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Abstract— In this article, a robust ensemble Kalman filter
(EnKF) called MC-EnKF is proposed for nonlinear state-space
model to deal with filtering problems with non-Gaussian ob-
servation noises. Our MC-EnKF is derived based on maximum
correntropy criterion (MCC) with some technical approxima-
tions. Moreover, we propose an effective adaptive strategy for
kernel bandwidth selection. Besides, the relations between the
common EnKF and MC-EnKF are given, i.e., MC-EnKF will
converge to the common EnKF when the kernel bandwidth
tends to infinity. This justification provides a complementary
understanding of the kernel bandwidth selection for MC-EnKF.
In experiments, non-Gaussian observation noises significantly
reduce the performance of the common EnKF for both linear
and nonlinear systems, whereas our proposed MC-EnKF with
a suitable kernel bandwidth maintains its good performance at
only a marginal increase in computing cost, demonstrating its
robustness and efficiency to non-Gaussian observation noises.

I. INTRODUCTION

Filtering [1] is the fundamental issue for the state esti-
mation of the state-space model [2]. It has a large number
of applications in many fields, such as robot vision [3]
and data assimilation [4]. For the linear state-space model
with Gaussian noise, the optimal filtering solution can be
computed analytically, which is the well-known Kalman filter
(KF) [5]. Since then, a large number of filtering algorithms
for nonlinear state-space model with Gaussian noise have
been proposed. The representatives among them are extended
Kalman filter (EKF) [6], unscented Kalman filter (UKF) [7],
cubature Kalman filter (CKF) [8] and ensemble Kalman filter
(EnKF) [9].

In the case of Gaussian noise, the KF and its expan-
sions work well. However, the noise frequently does not fit
the Gaussian distribution in real-world application circum-
stances. For instance, in many practical settings of target
tracking [10] and power systems [11], impulsive interfer-
ences and observation outliers are frequent. These distur-
bances are often modelled by some heavy-tailed impulsive
noises (such as some mixed-Gaussian distributions). The
main reason for this problem is that the KF is based on the
well-known minimum mean square error (MMSE) criterion
[12], which is sensitive to large outliers and deteriorates

This work is supported by National Natural Science Foundation of
China (NSFC) grant (11961141005) and Tsinghua University Education
Foundation fund (042202008). Corresponding author: Stephen Shing-Toung
Yau.

Yangtianze Tao and Jiayi Kang are with the Department of
Mathematical Sciences, Tsinghua University, Beijing 100084,
China. Email: tytz19@mails.tsinghua.edu.cn,
kangjy19@mails.tsinghua.edu.cn

Stephen Shing-Toung Yau is with the Department of Mathematical
Sciences, Tsinghua University, Beijing 100084, China, and with the Yanqi
Lake Beijing Institute of Mathematical Sciences and Applications, Huairou
district, Beijing 101400, China. Email: yau@uic.edu

the KF’s robustness in non-Gaussian noise [13]. Numerous
studies have attempted to address the filtering problems with
non-Gaussian noise, such as filters based on information the-
oretic quantities [14], the Huber-based KFs [15] and robust
Student’s t filter [16]. Besides these filters, a local similarity
measure called correntropy [17] has been used to develop
new robust filters [18], [19], [20], [21]. These filters are
derived by maximum correntropy criterion (MCC) and called
MCC-based filters, which can achieve great performance
in the presence of heavy-tailed non-Gaussian noises since
correntropy is insensitive to large outliers.

In this article, we formulate the estimation problem under
MCC framework. Under this framework, the goal of this
article is to develop a robust EnKF called the maximum cor-
rentropy EnKF (MC-EnKF) based on the MCC, to address
nonlinear filtering problems when observations contain large
outliers. With the help of suitable approximation techniques,
we derive the recursion of ensembles for MC-EnKF based
on MCC cost function. It is necessary to note that MC-
EnKF employs the empirical prediction covariance calculated
by ensembles. This procedure is consistent with the com-
mon EnKF, which allows us to prove that MC-EnKF will
converge to the common EnKF when the kernel bandwidth
tends to infinity. This justification provides a complementary
knowledge of understanding the kernel bandwidth selection
for MC-EnKF. Although MC-EnKF aims to handle non-
Gaussian noise cases, it also has the flexibility to handle
Gaussian noise cases with a large enough kernel bandwidth
since EnKF performs well in this scenario. The contributions
of this article are listed as follows.

