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Abstract—In this paper, we consider a formulation of non-
linear constrained optimization problems. We reformulate it as
a time-varying optimization using continuous-time parametric
functions and derive a dynamical system for tracking the
optimal solution. We then re-parameterize the dynamical system
to express it based on a linear combination of the parametric
functions. Calculus of variations is applied to optimize the
parametric functions, so that the optimality distance of the
solution is minimized. Accordingly, an iterative dynamic algo-
rithm, named as OP-TVO, is devised to find the solution with an
efficient convergence rate. We benchmark the performance of
the proposed algorithm with the prediction-correction method
(PCM) from the optimality and computational complexity point-
of-views. The results show that OP-TVO can compete with PCM
for the optimization problem of interest, which indicates it can
be a promising approach to replace PCM for some time-varying
optimization problems. Furthermore, this work provides a novel
paradigm for solving parametric dynamical system.

Index Terms—Time-varying optimization problem, functional
optimization problem, prediction-correction method, optimality
distance, dynamical system.

I. INTRODUCTION

Time-Varying Optimization (TVO) problems pertain to
parametric optimization problems when the objective, con-
straints, or both are parameterized using continuously-
varying functions. This paradigm is exploited to find the op-
timal trajectory of solutions in continuous-time optimization
challenges. In addition, for optimization problems for which
the optimal solution is known for one specific configuration,
TVO can be used to extrapolate the solution to the settings
of interest.

TVO is studied in the context of parametric programming
[1]–[5], where the optimization problem is parametrized
using continuous parameters. In [3], the authors develop
prediction-correction methods to solve nonlinear constrained
TVO problems. Their approach tracks a trajectory path with
some convergence guarantees. A path-following procedure
has been presented in [4] to trace a solution path of a
parametric nonlinear problem. The authors utilize quadratic
programming as a tracking procedure and derive some con-
vergence properties for their approach. In [5], the authors
leverage a path-following method to track the solution of
parametric nonlinear constrained programs using a semi-
smooth barrier function.

TVO can be also considered as an extension of time-
invariant optimization problems [6]–[10]. In [6], a discrete-
time prediction-correction approach has been proposed to
minimize unconstrained time-varying functions. They ana-
lyze the asymptotic tracking error to ensure convergence of
the solution. In [7], the authors present prediction-correction
methods to track the optimal solution trajectory, in the
primal space, with a bounded asymptotical error. Then, in
[8], an interior-point method is developed for optimization
problems with time-varying cost and constraint functions.
The authors formulate a continuous-time dynamical system
to track the optimal solution with asymptotical tracking error
being bounded. In [9], prediction-correction methods have
been devised, in the dual space, to track the solutions of
time-varying linearly constrained problems.

When it comes to the approach for solving TVO problems,
the prediction-correction schemes as promising tracking al-
gorithms, should be addressed [6], [7], [9], [11]–[14]. It
constitutes a dynamic-tracking procedure or predictor step
to trace the solution trajectory over time, and a Newton-
based iterative method or corrector step to adjust the error of
predictions. Substantial efforts have been made to analyze the
convergence of prediction-correction approaches and ensure
the boundedness of tracking error [7], [8], [11].

In this paper, we study a class of nonlinear constrained
optimization problems whose optimal solution is known for
a setting, and the optimal solution is aimed for a target config-
uration. We then exploit the notion of TVO to reformulate the
problem based on parametric programming. We then explore
a set of parametric functions such that the optimality distance
is optimized. In contrast to the works based on the prediction-
correction methods, we focus on a functional optimization
problem to expedite the convergence rate. In other words, this
paper differs from prediction-correction approaches, in the
sense that the parametric functions are designed to minimize
the optimality distance of the solution instead of correcting
the predictions.

The main contributions of this paper are listed as follows:

• We re-express a class of nonlinear constrained optimiza-
tion problems as a time-varying optimization problem
with continuous-time parametric functions. We then use
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a re-parametrization trick to represent the corresponding
dynamical system based on a linear combination of the
parametric functions.

• We then globally optimize the parametric functions using
a functional optimization problem, and devise an iterative
algorithm with the optimality distance of the solutions
being minimized. We call the devised algorithm Optimal
Parametric Time-Varying Optimization (OP-TVO).

