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Abstract— In this paper, we consider an online learning
framework for a zero-sum game of an unstable linear dynamic
system in the presence of wireless MIMO fading channels
between the remote controllers and the actuator of the dynamic
plant. We first formulate the stochastic zero-sum game as
ergodic optimization problems, and propose a pair of equiv-
alent reduced-state Bellman optimality equations to address
the “curse of dimensionality” for Nash equilibrium of the
game. Based on the reduced-state Bellman optimality equations,
we analyze the structural properties of the Nash equilib-
rium and propose a novel low-complexity online stochastic-
approximation(SA)-based algorithm to solve the reduced-state
Bellman optimality equations. Numerical results are analyzed
for the proposed learning scheme and several state-of-the-art
learning approaches in terms of the computational complexity,
the convergence performance as well as the robustness per-
formance. We show that a significant performance gain can
be achieved by the proposed scheme compared to the baseline
approaches.

I. INTRODUCTION

Serving as a powerful mathematical approach for robust
control of dynamic systems, the zero-sum games attract great
interest over the past decade [1], [2]. The approach considers
finding the optimal control policies to stabilize unstable
control systems in the presence of the negative effects caused
by disturbances. Basically, the controller and the disturbance
in a dynamic system can be viewed as a stabilizing and
a destabilizing controller that struggles to minimize their
control performance under the zero-sum constraint by a
competitive approach, respectively [3]. We consider a typical
linear system for a non-cooperative zero-sum game that
is comprised of a potentially unstable dynamic plant, a
stabilizing controller, a destabilizing controller as well as
an actuator collocated with the dynamic plant, as shown
in Fig. 1. Specifically, the controllers generate real time
control actions based on the instantaneous state feedback
from the dynamic plant, and deliver the control commands
to the actuator over the wireless network to neutralize the
instability of the dynamic plant. The presence of the wireless
network between the remote controllers and the actuator of
the dynamic plant will induce several impairments such as
fading and dropout, which seriously jeopardize the stability
of the dynamic system.

The zero-sum games for linear systems over static chan-
nels have been widely considered in the existing literatures
[4]–[9], and the optimal solutions, or the Nash equilibrium of

The authors are with the Department of Electronic and Computer Engi-
neering, The Hong Kong University of Science and Technology (HKUST),
Clear Water Bay, Hong Kong (e-mail: mtangad@connect.ust.hk; eekn-
lau@ust.hk).

Fig. 1: The architecture of the zero-sum games of linear systems over the
wireless network.

the games are iteratively obtained via numerical approaches
such as value iteration, the policy iteration and Q-learning
method. Note that in all the above works, the static chan-
nels were assumed between the remote controllers and the
actuators. Existing approaches [4]–[9] cannot learn the Nash
equilibrium of the zero-sum games over wireless networks
because the learned control policies via these approaches
are static while the optimal control policies should adapt
to both the wireless fading realizations between the remote
controllers and the actuators (to capture good transmission
opportunities induced by the fading channels) as well as
the dynamic plant state realizations (to capture the dynamic
urgency of the control).

Recently, the zero-sum games for linear systems over wire-
less communication channels have been investigated in [10]–
[15]. Specifically, in [13], [15], [16], the authors considered
the on-off channels between the remote controllers and the
actuators. The structural form of the optimal control solutions
are parameterized by the on-off channel state information
(CSI) and learned via the value-iteration-based approaches.
However, the modeling with 0-1 process in [13], [15], [16]
may oversimplify practical wireless communication chan-
nels. In [10], [11], the authors considered the zero-sum game
for a linear system over the wireless fading channels with fi-
nite channel state information (CSI) state space. The optimal
control policies are obtained by means of the policy-iteration-
based and parallel-learning-based algorithms. However, the
assumptions of finite CSI state space in [10], [11] may
not hold in practice and brute-force applications of these
approaches to the general fading channels with uncountable
CSI state space requires discretization of the CSI, which may
induce the large deviations of the learned control policies
from the equilibrium strategies of the games due to the
discretization errors. Moreover, due to large discretized CSI
state space, solving the stochastic games in a brute-force
manner may lead to the “curse of dimensionality” w.r.t. the
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state space.
In this paper, we propose a novel online learning frame-