• We introduce the idea of the cost function to the field
of EnKF, which inspires us to derive a robust EnKF
called MC-EnKF based on the MCC cost function.
Moreover, we propose an effective adaptive strategy
for kernel bandwidth selection. Besides, we provide a
complementary understanding of the kernel bandwidth
selection theoretically, i.e., MC-EnKF will converge to
the common EnKF when the kernel bandwidth is large
enough. This justification gives the flexibility of MC-
EnKF to handle cases involving both Gaussian and non-
Gaussian noise.

• Our theoretical result is supported by numerical experi-
ments on several filtering benchmarks, i.e., our proposed
MC-EnKF will perform like the common EnKF when
the kernel bandwidth is large enough. Furthermore,
experiments demonstrate that our proposed adaptive
strategy for kernel bandwidth selection is effective.
And with the appropriate kernel bandwidth, MC-EnKF

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 8653



can outperform EnKF with only a minor increase in
computing cost when the underlying observation system
is hampered by some heavy-tailed non-Gaussian noises.

The remainder of this article is organized as follows. In
section II, we present the concept of MCC, and briefly review
the nonlinear filtering problems and EnKF algorithm. In
section III, we derive our MC-EnKF algorithm and propose
an effective adaptive strategy for kernel bandwidth selection
with necessary discussions. The experiments and discussions
are presented in Section IV. The conclusions are drawn in
Section V.

A. Notations

Throughout the article, we use boldface lower-case letters
for vectors and boldface upper-case letters for matrices. The
transpose and mathematical expectation are denoted by {·}>
and E [·], respectively. The Gaussian distribution with mean
µ and covariance Σ is denoted by N (µ,Σ). Rn and Rm×n
denote, respectively, the n-dimensional Euclidean space and
the set of all n×m real matrices. Especially, In denotes the
n-dimensional identity matrix. weighted l2 norm ‖x‖2A :=
x>A−1x with x ∈ Rn and non-singular matrix A ∈ Rn×n.

II. BACKGROUND

In this section, we shall first introduce the concept of
correntropy [17], which is a local similarity measure between
two random vectors. Then we shall formulate the estimation
problems based on MCC and MMSE estimate [12]. At last,
we shall briefly review the framework of nonlinear filtering
problems and introduce the EnKF algorithm.

A. Maximum Correntropy Criterion and Minimum Mear
Square Error

1) Correntropy: For given two random vectors x and y,
the correntropy between x and y is denoted by V(x,y),
which is defined as follows:

V(x,y) = E [Gσ(‖x− y‖A1
)] , (1)

where A1 is a given non-singular matrix with suitable
dimension, Gσ is the Gaussian Kernel given by Gσ(e) =

exp
(
− e2

2σ2

)
, and σ > 0 stands for the kernel bandwidth.

Here we shall recall the important property for V(x,y), more
details can be found in [17]. By taking the Taylor series
expansion of the Gaussian Kernel, we have

V(x,y) =

∞∑
n=0

(−1)n

2nσ2nn!
E
[
‖x− y‖2nA1

]
. (2)

The correntropy can be seen as the weighted sum of all even
order moments of the error vectors x− y. The parameter to
weight the second order and higher order moments appears
to be the kernel bandwidth. The second order moment will
predominate in the correntropy when the kernel bandwidth
is particularly large compared to the error vectors range.

2) Estimation Problems Formulation: Correntropy can be
used as the optimality criterion for estimation problems.
Suppose our goal is to learn a parameter θ for a given
estimator x(θ), and let y denote the desired output. Then
the MCC-based estimation problem can be formulated as
solving the following optimzation problem:

θ̂1 = arg max
θ∈Ω1

V(x(θ),y), (3)

where θ̂1 denotes its optimal solution and Ω1 denotes its
feasible set for parameters. It is necessary to compare MCC
with the conventional MMSE criterion. Let Ω2 denotes its
feasible set for parameters with θ̂2 as optimal solution. Then
for the given non-singular matrix A2 with suitable dimen-
sion, the MMSE-based estimation problem is formulated as
follows:

θ̂2 = arg max
θ∈Ω2

−‖x(θ)− y‖A2

= arg min
θ∈Ω2

‖x(θ)− y‖A2
.