• We compare OP-TVO with a prediction-correction method
from the literature, from the optimality and computational
complexity perspectives.
Notations: In this paper, we use lower-case a for scalars,

bold-face lower-case a for vectors and bold-face uppercase
A for matrices. Further, A⊤ is the transpose of A, ∥a∥
is the euclidean norm of a, ∇ag(·) and ∇2

ag(·) are the
gradient vector and Hessian matrix of multivariate function
g(a) with respect to (w.r.t.) vector a, respectively. We show
the components of a n-dimensional column vector a using
the notation a = [a1, . . . , an]

⊤. Further, {an}N1 collects the
components of vector a from n = 1 to n = N . We use I,
1 and 0 to denote the identity matrix, all-ones and all-zeros
vectors, respectively. We use ȧ(θ) to represent the derivative
of a(θ) w.r.t. θ.

II. PROBLEM STATEMENT

This paper considers a class of nonlinear constrained
optimization problems. The problem includes an objective
function f(·) : RN → R, vector-valued constraint functions
hm(·) = [hm,1, . . . , hm,N ]⊤(·) : RN → RN and optimiza-
tion variables xm ∈ RN for m ∈ {1, . . . ,M}. The problem
under study is:

P0 : min
{xm}M

1

M∑
m=1

amf(xm)

s.t.
M∑

m=1

hm(xm) = u, (1)

where u ∈ RN . We assume that the optimal solution of
Problem P0 is known for the given non-zero parameters
am = p0,m, with m ∈ {1, . . . ,M}. However, the optimal
solution is unknown and desired for the non-zero target
parameters am = pτ,m.

Note that this type of optimization problem arises in dis-
tributed optimizations or multi-agent systems where distinct
agents produce agent-specific rewards and together make an
overall cost function. The aim thus is obtaining an agent-
specific variables xm optimizing this overall cost function.
This also may arise in constrained problems with an objective
being established from different cost functions with distinct
weights {am}M1 .

The goal is to express P0 based on a TVO problem with
parametric functions, and devise a path-following method
with convergence rate being optimized. To optimize it, we
follow a functional optimization approach to design the para-
metric functions. As such, we parameterize {am}M1 with the

parametric functions {bm(θ)}M1 and parameter θ ∈ R+∪{0},
so that

lim
θ→0

bm(θ) = p0,m, lim
θ→τ

bm(θ) = pτ,m, (2)

for m ∈ {1, . . . ,M}. Note that such parametric functions
as presented in (2) are not unique and we aim to find the
optimal function throughout this work.

We then consider the following TVO problem

P1(θ) : x∗(θ) = argmin
{xm(θ)}M

1

M∑
m=1

bm(θ)f
(
xm(θ)

)
s.t.

M∑
m=1

hm

(
xm(θ)

)
= u, (3)

where x(θ) = [x⊤
1 , . . . ,x

⊤
M ]⊤(θ). As declared, we assume

that the solution of P1(θ) for θ = 0 is given, and the solution
at target θ = τ > 0 is to be found.

A naive approach to find the solution of P1(θ) is to use
a Newton-based iterative algorithm. However, this approach
suffers from low convergence rate and its solution optimality
depends on a step-length parameter.

Instead, we develop a time-varying approach to exploit the
information of optimal solution of P1(0). We thus formulate
a continuous-time dynamical system

ẋm(θ) = ϕm

(
x(θ), θ

)
: RNM × R+ ∪ {0} → RN , (4)

with optimal trajectory solution denoted by x∗(·). We then
devise an iterative approach to predict x∗(·) by x(·) so that
the optimality distance ∥x(θ) − x∗(θ)∥ is minimized for
θ → τ . Note that (4) shows a set of ODEs which should
be solved with initial condition x(0) to give the target point
x(τ). As such, we intend to jointly solve TVO P1(θ) and
design {bm(θ)}M1 for θ ∈ [0, τ ] such that the optimality
distance is optimized.

Let the following assumptions hold for TVO P1(θ).
Assumption I: The objective function f(·) and constraints

hm(·) are twice continuously differentiable with respect to
(w.r.t.) xm.