work for a stochastic zero-sum game of a linear system over
wireless MIMO fading channels with uncountable CSI state
space. We formulate the problem as a stochastic ergodic
game and derive a pair of equivalent “reduced-state Bellman
optimality equations”. A low-complexity online learning
solution is derived to solve the optimality equations. The
contributions of the paper can be summarized into following
three folds: 1) Reduced-State Bellman Optimality Equations
over Uncountable CSI State Space. We establish equivalent
reduced-state Bellman optimality equations for finding the
Nash equilibrium of the stochastic zero-sum ergodic game.
The optimality equations can be applied to uncountable CSI
state space without “curse of dimensionality”; 2) Closed-
Form Structure of Nash Equilibrium. Based on the reduced-
state Bellman optimality equations, we derive the closed-
form structure of the Nash equilibrium of the stochastic zero-
sum ergodic game; 3) Online Learning Algorithm Design
for the Nash Equilibrium. Based on the reduced-state Bell-
man optimality equations, we develop a novel stochastic-
approximation(SA)-based online learning algorithm for find-
ing the Nash equilibrium of the stochastic zero-sum ergodic
game.

Notation: Uppercase and lowercase boldface denotes ma-
trices and vectors, respectively. The operators (·)T , and Tr(·)
is the transpose and trace of a matrix, respectively. 0m×n and
0m denotes an m× n and m×m dimensional matrix with
all the elements being 0, respectively. 1S denotes the S ×S
dimensional identity matrix. Rm×n, Sm+ , Sm, Z+ and R+

denotes the set of m× n dimensional real matrices, the set
of m×m dimensional positive definite matrices, the set of
m × m dimensional positive semi-definite matrix, the set
of positive integers and the set of positive real numbers,
respectively. ∥A∥ is the spectral norm of a matrix A.

II. SYSTEM MODEL

A. Unstable Dynamic Plant

We consider a discrete-time system with S-dimensional
plant state x(t) ∈ RS×1. The remote controllers are equipped
with Nt transmission antennas and the actuator is equipped
with Nr receiving antennas. The plant system is character-
ized by first-order coupled linear difference equations, given
by

x(t+ 1) = Ax(t) +Bû(t) +w(t), t = 1, 2, ..., (1)

where û(t) ∈ RNr×1 is the received noisy control signal
from the remote controllers at the actuator. A ∈ RS×S is the
unstable drift matrix that characterizes the internal evolution
of the dynamic plant and satisfies ∥A∥ > 1. B ∈ RS×Nr is
the actuator matrix. w(t) ∈ N (0,W) is additive plant noise
with zero mean and finite noise covariance W ∈ SS+. We
assume the plant system (A,B) is controllable.

B. Wireless MIMO Fading Channel Model

We model the communication channels between the re-
mote controllers and the actuator as wireless MIMO fading

channels. The active controllers transmit control signals
ui(t) ∈ RNt×1, i ∈ {1, 2}, to the actuator through wireless
communication channels. The received signal û(t) ∈ RNr×1

at the actuator is given by:

û(t) = δ1(t)H1(t)u1(t) + δ2(t)H2(t)u2(t) + v(t), (2)

where Hi(t) ∈ RNr×Nt is the wireless MIMO fading
realization between the actuator of the dynamic plant and
i-th remote controller, where i ∈ {1, 2}. v(t) ∈ N (0,1Nr

)
is the additive channel noise at the actuator. δi(t) ∈ {0, 1}
is used to model the random access activity of the i-th
remote controller. Moreover, δi(t) is i.i.d. distributed across
timeslots and remote controllers satisfying Pr(δ1(t) = 1) =
Pr(δ2(t) = 1) = p ∈ [0, 1]. We have the following
assumption on Hi(t).

Assumption 1: (Wireless MIMO Fading Channel Model
[17]) The realization of wireless MIMO fading channels
Hi(t) between i-th controller and the actuator remains quasi-
static within each timeslot and each controller, and is i.i.d.
over remote controllers and the timeslots. Moreover, Hi(t)
follows a Gaussian distribution with zero mean and unit
variance. ■

Note that the wireless MIMO fading channel model in As-
sumption 1 is commonly applied in practice. This assumption
implies that the symbol period in a timeslot is approximately
equal to the coherence time of the wireless channels between
the dynamic plant and the remote controllers, and the posi-
tions of the controllers remain fixed over time.