(4)

B. Nonlinear Filtering Problems

In this article, we consider the nonlinear state-space model
given by the following state and observation equations:

xk = fk(xk−1) + wk

yk = hk(xk) + vk,
(5)

where state xk ∈ Rn, and observation yk ∈ Rm. fk and hk
are nonlinear functions called state equation and observation
equation, respectively. State noise wk and observation noise
vk are zero means with nominal covariance Qk ∈ Rn×n and
Rk ∈ Rm×m, respectively. Let y1:k denote the σ-algebra
generated by noisy observations {y1, . . . ,yk}. The filtering
problem refers to estimating the posterior distribution p(xk |
y1:k), which is called filtering distribution.

In the follow-up, we focus on the scenario in which the
observation noises are not Gaussian, i.e., they are induced
by unknown large outliers. Hence, the real distribution of
observation noise is unknown to us in fact. For example, we
consider (1− ε) N (0,Rk) + ε S(0,Sk) , where 0 < ε� 1
is the unknown probability, and S(0,Sk) is an arbitrary
unknown distribution with large covariance Sk. Here Rk

is known to us, so it is called the nominal covariance
matrix. Additionally, in what follows, we shall develop our
novel filter to deal with such noises above by utilizing the
MCC as the cost function involving the nominal observation
covariance Rk.

C. Ensemble Kalman Filter

The EnKF sequentially approximates the filtering distri-
butions p(xk | y1:k) using N equally weighted ensembles
{x(1)

k , . . . ,x
(N)
k }. At prediction steps, each ensemble x

(i)
k is

propagated using the state equation, while at update steps a
Kalman-type update is performed for each ensemble:

x
(i)
k|k−1 = fk(x

(i)
k−1|k−1) + w

(i)
k , (6)

and

x
(i)
k|k = x

(i)
k|k−1 + K̂k

(
yk + v

(i)
k − hk(x

(i)
k|k−1)

)
, (7)
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where w
(i)
k ∼ N (0,Qk), v

(i)
k ∼ N (0,Rk) and the Kalman

gain
K̂k = ĈkH

>
k (HkĈkH

>
k + Rk)−1, (8)

is defined using the empirical prediction covariance Ĉk of
prediction ensembles {x(1)

k|k−1, . . . ,x
(N)
k|k−1}, namely

Ĉk =
1

N − 1

N∑
i=1

(x
(i)
k|k−1 − m̂k)(x

(i)
k|k−1 − m̂k)>, (9)

with

m̂k =
1

N

N∑
i=1

x
(i)
k|k−1, (10)

and
Hk =

∂hk
∂xk

|xk=m̂k
. (11)

Remark 2.1: Empirical prediction mean in (10) and em-
pirical prediction covariance in (9) provide a Gaussian ap-
proximation to the prediction distribution distribution, i.e.,

p(xk | y1:k−1) ≈ N (m̂k, Ĉk). (12)

III. PROPOSED ALGORITHM

In this section, we shall present the derivation of MC-
EnKF. Then we shall give the discussions on the adaptive
strategy for kernel bandwidth selection and the convergence
of MC-EnKF with respect to kernel bandwidth.

A. Derivation of the Algorithm

Here we present how to derive MC-EnKF based on the
MCC estimate (3). The prediction step of MC-EnKF is
the same as those of EnKF, i.e., (6). Therefore, we shall
focus on deriving its update step. Let x̂k|k−1 and Pk|k−1

denote the prediction mean E [xk | y1:k−1] and prediction
covariance E

[(
xk − x̂k|k−1

) (
xk − x̂k|k−1

)> | y1:k−1

]
, re-

spectively. As shown in [22], for the underlying linear system
of (5), i.e., fk(xk) = Fkxk and hk(xk) = Hkxk, the update
step of KF can be derived by using least square cost function,

L1(xk) = ‖yk −Hkxk‖Rk
+ ‖xk − x̂k|k−1‖Pk|k−1

. (13)

Motivated by (13), we shall consider a new cost function
based on MCC. Besides, in view of Remark 2.1, we shall re-
place x̂k|k−1 and Pk|k−1 in (13) by the empirical prediction
mean m̂k in (10) and the empirical prediction covariance Ĉk

in (9). Therefore, our modified cost function for ensembles
x

(i)
k|k for i = 1, 2, . . . , N is given by

L2(xk) = Gσ (‖yk − hk(xk)‖Rk
)

+ Gσ
(
‖xk − m̂k‖Ĉk

)
.

