem

(MMP) consists in finding, for all possible non-decreasing
input sequences {uM (k)}k∈N of the model, an appropriate
non-decreasing control input sequence {uP (k)}k∈N for the
plant, such that the output {yP (k)}k∈N of the plant equals
the output {yM (k)}k∈N of the model, i.e. yP (k) = yM (k)
for all k ∈ N.

If we require that the control input uP (k) be a linear
function, with ω-periodic coefficients, of the state of the
plant xP (k − 1), of the state of the model xM (k − 1), and
of the input of the model uM (k), we get a more restrictive
formulation of the MMP. In this case, the control law consists
of a state feedback term and a feedforward term as in the
classical case of linear systems over a field.

Problem 2 (Feedback Model Matching Problem): Given
a plant of the form (3) and a model of the form (4), the
Feedback Model Matching Problem (FMMP) consists in
finding, for all possible non-decreasing input sequences
{uM (k)}k∈N of the model, two ω-periodic matrices
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F : N → R
mP×(nP+nM )
max and G : N → R

mP×mM
max , such that

the control input sequence defined by

uP (k)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

F (1)

(
xP (0)

xM (0)

)
⊕G(1)uM (1) for k=1

F (k)

(
xP (k − 1)

xM (k − 1)

)
⊕G(k)uM (k)⊕

⊕uP (k − 1) for k>1

(5)

is a solution for the corresponding MMP.
Remark 3: The dynamic component uP (k − 1) at the

second member of equation (5) for k > 1 is needed to assure
that the resulting control sequence is non-decreasing.

Remark 4: In the given formulation of the feedback model
matching problem, no constraints are imposed on the ma-
trices F (.) and G(.). The solution can correspond to an
anticipative feedback if some entries of the matrices are
negative real numbers. In this case, in order to implement
the control strategy, it is necessary to know the input of
the model with some advance. However, not necessarily the
entire sequence of future inputs has to be known.

V. PROBLEM SOLUTION

Given a plant ΣP of the form (3) and a model ΣM of the
form (4), we can consider the extended ω-periodic system
ΣE described by

ΣE ≡
⎧⎨
⎩

xE(k) = AE(k)xE(k − 1)⊕B1(k)uP (k)
⊕B2(k)uM (k)

xE(0) = ε
(6)

where xE(.) =

(
xP (.)
xM (.)

)
: N → XE = R

(nP+nM )
max is the

internal event dater, AE(k) =

(
AP (k) ε

ε AM (k)

)
, B1(k) =(

BP (k)
ε

)
, and B2(k) =

(
ε

BM (k)

)
.

Then, Problem 1 can be reformulated as that of finding, for
any input {uM (k)}k∈N, a control sequence {uP (k)}k∈N that
forces xE(k) to evolve inside the output equalizer ω-periodic
semimodule K(.) ⊆ XE defined by

K(k) =

{(
xP

xM

)
∈ XE s.t. CP (k)xP = CM (k)xM

}
(7)

Definition 5: A periodic max-plus linear system Σ of the
form (1) is said to be strongly non-anticipative if it is non-
anticipative (i.e. A(k) ≥ In for all k ∈ N) and

A(k + 1)B(k) ≥ B(k + 1) for all k ∈ N (8)
Lemma 1: If a periodic max-plus linear system Σ of the

form (1) is strongly non-anticipative and u(k + 1) = u(k)
for some k ∈ N, then the term B(k + 1)u(k + 1) does not
affect the evolution of the system.

Proof: Given a periodic max-plus linear system Σ of
the form (1), let u(k + 1) = u(k). Then, since x(k) =
A(k)x(k − 1)⊕B(k)u(k), we can write

x(k + 1) = A(k + 1)x(k)⊕B(k + 1)u(k + 1)
= A(k + 1)x(k)⊕B(k + 1)u(k)
= A(k + 1)A(k)x(k − 1)

⊕A(k + 1)B(k)u(k)⊕B(k + 1)u(k).

By strong non-anticipativeness, A(k + 1)B(k) ≥ B(k +
1). Hence x(k + 1) = A(k + 1)A(k)x(k − 1) ⊕ A(k +
1)B(k)u(k)

Strong non-anticipativeness can be viewed as the property
of the system dynamics to be slow enough to filter the effects
of the switching in the input matrix if the input is constant.

Lemma 2: A non-anticipative system with constant input
matrix (i.e. such that B(k) = B̄ ∈ R

n×m
max for all k ∈ N) is

strongly non-anticipative.
We can now state a necessary and sufficient condition for

the solvability of the MMP.
Theorem 2: Given a strongly non-anticipative ω-periodic

plant ΣP of the form (3) and a strongly non-anticipative
ω-periodic model ΣM of the form (4), consider the extended
system ΣE given by (6). Then, the related MMP is solvable
if and only if for each k ∈ N and for each xuM ∈
ImB2(k) = Im

(
ε

BM (k)

)
⊆ XE there exists xuP ∈

ImB1(k) = Im

(
BP (k)

ε

)
⊆ XE such that xuM ⊕ xuP

belongs to V∗(k) ⊆ XE , where V∗(.) is the maximum
(AE , B1)-invariant semimodule for ΣE contained in the
output equalizer semimodule K(.) ⊆ XE defined by (7).