Assumption II: The matrices {Jm}M1 are invertible for
θ ∈ [0, τ ], where Jm ∈ RN×N is the transpose of Jacobian
matrix of hm(·) w.r.t. xm(θ).

III. ODES ASSOCIATED WITH TVO P1(θ)

Proposition 1. The solution of Karush–Kuhn–Tucker condi-
tions of problem P1(θ), for θ ∈ [0, τ ], can be found by the
pair (x(θ),λ) which follows the dynamical system (4) with:

ϕm

(
x(θ), θ

)
=

−
(
bm(θ)∇2

mf +

N∑
n=1

λn∇2
mhm,n

)−1
Jm

(
λ̇− ḃm(θ)

bm(θ)
λ
)
,

(5)

where

λ = −bm(θ)J −1
m ∇mf, for m ∈ {1, . . . ,M}, (6)
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and λ̇ is obtained using
M∑

m=1

J ⊤
m ẋm(θ) = 0. (7)

Proof. Please refer to the pre-print version [15].

According to (5), the dynamical system {ϕm(·, ·)}M1 has
been formulated based on a nonlinear combination of two
parametric functions, bm(θ) and ḃm(θ). In the sequel, we
use a decomposition trick to express the dynamical system
as a linear combination of parametric functions.

A. Reparameterizing based on a Decomposition

We introduce the parametric functions

cm(θ) :=
ḃm(θ)

bm(θ)
, m ∈ {1, . . . ,M}, (8)

which should satisfy
∫ τ

0
cm(θ)dθ = log

(pτ,m
p0,m

)
:= ψm

based on (2). We then have:

Theorem 1. The dynamical system (5) can be re-
parameterized based on the following linear combination of
{cm(θ)}M1 :

ẋ(θ) = ϕ
(
x(θ), θ

)
= Γ(θ) c(θ), (9)

where ϕ(·, ·) = [ϕ⊤
1 , . . . ,ϕ

⊤
M ]⊤(·, ·),

Γ(θ) =

γ11 . . . γ1M
...

...
...

γN1 . . . γNM

 ∈ RNM×M ,

γnm = −G−1
n

(( M∑
k=1

Dk

)−1

Dm − δnmI

)
1,

Gn = diag(v)−1J −1
n

(
∇2

nf +

N∑
j=1

vj∇2
nhn,j

)
,

Dm = J ⊤
m G−1

m ,

for n ∈ {1, . . . , N} and m ∈ {1, . . . ,M} with

v = −J −1
m ∇mf. (10)

Proof. We introduce N -by-N matrices {Gm}M1 and exploit
the following decomposition:

bm(θ)∇2
mf +

N∑
n=1

λn∇2
mhm,n = Jm diag(λ)Gm. (11)

Then, we get:

Gm = diag(v)−1J −1
m

(
∇2

mf +

N∑
n=1

vn∇2
mhm,n

)
, (12)

for which we used λ = bm(θ)v based on (6) and (10).
Equation (12) shows that Gm is notably independent of
parametric function bn(θ). Now, by plugging (11) into (5),
we obtain:

ẋn(θ) = −G−1
n diag(λ)−1(λ̇− cn(θ)λ

)
,

and according to (7), we get:

λ̇ = λ
( M∑

k=1

Dk

)−1 M∑
m=1

Dmcm(θ) 1,

which together yields:

ẋn(θ) = −G−1
n

(( M∑
k=1

Dk

)−1 M∑
m=1

Dmcm(θ)− cn(θ)I

)
1.

Based on the definition of γnm, it thus reads:

ẋn(θ) =

M∑
m=1

γnmcm(θ), n ∈ {1, . . . , N},

which proves the statement.

Note that the dynamical system (9) depends only on c(·)
and not on b(·). Moreover, considering that Γ(·) does not
depend on c(·), the dynamical system portrays a linear
parametric expression w.r.t. c(·). It enables us to find the
condition in which solving (5) or equivalently (9) leads to a
unique solution. Let us first make the following assumptions.