(14)

Then based on L2(xk), the update step for MC-EnKF can
be obtained solving the following optimization problem for
i = 1, 2, . . . , N :

x
(i)
k|k = arg max

xk

L2(xk). (15)

In what follows, the derivation contains some approxima-
tions. For the sake of obtaining our algorithm, we heuristi-
cally treat them as exact equalities. Let us denote

lRk
= Gσ

(
‖yk − hk (xk)‖Rk

)
lĈk

= Gσ
(
‖xk − m̂k‖Ĉk

)
.

(16)

Then recall Hk defined in (11), we consider this approxima-
tion when taking the derivative,

∂L2 (xk)

∂xk
=− 1

σ2

(
∂hk
∂xk

)>
lRk

R−1
k (yk − hk (xk))

+
1

σ2
lĈk

Ĉ−1
k (xk − m̂k)

≈− 1

σ2
H>k lRk

R−1
k (yk − hk (xk))

+
1

σ2
lĈk

Ĉ−1
k (xk − m̂k) .

(17)

Now letting ∂L2(xk)
∂xk

= 0, we have

H>k lRk
R−1
k (yk − hk (xk)) = lĈk

Ĉ−1
k (xk − m̂k) . (18)

Adopting the first-order Taylor series to approximate the
nonlinear observation function hk at x

(i)
k|k−1, i.e.,

hk (xk) ≈ hk

(
x

(i)
k|k−1

)
+ Hk

(
xk − x

(i)
k|k−1

)
. (19)

Substituting (19) into (18), we have

xk =x
(i)
k|k−1 +

(
lĈk

Ĉ−1
k + H>k lRk

R−1
k Hk

)−1

×H>k lRk
R−1
k

(
yk − hk

(
x

(i)
k|k−1

))
.

(20)

Then we obtain the following stochastic ensemble update
rule like (7) for x

(i)
k|k with drawing v

(i)
k ∼ N (0,Rk):

x
(i)
k|k = x

(i)
k|k−1 + K̃k

(
yk + v

(i)
k − hk

(
x

(i)
k|k−1

))
, (21)

where the new Kalman gain K̃k is given by

K̃k =
(
lĈk

Ĉ−1
k + H>k lRk

R−1
k Hk

)−1

H>k lRk
R−1
k

=

( Ĉk

lĈk

)−1

+ H>k

(
Rk

lRk

)−1

Hk

−1

H>k

(
Rk

lRk

)−1

.

(22)
Here we shall discuss the practical algorithm, since lRk

and lĈk
all contain the item xk. Here we introduce a

novel technical approximation. Recall (16), we use m̂k to
approximate xk contained in lRk

and lĈk
, respectively, i.e.,

l̂Rk
= Gσ

(
‖yk − hk (m̂k)‖Rk

)
≈ lRk

l̂Ĉk
= Gσ

(
‖m̂k − m̂k‖Ĉk

)
≈ lĈk

.
(23)

It follows that we summarise the specific algorithm steps of
MC-EnKF in Algorithm 1.

Remark 3.1: The proposed MC-EnKF is still of Kalman
type, i.e., it has a similar recursive structure as the com-
mon EnKF. Moreover, its computational complexity is only
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Algorithm 1 MC-EnKF
1: Intitialization. Start with initial filtering ensembles

x
(1)
0|0, . . . ,x

(N)
0|0 . Then, at each time k = 1, 2, . . . , given

filtering ensembles x
(1)
k−1|k−1, . . . ,x

(N)
k−1|k−1, the MC-

EnKF carries out the following two steps for i =
1, 2, . . . , N :

2: Prediction Step: Draw w
(i)
k ∼ N (0,Qk) and calculate

x
(i)
k|k−1 via (6).