C. Problem Formulation for the Stochastic Zero-sum Game
over Wireless MIMO Fading Channels

When wireless channels between the remote controllers
and the actuator are random, the system is a linear and time-
varying system, where the equivalent plant dynamics can be
obtained by substituting (2) into (1), given by

x(t+ 1) = Ax(t) +

2∑
i=1

δi(t)BHi(t)ui(t) +Bv(t) +w(t).

(3)
The zero-sum game for linear time-varying system
(3) can be modelled over the aggregated state
space S = {S(1),S(2), ...}, where S(t) =
{x(t), δ1(t)H1(t), δ2(t)H2(t)} is an aggregation of
plant state information (PSI) x(t) and the wireless channel
state information (CSI) {δ1(t)H1(t), δ2(t)H2(t)}. The
control policy πi for i-th controller is a mapping from the
state space S(t) ∈ S to the control action of i-th controller
ui(t) ∈ U , t ∈ Z+. The per-stage utility function for i-th
controller ri(S(t),u1(t),u2(t)) is given by:

r1(S(t),u1(t),u2(t)) = xT (t)Qx(t) + uT
1 (t)R1u1(t)−

γ2u2(t)R2u2(t) + (δ1(t)BH1(t)u1(t))
TM1BH1(t)

u1(t)− γ2(δ2(t)BH2(t)u2(t))
TM2BH2(t)u2(t),

(4)

and

r2(S(t),u1(t),u2(t)) = −r1(S(t),u1(t),u2(t)), (5)
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where Q ∈ SS+, R1 ∈ SNt
+ , R2 ∈ SNt

+ , M1 ∈ SS+ and M2 ∈
SS+ are weighting constant matrices. γ > 0 is a positive
constant penalizing the non-cooperation between controllers.
Notice that the utility functions for remote controllers satisfy
the zero-sum constraint [3] given by r1(S(t),u1(t),u2(t))+
r2(S(t),u1(t),u2(t)) = 0,∀t ∈ Z+. For i, j ∈ {1, 2} , i ̸= j,
we formally summarize the stochastic zero-sum game for a
linear system over the wireless MIMO fading channels as
follows.

Problem 1: (The Stochastic Zero-Sum Ergodic Game of a
Linear System over Wireless MIMO Fading Channels)

i-th Controller: min
πi

max
πj

J πi,πj

i

= min
πi

max
πj

1

T

T∑
t=1

Eπi,πj [ri(S(t),u1(t),u2(t))]

s.t. x(t+ 1) = Ax(t) +

2∑
i=1

δi(t)BHi(t)ui(t)+

Bv(t) +w(t).
(6)

The expectation in (6) is taken w.r.t the random access
variable of the remote controllers δi(t), the wireless fading
realization Hi(t), the plant noise w(t) and the additive
channel noise v(t), where i ∈ {1, 2}. ■

The optimal solution to Problem 1 is called the Nash
equilibrium of the Problem 1 in the following sense.

Definition 1: (Nash Equilibrium [18]) The control policies
for remote controllers {π∗

1 , π
∗
2} are said to constitute the

Nash equilibrium of the Problem 1 if

J π∗
i ,πj

i ≤ J π∗
i ,π

∗
j

i ≤ J πi,π
∗
j

i , ∀ {πi, πj} , i ̸= j ∈ {0, 1} .
(7)
■

III. NASH EQUILIBRIUM OF THE STOCHASTIC
ZERO-SUM GAME OF THE LINEAR SYSTEM OVER

WIRELESS MIMO FADING CHANNELS

Conventionally, the Nash equilibrium of Problem 1 is ob-
tained via equivalently solving a pair of Bellman optimality
equations [3] as follows.