Assumption III: The matrices {∇2
n(f + v⊤hn)}N1 ,∑M

k=1Dk and diag(v) are invertible.
Assumption IV: The derivatives of {∇mf}M1 , {Jm}M1

and {∇2
n(f + v⊤hn)}N1 w.r.t. {xm(θ)}M1 are bounded.

Proposition 2. If Assumptions I, II, III and IV hold, then
the dynamical system (9) has a unique solution.

Proof. By applying Picard–Lindelöf theorem and considering
the equivalence between Lipschitz continuity and derivative
boundedness, the statement follows.

The linear form of (9) also enables us to design c(·) such
that the optimality distance is optimized. Having c(·) being
designed, we can get: bm(θ) = p0,m exp

( ∫ θ

0
cm(ξ)dξ

)
based

on (2) and (8).

IV. OPTIMALITY DISTANCE

Equation (9) shows a set of ODEs that is intricate to
precisely solve due to highly non-linearity w.r.t. θ. However,
one approach is to use the Euler method [16] to approximate
x(·) by x̂(·) based on a sequential manner:

x̂(θ) = x̂(θ −∆θ) + ∆θ ˆ̇x(θ −∆θ), θ ∈ (0, τ ], (13)

where ∆θ is the incremental step and ˆ̇x(θ) = ϕ
(
x̂(θ), θ

)
.

For this method, the optimality distance Od is upper-bounded
by:

Od = ∥x̂(τ)− x(τ)∥ ≤ ∆θ2

2

L∑
j=1

∥ẍ(τ − j∆θ)∥+O(L∆θ3),

where τ = L∆θ. This shows that optimality distance is
limited by order of ∆θ2. However, based on (13) another
upper-bound can be found as follows:

Od =

∥∥∥∥∫ τ

0

(
ẋ(θ)− m̂

)
dθ

∥∥∥∥ ≤
∫ τ

0

∥ẋ(θ)− m̂∥dθ, (14)
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where

m̂ =
1

L

L∑
j=1

ˆ̇x(τ − j∆θ).

Note that m̂ does not depend on θ. Consequently, minimizing
the upper-bound of Od, i.e.,

∫ τ

0
∥ẋ(θ)− m̂∥dθ, leads to the

optimality distance being minimized.

V. OPTIMALITY DISTANCE MINIMIZATION

We consider the following functional optimization problem
(FOP) to jointly design the parametric functions c(·) and find
the optimum solution x(·):

J1 : min
x(·),c(·)

∫ τ

0

∥ẋ(θ)− m̂∥2dθ

s.t. ẋ(θ) = Γ(θ) c(θ),

s.t.
∫ τ

0

c(θ)dθ = ψ. (15)

By solving FOP J1, we can achieve the optimal solution x(θ)
which minimizes the optimality distance Od based on (14).
To solve (15), we constitute the Hamiltonian H as:

H = ∥ẋ(θ)−m̂∥2+w(θ)⊤
(
ẋ(θ)−Γ(θ)c(θ)

)
+λ⊤

(
c(θ)− 1

τ
ψ
)
,

where w(θ) is a co-state variables and λ is a Lagrange mul-
tiplier. Using calculus of variations, the functional solution
of (15) is obtained by:

∇c(θ)H = 2Γ(θ)⊤
(
Γ(θ)c(θ)− m̂− 1

2w(θ)
)
+ λ = 0,

∇x(θ)H− d
dθ∇ẋ(θ)H

= w(θ)⊤ ∇x(θ)Γ(θ) c(θ) + 2ẍ(θ) + ẇ(θ) = 0,

ẋ(θ)− Γ(θ) c(θ) = 0,
∫ τ

0
c(θ)dθ −ψ = 0.

(16)
The conditions in (16) are intricate to solve. Further, an
estimation of m̂ is needed in advance. This motivates us
to devise an iterative algorithm to find the solution of J1.

In this regard, we perform an iterative algorithm as follows:
In the beginning, we initialize c(·) such that

∫ τ

0
c(θ)dθ = ψ.