3: Update Step: Draw v
(i)
k ∼ N (0,Rk) and calculate

x
(i)
k|k by

x
(i)
k|k = x

(i)
k|k−1 + K̃k

(
yk + v

(i)
k − hk

(
x

(i)
k|k−1

))
,

where K̃k is defined in (22) with the approximation
(23).

slightly higher than the common EnKF, which is verified in
later experiments.

Remark 3.2: In (22), we note that MC-EnKF is potential
to handle non-Gaussian observation noises thanks to the
two weights, l̂Ĉk

and l̂Rk
, which could adjust Ĉk and

Rk adaptively. We shall also verify this argument in later
experiments.

B. Adaptive Strategy for Kernel Bandwidth Selection and
Convergence Regarding to Kernel Bandwidth

In general, the kernel bandwidth (scale parameter) in the
cost function balances the convergence rates of the regression
model and its robustness [23]. Since our algorithm does not
involve solving such regression problems, we focus on the
how to tune this scale parameter for robustness (with respect
to outliers). Intuitively, if the arrived observation yk contains
large outliers, ‖yk − hk(x̂k)‖2 will be large, where ‖ · ‖2
denote the l2-norm. In this case, we need a smaller σ to
make our algorithm more robust. Motivated by this intuition,
we propose to set σk = 1

‖yk−hk(x̂k)‖2 adaptively, where
σk denote the kernel bandwidth used in the k-th step for
MC-EnKF. As shown in our simulation experiments, this
adaptive strategy can achieve a good estimation performance.
Additionally, the MC-EnKF will act more and more like the
common EnKF algorithm as σ increases. In particular, the
following convergence theorem holds .

Theorem 3.1: If the kernel bandwidth σ → ∞, the pro-
posed MC-EnKF will converge to the common EnKF.

Proof: See Appendix I.
Remark 3.3: This justification in Theorem 3.1 gives the

flexibility of MC-EnKF to handle Gaussian noise cases since
the common EnKF performs well in this case.

IV. EXPERIMENTS

In this section, we will conduct performance comparisons
of our proposed MC-EnKF with the common EnKF and
the maximum liklihood EnKF (ML-EnKF) [24], which opti-
mizes a nonlinear cost function through maximum likelihood.
These evaluations will be carried out on various filtering

benchmarks that incorporate non-Gaussian noises, i.e., the
observation noises with large outliers. In these experiments,
we consider M = 100 independent Monte Carlo runs. In
each run, N = 1000 samples are used to evaluate the MSE
of the state. The EnKF and MC-EnKF are implemented by
Numpy [25] and run on Intel(R) Core(TM) i7-10700 CPU
@ 2.90GHz.

A. Linear System

The first benchmark we used here is a linear system, which
is given by

xk =

[
cos(α) sin(α)
− sin(α) cos(α)

]
xk−1 + wk,

yk =
[

1 1
]
xk + vk,

(24)

where α = π
18 , x0 ∼ N (0, I2) and wk ∼ N (0, 0.01I2).

Let Q1 = 0.01I1 be the nominal observation covariance, the
observation noises are sampled from the mixture of Gaussian,
i.e.,

vk ∼ 0.9 N (0,Q1) + 0.1 N (0, 100Q1). (25)

Table I lists the MSEs and average CPU times of EnKF and
MC-EnKF with different kernel bandwidths in this example,
where the number of ensembles of EnKF and MC-EnKF
are set as 100. Note that the MC-EnKF outperforms EnKF
in most cases and their average CPU times are virtually
identical to the common EnKF. This demonstrates that our
proposed MC-EnKF has better performance than those of
EnKF with nearly no extra cost on CPU time. It means that
MC-EnKF is more robust and efficient when we deal with
observation noises with large outliers. In fact, our proposed
adaptive strategy (MC-EnKF-Ada) outperforms most differ-
ent σ cases and is only slightly worse than the best case.
This suggests that our adaptive strategy works well for linear
system. When we conduct the simulation for large enough
σ, for example, σ = 10000, the result verifies Theorem 3.1
for linear system since we note that the performance of MC-
EnKF is almost identical to the EnKF in this case.

TABLE I
THE MSES COMPARISONS BETWEEN ENKF AND MC-ENKF WITH

DIFFERENT σ FOR LINEAR SYSTEM.