Theorem 1: (Bellman Optimality Equations for Problem
1) If the Nash equilibrium of Problem 1 exists, the Nash
equilibrium of Problem 1 can be obtained by the solution of
a pair of Bellman optimality equations, given by

θ∗i + V ∗
i (S(t)) = min

ui(t)
max
uj(t)

[ri(S(t),u1(t),u2(t))+

E[V ∗
i (S(t+ 1))|x(t), {δi(t)Hi(t),ui(t)}]], i ̸= j ∈ {1, 2} ,

(8)

where θ∗i = J ∗
i = J π∗

1 ,π
∗
2

i is the optimal averaged cost
of Problem 1. V ∗

i (S(t)) is the optimal value function over
the state space S(t) = {x(t), δ1(t)H1(t), δ2(t)H2(t)}, and
the Nash equilibrium {π∗

1 , π
∗
2} = {u∗

1(t),u
∗
2(t),∀t ∈ Z+},

where u∗
1(t) and u∗

2(t) corresponds to the minimizer and
the maximizer of the R.H.S. of (8).

Proof: Please see Chapter 6.7 of [19]. ■

When the Nash equilibrium of Problem 1 exists, the
conventional iterative approaches such as value iteration or
Q-learning [4], [5], [7], [8] may be considered to solve the
Bellman optimality equations (8) for the Nash equilibrium of
Problem 1. However, such approaches are extremely difficult
to apply due to the “curse of dimensionality” in the state
space S(t). Specifically, the total dimensions of the state
space is S+2×Nt×Nr+2. Brute-force applications of the
value iteration and Q-learning-based approaches to solve the
optimality equations (8) require the domain knowledge of the
optimal value functions V ∗

i (S(t)) or the optimal Q-function
Q∗

i (S(t),u1(t),u2(t)), i ∈ {1, 2}, and 2×(S+2×Nt×Nr+
2) or 2×(S+2×Nt×Nr+2+2×Nt) dimensional parameters
are required to be calculated, respectively. This involves the
significant computational workloads of learning algorithms
for the Nash equilibrium of Problem 1 when the number of
plant states S, the number of transmission antennas Nt and
the number of receiving antennas Nr are large.

In order to enable the low-complexity implementa-
tion of the learning algorithm for the Nash equilibrium
of Problem 1, we exploit the i.i.d. properties of CSI
{δ1(t)H1(t), δ2(t)H2(t)} in (8) and propose equivalent
reduced-state Bellman optimality equations as follows.

Theorem 2: (Reduced-State Bellman Optimality Equations
for Problem 1) If the Nash equilibrium of Problem 1 exists,
the Nash equilibrium of Problem 1 can be obtained by
the solution of a pair of equivalent reduced-state Bellman
optimality equations, given by1

θ̃∗i + Ṽ ∗
i (x(t)) = E[min

ui(t)
max
uj(t)

[ri(S(t),u1(t),u2(t))+

E[Ṽ ∗
i (x(t+ 1))|x(t), {δi(t)Hi(t),ui(t)}]]], i ̸= j ∈ {1, 2} ,

(9)

where θ̃∗i = θ∗i = (−1)i+1 Tr(PW + BTPB) is
the optimal averaged cost of Problem 1, Ṽ ∗

i (x(t)) =
(−1)i+1xT (t)Px(t) is the optimal reduced-state value func-
tion, which is parameterized by P ∈ SS+, and the Nash
equilibrium {π∗

1 , π
∗
2} = {u∗

1(t),u
∗
2(t),∀t ∈ Z+}, where the

solution to (9) u∗
1(t) = K1(P, t)x(t), u∗

2(t) = K2(P, t)x(t)
is the optimal control solution for remote controllers, and

K1(P, t) = −(R1 + δ1(t)H
T
1 (t)B

TM1BH1(t) + δ1(t)

HT
1 (t)B

T P̃1(t)BH1(t))
−1HT

1 (t)B
T P̃1(t)A,

(10)

K2(P, t) = (γ2δ2(t)H
T
2 (t)B

TM2BH2(t) + γ2R2−
δ2(t)H

T
2 (t)B

T P̃2(t)BH2(t))
−1HT

2 (t)B
T P̃2(t)A,

(11)

P̃1(t) = (P−1 − γ−2δ2(t)BH2(t)(R2 + δ2(t)H
T
2 (t)

BTM2BH2(t))
−1HT

2 (t)B
T )−1,

(12)

P̃2(t) = (P−1 − δ1(t)BH1(t)(R1 + δ1(t)H
T
1 (t)

BTM1BH1(t))
−1HT

1 (t)B
T )−1.