Then, we repeatedly follow two consecutive steps till the al-
gorithm converges. These are the Prediction and Parametral-
tuning steps. In the prediction step of this iterative ap-
proach, we sequentially solve (13) using (9) and recently
updated c(·), in order to predict x(θ) for θ ∈ (0, τ ]. In the
parametral-tuning step, we minimize the functional objective∫ τ

0
∥ẋ(θ)− m̂∥2dθ w.r.t. c(·) with m̂ being obtained based

on the solution of prediction step. As declared, we execute
these two steps till the convergence. We call this algorithm
Optimal Parametric Time-Varying Optimization (OP-TVO).

More specifically, we consider the following FOP, in the
second step of OP-TVO, to optimize the parametric functions
c(·):

J2 : min
c(·)

∫ τ

0

∥∥∥Γ(θ) c(θ)− m̂∥∥∥2dθ + µ

∫ τ

0

c(θ)⊤c(θ)dθ

s.t.
∫ τ

0

c(θ)dθ = ψ , (17)

Algorithm 1: Optimal Parametric Time-Varying Op-
timization (OP-TVO)
Input: Optimal solution x(0).
Outputs: Optimal solution x(τ) and parametric

functions c(·).
Initialization:

Initialize c(·) so that
∫ τ

0
c(θ)dθ = ψ.

Set flag = 1 and iter = 0.
while flag do

iter = iter+1.

Prediction step:
Predict x(θ) for θ ∈ (0, τ ] using (13) and (9) and

based on updated c(·).

Parametral-tuning step:
Update c(·) using (18) and based on predicted
x(θ) with θ ∈ (0, τ ].

if Convergence then
flag = 0.

end
end

where the term
∫ τ

0
c(θ)⊤c(θ)dθ is additionally added to

regulate the smoothness of c(θ) w.r.t. θ, and 0 < µ ≪ 1
is the regulation coefficient.

Proposition 3. The globally optimal solution of J2 is ob-
tained by:

c(θ) = Π−1(θ)
(
Γ(θ)⊤m̂− λ

)
, (18)

where

Π(θ) = Γ(θ)⊤Γ(θ) + µI,

λ =

(∫ τ

0

Π−1(θ)dθ

)−1 (∫ τ

0

Π−1(θ)Γ(θ)⊤dθ m̂−ψ
)
.

Proof. Considering that the dynamical system (9) has been
expressed based on a linear combination of parametric func-
tions c(·), J2 is a convex FOP. This implies that the globally
optimal solution of J2 can be found by applying the Euler-
Lagrange equation on J2 [17]. We thus get:Γ(θ)⊤(Γ(θ) c(θ)− m̂) + µc(θ) + λ = 0,∫ τ

0
c(θ)dθ −ψ = 0 .

(19)

By solving (19), the statement follows.

Algorithm 1 shows the pseudo-code of OP-TVO. For each
iteration (iter), the prediction and parametral-tuning steps are
performed to jointly predict the optimal solution x∗(τ) and
design the parametric functions c(·). We also need a metric
for the convergence to stop the algorithm. For this, we track

the value of Ôd :=

L∑
j=1

∥∥∥ϕ(x̂(τ − j∆θ), τ − j∆θ
)
− m̂

∥∥∥2
as an estimation of the optimality distance. We thus consider
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that the algorithm has converged if the value of Ôd lies below
a threshold Oth.

VI. NUMERICAL RESULTS AND DISCUSSION

To evaluate the devised algorithm OP-TVO, we compare
it with a Prediction-Correction Method (PCM) [6], as well as
with a Benchmark solution being obtained using an extremely
small incremental step ∆θ = 10−6, disregarding its computa-
tional complexity. Note that, we consider this Benchmark as
the optimal solution, by which we can compute the optimality
distance Od. These algorithms have been implemented using
Matlab R2022a on a 8 × 1.70 GHz Intel Core i5-10310U
Processor, equipped with 16 GB of memory and 12 Mbytes
of data cache.

We then consider the constrained optimization problem E1

[18], [19], and change the constraints to add non-linearity to
the problem.

E1 : min
{xm}M

1

M∑
m=1

am erfc

γ0 xm,1√
2

0.1
xm,2 − 1


s.t.