Methods MSE CPU Time

EnKF 3.1004 0.4676
MC-EnKF-Ada 2.2344 0.4697

MC-EnKF (σ = 0.1) 2.9655 0.4634
MC-EnKF (σ = 0.5) 2.9247 0.4636
MC-EnKF (σ = 2) 2.1031 0.4689
MC-EnKF (σ = 5) 1.9411 0.4629

MC-EnKF (σ = 10) 2.3073 0.4642
MC-EnKF (σ = 10000) 3.1605 0.4725

In order to better present the comparison results, we
choose the case where σ = 5 to illustrate the true state
and EnKF estimation and MC-EnKF estimation over time,
which is shown in Fig 1. Here, the selected dimension
is indicated by the - suffix of the legend in the figures;
for example, EnKF-1 denotes the EnKF estimation on the
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first state dimension. This setting will also be used for the
following figure. We can clearly see that this MC-EnKF
gives accurate estimates but EnKF performs poorly when
the observations contain large outliers.

Fig. 1. The true state versus the estimate of EnKF and the estimate of
MC-EnKF (σ = 5) over time for linear system.

B. Nonlinear System

The second benchmark is a nonlinear system, which is
given as follows:

xk =

(
I2 + κ1

[
−1 0.2
0.2 −1

])
xk−1 + κ2 cos(xk−1) + wk,

yk = xk + sin(xk) + vk,
(26)

where x0 ∼ N (0, I2) and wk ∼ N (0, I2). κ1 = κ2 = 0.1
are constants controlling the state dynamics. Let Q2 = I2 be
the nominal observation covariance, the observation noises
are sampled from the mixture of Gaussian, i.e.,

vk ∼ 0.9 N (0,Q2) + 0.1 N (0, 1000Q2). (27)

We list the MSEs and average CPU times of EnKF, ML-
EnKF and MC-EnKF with different kernel bandwidths in
Table II for this nonlinear example, where the number of
ensembles of these filters still be set as 100. It is obvious
that for nonlinear system the EnKF degrades greatly in the
presence of non-Gaussian observation noises and the linear
approximation error of observation function, hence has the
worst estimate performance. ML-EnKF performs better than
EnKF, but is still affected by outliers. Better results can be
obtained with our proposed adaptive strategy (MC-EnKF-
Ada) than with some kernel bandwidths, indicating that it
is still useful for nonlinear systems. Note that the MC-
EnKF outperforms EnKF in all cases, which demonstrate
that our proposed MC-EnKF can effectively eliminate the
effect of the non-Gaussian observation noises. Additionally,
we notice that they share almost identical CPU times, which
demonstrates the efficiency of MC-EnKF. Moreover, with
suitable kernel bandwidth (σ = 5), MC-EnKF can achieve
very accurate estimates while EnKF is heavily affected by
large outliers, which is presented in Fig 2. We also note that
when σ is large enough (σ = 10000), the performance of
MC-EnKF is identical to the EnKF, which verifies the result
of Theorem 3.1 for nonlinear system.

C. Discussions

According to the simulation experiments mentioned above,
we notice the following two arguments:

TABLE II
THE MSES COMPARISONS BETWEEN ENKF AND MC-ENKF WITH

DIFFERENT σ FOR NONLINEAR SYSTEM.

Methods MSE CPU Time

EnKF 4.0929 0.4768
ML-EnKF 3.3567 0.5059

MC-EnKF-Ada 2.9282 0.4775
MC-EnKF (σ = 0.1) 3.0150 0.4793
MC-EnKF (σ = 0.5) 2.9703 0.4769
MC-EnKF (σ = 2) 1.5849 0.4713
MC-EnKF (σ = 5) 1.3012 0.4762

MC-EnKF (σ = 10) 1.3752 0.4729
MC-EnKF (σ = 10000) 4.0448 0.4799

Fig. 2. The true state versus the estimate of EnKF and the estimate of
MC-EnKF (σ = 5) over time for nonlinear system.

• With suitable kernel bandwidth, MC-EnKF can sig-
nificantly improve its robustness to observation noises
containing large outliers with nearly no CPU time loss.