Proof: If. By the hypotheses it is possible to find,
for each k ∈ N and for each xE ∈ V∗(k − 1), a vector
u1(k) ∈ R

mP
max such that AE(k)xE ⊕ B1(k)u1(k) belongs

to V∗(k) and, for each k ∈ N and each uM ∈ R
mM
max, a

vector u2(k) ∈ R
mP
max such that B2(k)uM ⊕ B1(k)u2(k) ∈

V∗(k). Then, for each input {uM (k)}k∈N, one can construct
recursively a control input for ΣE as

uP (k) =

{
u2(1) for k = 1

u1(k)⊕ u2(k)⊕ uP (k − 1) for k > 1

The corresponding state evolution is given by

xE(k) =

⎧⎪⎪⎨
⎪⎪⎩

B1(k)u2(k)⊕B2(k)uM (k) for k = 1

(AE(k)xE(k − 1)⊕B1(k)u1(k))⊕
(B1(k)u2(k)⊕B2(k)uM (k))⊕
B1(k)uP (k − 1) for k > 1

and, since the plant is strongly non-anticipative, we can show
by induction that xE(k) belongs to V∗(k) for all k ∈ N.

Only if. Assume that the condition of the theorem does
not hold and let k̄ ∈ N and uM (k̄) = ūM be such that
B2(k̄)uM (k̄) ⊕ B1(k̄)uP /∈ V∗(k̄) for any uP ∈ R

mP
max.

The same property holds for uM (k̄) = αūM with arbi-
trary α ∈ R. Hence, taking the constant input sequence
uM (k) = αūM , one can choose α sufficiently big to have
that xE(k̄) = AE(k̄)xE(k̄− 1)⊕B1(k̄)uP (k̄)⊕B2(k̄)αūM

does not belong to V∗(k̄) for any possible uP (k̄) ∈ R
mP
max.

Writing, recursively, for k > k̄, xE(k) = AE(k)xE(k −
1) ⊕ B1(k)uP (k) ⊕ B2(k)uM (k) = AE(k)xE(k − 1) ⊕
B1(k)uP (k) ⊕ B2(k)αūM , since the model is strongly
non-anticipative, we have xE(k) = AE(k)xE(k − 1) ⊕
B1(k)uP (k). Now, as xE(k̄) does not belong to V∗(k̄), for
any input sequence {uP (k)}k∈N there exists q ∈ Z such that
xE(q) /∈ K(q). This says that xE(.) cannot be forced to
evolve inside K(.) and the MMP cannot be solved.
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Remark 5: The condition provided by Theorem 2 can
be equivalently written, using the � operator defined in
Theorem 1, as ImB2(k) ⊆ V∗(k)� ImB1(k) ∀k ∈ N and it
can be checked using the numeric techniques mentioned in
Remark 2 and [5, Remark 1].

Remark 6: If the plant is not strongly non-anticipative,
the condition expressed in Theorem 2 is necessary but
not sufficient. Dually, if the model is not strongly non-
anticipative the condition is sufficient, but not necessary. In
fact, these assumptions are used in the proof of the Theorem
only in the corresponding sections.

The analogous result about the FMMP is stated in the
following theorem.

Theorem 3: Given a strongly non-anticipative ω-periodic
plant ΣP of the form (3) and a strongly non-anticipative
ω-periodic model ΣM of the form (4), consider the extended
system ΣE given by (6). Then, the related FMMP is solvable
if and only if there exists an (AE , B1)-invariant ω-periodic
semimodule V(.) of feedback type contained in the output
equalizer semimodule K(.) defined by (7) such that, for each

k ∈ N and for each xuM ∈ ImB2(k) = Im

(
ε

BM (k)

)
⊆

XE there exists xuP ∈ ImB1(k) = Im

(
BP (k)

ε

)
⊆ XE

with xuM ⊕ xuP ∈ V(k).
Proof: If. Let V(.) ⊆ K(.) be an (AE , B1)-invariant

semimodule of feedback type for which the condition of the
theorem holds. Then, by controlled invariance of feedback
type, there exists an ω-periodic matrix F (.) such that for
each k ∈ N and xE(k − 1) ∈ V∗(k − 1), (AE(k) ⊕
B1(k)F (k))xE(k − 1) belongs to V∗(k). The condition of
the theorem implies the existence of an ω-periodic matrix

G(.) such that the columns of the matrix
(

ε
BM (k)

)
ImM

⊕(
BP (k)

ε

)
G(k) =

(
BP (k)G(k)
BM (k)

)
belong to V(k) for each

k ∈ N. Then, applying a control law recursively defined as
in equation (5), with F (.) and G(.) defined as above, the
compensated dynamics becomes

xE(k) = (AE(k)⊕B1(k)F (k))xE(k − 1)⊕
⊕
(
BP (k)G(k)
BM (k)

)
uM (k)⊕

⊕B1(k)uP (k − 1)

(9)

where uP (0) = ε. By strong non-anticipativeness of the
plant, we have AE(k)xE(k− 1) ≥ AE(k)B1(k− 1)uP (k−
1) ≥ B1(k)uP (k − 1) and the last summand of the right-
hand term of equation (9) does not affect the state of the
system, which therefore evolves in V(.) ⊆ K(.).