M∑
m=1

log(1 + xm,1) = L,

s.t.
M∑

m=1

x2m,2 = 1,

where the optimization variables are xm = [xm,1, xm,2]
⊤

for m ∈ {1, . . . ,M}, M = 100, am = m−τ/
∑M

m=1m
−τ ,

τ = 3 and γ0 = 40. For E1, it can be verified that the optimal
solution when am = 1

M is obtained as:

xm,1 = exp(L/M−1), xm,2 =
√
1/M, m ∈ {1, . . . ,M}.

Therefore, we constitute a TVO problem exactly as E1 but
with parametric functions {bm(θ)}M1 replacing {am}M1 such
that:

bm(0) =
1

M
, bm(τ) = am, m ∈ {1, . . . ,M}.

We further use the re-parametrizing functions c(·) with

cm(θ) :=
ḃm(θ)

bm(θ)
. We then apply Algorithm 1 with hyper-

parameters µ = 10−7, Oth = 10−5 and ∆θ = 10−2 to find
the optimal solution.

Figures 1 and 2 illustrate the trajectory solutions
{xm(θ)}M1 , being obtained by Algorithm 1, as a function of
θ for different iterations. For the first iteration, the trajectory
solutions portray a highly nonlinear behavior. However, as
the number of iteration increases, this non-linearity reduces.
When the algorithm converges (3rd iteration), the linear
curvature of the trajectory solutions indicates that a precise
solution with minimal optimality distance has been obtained.

We also apply a PCM on Problem E1 to obtain the
solution. To have a fair comparison, we adjust the hyper-
parameter ∆θ for PCM such that the corresponding optimal

0 0.5 1 1.5 2 2.5 3
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0.1

0.102

0.104

0.106

0.108

0.11

0.112

0.114

0.116

0.118

Fig. 1: Trajectory Solutions for xm,1 with m ∈ {1, 8, 15}.

0 0.5 1 1.5 2 2.5 3

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

Fig. 2: Trajectory Solutions for xm,2 with m ∈ {20, 30, 100}.

value is almost equal to that of Algorithm 1. As such, we
need to decrease it by 1× 10−4.

Table I compares the performance results of PCM, Bench-
mark and OP-TVO. The second column shows the optimal
values that these approaches achieve, The third column states
the extent to which these methods violate the constraints,
represented as the summation of constraint violations, the
fourth column indicates the elapsed time, in seconds, and
the fifth and sixth columns show the optimality distance Od

and its estimation Ôd, respectively.
Although PCM achieves a slightly lower objective function

value, it is important to highlight that Benchmark notably
excels in terms of constraint satisfaction compared to PCM.
As such, the Benchmark solution is regarded as the refer-
ence approach. According to the values of Ôd, OP-TVO
converges after three iterations. It can be seen that OP-TVO
with iter = 3 outperforms PCM from the computational
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TABLE I: Performance Result of OP-TVO and PCM.

Approach Optimal Value Constraint Violations Elapsed Time [s] Od Ôd

Benchmark 5.6089× 10−7 1.312×10−6 2066 0.0 N/A

PCM 5.6086× 10−7 1.739×10−4 271 0.00135 N/A

OP-TVO, iter=1 3.2443× 10−5 0.419 3 0.8291 N/A

iter=2 5.6088× 10−7 5.129×10−5 52 5.132×10−4 0.228

iter=3 5.6088× 10−7 5.051×10−5 105 5.130×10−4 2.68×10−6

iter=4 5.6088× 10−7 5.050×10−5 160 5.130×10−4 2.14×10−6

complexity perspective as it converges within 105 seconds
while PCM converges after 271 seconds. Furthermore, the
optimality distance Od of OP-TVO with iter = 3 is superior
to the optimality distance of PCM. Not to mention that OP-
TVO better satisfies the constraints than PCM. These imply
that OP-TVO gives a more accurate solution compared to
PCM, and depict that OP-TVO can find the optimal solution
with lower computational complexity and better performance
precision.