(13)

1Note that the i.i.d properties of Hi(t) across timeslots and controllers
lead to homogeneous statistics of CSI at L.H.S. and R.H.S. of (8) and enable
state reduction of CSI in (8) without losing the optimality.

8747



Proof: Please see Appendix A. ■
Compared to solving the Bellman optimality

equations (8) by learning the optimal value functions
V ∗
i (S(t)), i ∈ {1, 2} w.r.t. the high-dimensional aggregated

state S(t) = {x(t), δ1(t)H1(t), δ2(t)H2(t)}, solving the
equivalent reduced-state Bellman optimality equations (9)
only requires learning of the reduced-state value functions
Ṽ ∗
i (x(t)), i ∈ {1, 2} w.r.t. the low-dimensional plant

state x(t), and hence the implementation complexity of
the learning algorithm for Nash equilibrium based on
the reduced-state Bellman optimality equations (9) will
be significantly smaller than that based on the Bellman
optimality equations (8). In Section IV, we shall propose an
online learning algorithm to learn the Nash equilibrium of
Problem 1 based on the reduced-state Bellman optimality
equations (9).

IV. ONLINE LEARNING ALGORITHM FOR THE NASH
EQUILIBRIUM OF THE ZERO-SUM GAME OF THE LINEAR

SYSTEM OVER WIRELESS MIMO FADING CHANNELS

Using the structural form of the optimal reduced-state
value functions Ṽ ∗

i (x(t)), i ∈ {1, 2}, the optimal averaged
costs θ∗i , i ∈ {1, 2} , and the Nash equilibrium {π∗

1 , π
∗
2} =

{u∗
1(t),u

∗
2(t),∀t ∈ Z+} in Theorem 2, the reduced-state

Bellman optimality equations (9) can be written into the
coupled nonlinear matrix equation as follows.

P = E[g(P, δ1(t)H1(t), δ2(t)H2(t))], (14)

where g(P, δ1(t)H1(t), δ2(t)H2(t)) is given by:

g(P, δ1(t)H1(t), δ2(t)H2(t)) = Q+ATPA− E
[
AT[

δ1(t)HT
1 (t)BT P

δ2(t)HT
2 (t)BT P

]T [
M11(t) M12(t)

M21(t) M22(t)

]−1
[

δ1(t)HT
1 (t)BT P

δ2(t)HT
2 (t)BT P

]
A

]
,

(15)

and M11(t) = R1 + δ1(t)H
T
1 (t)B

TM1BH1(t) +
δ1(t)H

T
1 (t)B

TPBH1(t), M12(t) =
δ1(t)δ2(t)H

T
1 (t)B

TPBH2(t), M21(t) = MT
12(t),

M22(t) = −γ2δ2(t)H
T
2 (t)B

TM2BH2(t) +
δ2(t)H

T
2 (t)B

TPBH2(t)− γ2R2.
Since (14) is a fixed-point equation w.r.t. the unknown

variable P, we can utilize the SA theory [20] to construct
an online learning algorithm to learn the unknown variable
P based on (14). The learned unknown variable P can
then be applied to obtain the optimal reduced-state value
functions Ṽ ∗

i (x(t)), i ∈ {1, 2}, and the optimal control
solution u∗

i (t), i ∈ {1, 2} , for the Nash equilibrium of
Problem 1 {π∗

1 , π
∗
2} according to Theorem 2.