• With large kernel bandwidth, MC-EnKF performs like
the common EnKF, which implies its flexibility to
handle Gaussian noise cases.

These two arguments make our viewpoint a very fruitful area
for further study. Besides, we note that the kernel bandwidth
σ plays a significant role in the algorithm and will have
an impact on its robustness to non-Gaussian observation
(such as outliers). Although our proposed adaptive strategy
is effective, it cannot achieve the performance with suitable
kernel bandwidth. Therefore, a highly intriguing future work
direction may be a more effective adaptive strategy to pick
the right kernel bandwidth with theoretical guarantee since
it is crucial for our proposed MC-EnKF. In Addition, this
article only investigates using the special case (MCC) of
generalized MCC [26] as a cost function to derive a robust
EnKF with stochastic update steps. Hence how to develop
robust variants of EnKF [9] based on the generalized MCC
will be our next research focus.

V. CONCLUSION

This article proposes a robust EnKF filtering algorithm
called maximal correntropy ensemble Kalman filter (MC-
EnKF), which is flexible to handle cases involving both
Gaussian and non-Gaussian noise. Instead of the well-known
minimum mean square error (MMSE) criterion, the MC-
EnKF is derived by employing the maximum correntropy
criterion (MCC) as the optimality criterion. Ensemble prop-
agation equations remain to be of the Kalman type. The MC-
EnKF will behave like the EnKF when the kernel bandwidth
is large enough, and we also theoretically demonstrate this
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argument. With the proper kernel bandwidth, MC-EnKF can
perform much better than the EnKF at only a slight in-
crease in computational cost, especially when the underlying
observation system is disturbed by some heavy-tailed non-
Gaussian noises. Besides, we propose an adaptive strategy
to help us choose kernel bandwidth, and its effectiveness is
also been verified by experiments.

APPENDIX I
PROOF OF THE THEOREM 3.1

Here we shall give the proof of the Theorem 3.1. Before
proceeding, we need the following technical lemma.

Lemma 1.1 (Matrix Inversion Lemma [27]): If
A ∈ Rn×n, C ∈ Rn×n are non-singular, B ∈ Rn×m,
D ∈ Rm×n,

(A + BCD)
−1

= A−1−A−1B
(
DA−1B + C−1

)−1
DA−1

(28)
Proof: Now we state the proof of Theorem 3.1. Note

that when the kernel bandwidth σ →∞,

l̂Rk
= Gσ

(
‖yk − hk (m̂k)‖Rk

)
= exp

(
− (yk − hk (m̂k))

>
R−1
k (yk − hk (m̂k))

2σ2

)
→ 1,

(29)
Similarly, one can conclude that l̂Ĉk

→ 1 when σ → ∞.
These arguments imply K̃k in (22) with the approximation
(23) become

K̃k =
(
Ĉ−1
k + H>k R−1

k Hk

)−1

H>k R−1
k , (30)

Then in view of Lemma 1.1 (we choose A = Ĉ−1
k , B = H>k ,

C = Rk and D = Hk), one can conclude that

K̃k =
(
Ĉ−1
k + H>k R−1

k Hk

)−1

H>k R−1
k

=

(
Ĉk − ĈkH

>
k

(
Rk + HkĈkH

>
k

)−1

HkĈk

)
H>k R−1

k

= ĈkH
>
k R−1

k − ĈkH
>
k

(
Rk + HkĈkH

>
k

)−1

×HkĈkH
>
k R−1

k

= ĈkH
>
k

(
R−1
k −

(
Rk + HkĈkH

>
k

)−1

HkĈkH
>
k R−1

k

)
= ĈkH

>
k

(
I−

(
Rk + HkĈkH

>
k

)−1

HkĈkH
>
k

)
R−1
k .

(31)
Now use the Lemma 1.1 again (we choose A = I, B = I,
C = Rk and D = HkĈkH

>
k ), one can further conclude

that

K̃k = ĈkH
>
k

(
I−

(
Rk + HkĈkH

>
k

)−1

HkĈkH
>
k

)
R−1
k

= ĈkH
>
k

(
I + R−1

k HkĈkH
>
k

)−1

R−1
k

= ĈkH
>
k

(
Rk + HkĈkH

>
k

)−1

,

(32)
which is equal to (8).
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