Only if. Assume that the FMMP is solved by a control
law of the form (5). Then, for each k ∈ N, the set of
reachable states for the dynamics (9) at event instance k, is
an (AE , B1)-invariant periodic semimodule of feedback type
contained in K(k) that contains all the columns of the matrix(
BP (k)G(k)
BM (k)

)
=

(
ε

BM (k)

)
ImM

⊕
(
BP (k)

ε

)
G(k). This

clearly implies the condition of the theorem.

Remark 7: The conditions of Theorems 2 and 3 can be
practically checked by solving the linear equations con-
sidered in their proofs by means of general elimination
methods (see [5] and [28]). A toolbox that implements such
methods was originally developed for Scilab® [29], and is
now integrated in the Scicoslab software [30].

VI. AN ILLUSTRATIVE EXAMPLE

This example shows how the previous results can be used
to tackle the model matching problem of a manufacturing
plant with a periodic configuration. Let us consider an
ω-periodic plant of the form (3) with ω = 3 and

AP (1) = AP (2) =

⎛
⎜⎜⎜⎜⎝
2 ε ε ε ε
ε 1 ε ε ε
4 ε 2 ε ε
ε 5 ε 4 ε
5 6 3 5 1

⎞
⎟⎟⎟⎟⎠

BP (1) = BP (2) =
(
2 1 4 5 6

)�

AP (3) =

⎛
⎜⎜⎜⎜⎝
2 ε ε ε ε
ε 3 ε ε ε
ε 5 2 ε ε
6 ε ε 4 ε
7 6 3 5 1

⎞
⎟⎟⎟⎟⎠ BP (3) =

⎛
⎜⎜⎜⎜⎝
2
1
3
6
7

⎞
⎟⎟⎟⎟⎠

CP (k) =
(
ε ε ε ε e

) ∀k ∈ N

As a model, we take the following system of the form (4):

ΣM ≡
⎧⎨
⎩

xM (k) = 5xM (k − 1)⊕ 5uM (k)
yM (k) = xM (k)
xM (0) = ε

(10)

Both the plant and the model are strongly non-anticipative.
The output equalizer semimodule is

K(k) = Im

⎛
⎜⎜⎜⎜⎜⎜⎝

e ε ε ε ε
ε e ε ε ε
ε ε e ε ε
ε ε ε e ε
ε ε ε ε e
ε ε ε ε e

⎞
⎟⎟⎟⎟⎟⎟⎠

for all k ∈ N. (11)

In this case, the output equalizer semimodule is constant
for each possible value of k, because both the plant and
the model have stationary output matrices. The maximal
(AE , B1)-invariant subspace V∗(.) for the 3-periodic joint
dynamics can be computed by a suitable Scicoslab proce-
dure. The sequence of semimodules considered in Theorem 1
converges after two iterations (i.e. V1(.) = V2(.) = V∗(.))
and we get

V∗(1) = V∗(3) = Im

⎛
⎜⎜⎜⎜⎜⎜⎝

e ε ε ε ε
ε e ε ε ε
ε ε 2 ε ε
ε ε ε e ε
e 1 e e e
e 1 e e e

⎞
⎟⎟⎟⎟⎟⎟⎠
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V∗(2) = Im

⎛
⎜⎜⎜⎜⎜⎜⎝

e ε ε ε ε
ε e ε ε ε
ε ε 2 ε ε
ε ε ε e ε
2 1 e e e
2 1 e e e

⎞
⎟⎟⎟⎟⎟⎟⎠

The condition of Theorem 2 is satisfied, so the MMP is
solvable. Moreover, V∗(.) is of feedback type, so the FMMP
is also solvable by Theorem 3 and the control sequence
{uP (k)}k∈N of the form (5), with

F (1) = F (2) =
(
ε ε ε ε −1 ε

)
,

G(1) = G(2) = −1,
F (3) =

(
ε ε ε ε ε −2

)
,

G(3) = −2

solves the problem.

VII. CONCLUSIONS

An extension of the geometric approach and a formulation
of the model matching problem for periodic max-plus linear
systems were presented. The geometric approach was shown
to be effective in providing a solution, if any exists, to the
model matching problem, under suitable hypotheses. Among
the required hypotheses, the strong non-anticipativeness of
the plant and the model deserves particular mention. More-
over, to assure the feasibility of the obtained state feedback
regulator, it is required, in general, that the input sequence
of the model be known with appropriate advance. This may
also occur in the nonperiodic case [9, Remark 2], the length
of the preview depending on the matrices F and G. These
assumptions are often not restrictive in practice. However,
they may limit the applicability of the provided results.
Therefore, the construction of more general procedures will
be the object of future investigation.
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