Specifically, (14) can be further written into standard form
f(P) = 0S , where f(P) is given by:

f(P) = E[g(P, δ1(t)H1(t), δ2(t)H2(t))]−P. (16)

To obtain the root of f(P) = 0S , we apply the SA algo-
rithm as shown in Algorithm 12. Specifically, the estimated

2In the Algorithm 1, the CSI {δ1(t)H1(t), δ2(t)H2(t)} will be required.
This can be obtained by the standard channel estimation at the actuator
based on the received pilot symbol from the remote controllers and channel
feedback to the remote controllers [21].

root Pt at t-th timeslot is updated as:

Pt+1 = Pt+αt(g(Pt, δ1(t)H1(t), δ2(t)H2(t))−Pt), (17)

where {αt} is the step-size sequence satisfying∑∞
t=1 α

t = ∞ and
∑∞

t=1(α
t)2 < ∞. The term

g(Pt, δ1(t)H1(t), δ2(t)H2(t)) is an unbiased estimator
of the term E[g(P, δ1(t)H1(t), δ2(t)H2(t))] in (16).

Algorithm 1 Online Learning for the Nash Equilibrium of
Problem 1
• Step 1: Given a feasible initial value P1 ∈ SS

+, the initial
estimated optimal reduced-state value functions are given by

Ṽ 1
i (x(1)) = (−1)i+1xT (1)P1x(1), i ∈ {1, 2} , (18)

and the estimated optimal control solution for remote controllers is
given by:

ui(1) = Ki(P
1, 1)x(1), i ∈ {1, 2} . (19)

• Step 2: Using Pt updated at (t − 1)-th timeslot, the estimated
optimal control solution for remote controllers at t-th timeslot is
given by:

ui(t) = Ki(P
t, t)x(t), i ∈ {1, 2} , (20)

and the estimated optimal reduced-state value functions Ṽ t
i (x(t))

at t-th timeslot are given by:

Ṽ t
i (x(t)) = (−1)i+1xT (t)Ptx(t), i ∈ {1, 2} . (21)

• Step 3: Pt+1 is updated based on Pt via (17). Then return to
Step 2.

V. NUMERICAL RESULTS

In this section, we verify the performance advantages of
the proposed online algorithm for the stochastic zero-sum
game over wireless MIMO fading channels. Specifically,
we compare the proposed stabilizing control scheme for
u1(t) in the unstable linear system (3) with various existing
stabilizing control approaches in the presence of the external
inference signal u2(t) in (3) generated by the worst-case
disturbance in (11) and (13). We summarize the baseline
schemes for the stabilizing control solution u1(t) as follows.

• Baseline 1: (Prior-Known Nash Equilibrium [3]) The
Nash equilibrium of Problem 1 is known at the stabiliz-
ing controller. The optimal stabilizing control solution
u∗
1(t) is applied for the system.

• Baseline 2: (Brute-Force Value Iteration for Equilib-
rium Policy without State Reduction [4]) The uncount-
able state space of the CSI {δ1(t)H1(t), δ2(t)H2(t)}
are firstly discretized into finite intervals. The value for
the optimal value function of the stabilizing controller
is approximated by the value of the pseudo value
function V̂ d

1 (x(t)) = xT (t)Pdx(t),Pd ∈ SS+, 1 ≤ d ≤
(Nt × Nr × 2)2 × L if {δi(t)Hi(t)} belongs to d-th
interval. The control policy for the stabilizing controller
is learned by value iteration on pseudo value functions.

• Baseline 3: (Brute-Force Value Iteration for Equilib-
rium Policy over Static Channels [8]) The optimal
value function for the stabilizing controller is approx-
imated by the pseudo value function V̂ s

1 (x(t)) =
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Fig. 2: CPU computational time versus the number of plant state dimensions.
The system parameters are configured as follows: A ∈ RS×S and B ∈
RS×Nr are randomly generated with zero element in A and B generated
following Gaussian distribution with zero mean and unit variance. p = 0.8,
Nt = Nr = 2, R1 = R2 = I2, M1 = M2 = Q = IS , γ = 10,
W = IS , and L = 2.

xT (t)Px(t),P ∈ SS+. The stabilizing controller learns
the control policy via brute-force value iteration using
the least square.

• Baseline 4: (Naive LQR Control [22]) The stabilizing
controller applies the naive LQR control solution with-
out awareness of the disturbance.