VII. CONCLUSION

In this paper, we reformulated a class of nonlinear con-
strained optimization problems based on a time-varying opti-
mization with some parametric functions. We then leveraged
a re-parametrization trick to find a dynamical system being
linearly expressed in terms of the parametric functions. To
minimize the optimality distance of the solution, being traced
by a dynamical system, we utilized a functional minimization
problem. As such, an iterative algorithm, called OP-TVO,
was devised to find the solution trajectory with optimal opti-
mality distance. Based on the results, the proposed algorithm
outperforms the Prediction-Correction Method (PCM) from
the optimality distance and convergence rate perspectives.
The results show that OP-TVO can be considered as a
promising approach to replace PCM for distributed time-
varying optimization problems. Optimization problems with
time-varying constraints can be considered as a future work.
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[4] V. Kungurtsev and J. Jäschke, “A predictor-corrector path-following al-
gorithm for dual-degenerate parametric optimization problems,” SIAM
J. Optim., vol. 27, no. 1, p. 538–564, 2017.

[5] D. Liao-McPherson, M. M. Nicotra, and I. V. Kolmanovsky, “A semis-
mooth predictor corrector method for real-time constrained parametric
optimization with applications in model predictive control,” in 2018
IEEE Conference on Decision and Control (CDC), 2018, pp. 3600–
3607.

[6] S. Andrea, M. Aryan, K. Alec, L. Geert, and A. Ribeiro, “A class of
prediction-correction methods for time-varying convex optimization,”
IEEE Transactions on Signal Processing, vol. 64, no. 17, pp. 4576–
4591, 2016.

[7] A. Simonetto and E. Dall’Anese, “Prediction-correction algorithms for
time-varying constrained optimization,” IEEE Transactions on Signal
Processing, vol. 65, no. 20, pp. 5481–5494, 2017.

[8] M. Fazlyab, S. Paternain, V. M. Preciado, and A. Ribeiro, “Prediction-
correction interior-point method for time-varying convex optimization,”
IEEE Transactions on Automatic Control, vol. 63, no. 7, pp. 1973–
1986, 2018.

[9] A. Simonetto, “Dual prediction–correction methods for linearly con-
strained time-varying convex programs,” IEEE Transactions on Auto-
matic Control, vol. 64, no. 8, pp. 3355–3361, 2019.

[10] A. Simonetto, E. Dall’Anese, S. Paternain, G. Leus, and G. B. Gian-
nakis, “Time-varying convex optimization: Time-structured algorithms
and applications,” Proceedings of the IEEE, vol. 108, no. 11, pp. 2032–
2048, 2020.

[11] D. Guo, X. Lin, Z. Su, S. Sun, and Z. Huang, “Design and analysis
of two discrete-time ZD algorithms for time-varying nonlinear mini-
mization,” Numer. Algorithms, vol. 77, no. 1, p. 23–36, 2018.

[12] S. Paternain, M. Morari, and A. Ribeiro, “Real-time model predictive
control based on prediction-correction algorithms,” in 2019 IEEE 58th
Conference on Decision and Control (CDC), 2019, pp. 5285–5291.

[13] N. Bastianello, A. Simonetto, and R. Carli, “Prediction-correction
splittings for nonsmooth time-varying optimization,” in 2019 18th
European Control Conference (ECC), 2019, pp. 1963–1968.

[14] A. Bernstein, E. Dall’Anese, and A. Simonetto, “Online primal-
dual methods with measurement feedback for time-varying convex
optimization,” IEEE Transactions on Signal Processing, vol. 67, no. 8,
pp. 1978–1991, 2019.

[15] M. Amidzadeh, “Time-varying optimization with optimal parametric
function,” preprint ArXiv 2210.00931, 2023.

[16] A. Iserles, A First Course in the Numerical Analysis of Differential
Equations, 2nd ed., ser. Cambridge Texts in Applied Mathematics.
Cambridge University Press, 2008.

[17] A. Seierstad and K. Sydsaeter, “Sufficient conditions in optimal control
theory,” International Economic Review, vol. 18, no. 2, pp. 367–391,
1977.

[18] M. Amidzade, H. Al-Tous, O. Tirkkonen, and G. Caire, “Cellular
network caching based on multipoint multicast transmissions,” in Proc.
IEEE Glob. Commun. Conf. (GLOBECOM), Dec. 2020, pp. 1–6.

[19] ——, “Cellular traffic offloading with optimized compound single-
point unicast and cache-based multipoint multicast,” in IEEE Wireless
Commun. and Net. Conf. (WCNC), 2022, pp. 2268–2273.

2305