A. Complexity Analysis

We illustrate the CPU computational time with 106 runs
versus the number of plant state dimensions S in Fig. 2. As
revealed by the figure, the CPU computational time of the
proposed scheme is substantially less than that of Baseline
2 and Baseline 3. This is because Baseline 2 requires update
for a total number of (Nt × Nr × 2)2 × L pseudo value
functions with each pseudo value function containing the S-
dimensional plant state. Although Baseline 3 neglects the
CSI and only requires update for a pseudo value function
w.r.t. the S-dimensional plant state at each timeslot, it solves
the kernel value of the pseudo value function using least
square with S×(S+1)

2 neighboring plant state memory. On
the contrary, the proposed scheme applies the SA update to
learn a reduced-state value function w.r.t. the S-dimensional
plant state without requiring plant state memory samples.
The computational complexity based on the proposed scheme
can be significantly reduced compared to Baseline 2 and
Baseline 3. Note that Baseline 1 and Baseline 4 have prior
knowledge of the stabilizing control policies, and hence the
computational complexity for Baseline 1 and Baseline 4 is
smaller than that of the other schemes.

B. Convergence Analysis

The MSE between the learned stabilizing control so-
lution and the optimal stabilizing control solution versus
the iteration number revealed in Fig. 3 shows the learning
performance for the Nash equilibrium of Problem 1 via the
proposed scheme and baseline schemes. As shown in the
figure, the learned control solution deviates from the optimal
solution via Baseline 2, Baseline 3 and Baseline 4, while our
proposed scheme tracks the optimal solution asymptotically.
As a result, the proposed scheme asymptotically track the
Nash equilibrium of Problem 1. Specifically, the control
solution via Baseline 2 deviates from the optimal control

Fig. 3: MSE between the learned stabilizing control solution and the optimal
stabilizing control solution versus iteration number. The system parameters

are configured as follows: A =

[
1.37 0.44 0.15

0.13 0.82 0.36

0.41 0.57 0.36

]
and control input

matrix given by B =

[
1.61 0.67

0.74 0.52

1.02 0.56

]
. p = 0.8, Nt = Nr = 2, R1 =

R2 = I2, M1 = M2 = Q = I3, γ = 10, W = I3, and L = 2.

Fig. 4: Averaged L2-norm of plant state versus iteration number. The system

parameters are configured as follows: A =

[
1.46 0.44 0.17

0.13 0.92 0.43

0.41 0.67 0.56

]
and control

input matrix given by B =

[
1.41 0.43

0.67 0.44

0.92 0.51

]
. p = 0.8, Nt = Nr = 2,

R1 = R2 = I2, M1 = M2 = Q = I3, γ = 10, W = I3, and L = 2.

solution due to the discretization error when learning a tuple
of pseudo value functions. The control solution via Baseline
3 also cannot track the optimal control solution since the
learned control gains via Baseline 3 are static while the
optimal control gains should adapt to the real-time CSI. The
control solution via Baseline 4 also deviates from the optimal
control solution since it applies the LQR control solution
which is optimal if and only if the interference signal does
not exist. The control solution via our proposed scheme,
however, can asymptotically track the optimal CSI-adaptive
control solution since the proposed scheme only requires
learning of a reduced-state value function with a small state
space efficiently without the “curse of dimensionality”.

C. Robustness Analysis

The averaged L2-norm of the plant state versus itera-
tion number illustrated in Fig. 4 indicates the robustness
performance of the investigated stabilizing control schemes
w.r.t. the external worst-case disturbance. As revealed by the
figure, the plant state via Baseline 2, Baseline 3 and Baseline
4 grows exponentially fast and the system is unstable. On the
contrary, the plant state via the proposed scheme maintains
bounded over time. Specifically, Baseline 2 suffers from the
“curse of dimensionality” and the learned control policies
cannot stabilize the system. Baseline 3 applies the static
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control policy which is independent of CSI, and hence the
system via control policy in Baseline 3 is also unstable.
Although Baseline 4 applies the CSI-adaptive control policy,
it ignores the robustness to disturbance signals. As a result,
the plant state via Baseline 4 also grows unbounded over
time. On the contrary, Baseline 1 and the proposed scheme
consider the optimal stabilizing control policies that are
adaptive to CSI and robust to the external disturbance signals
and hence, the plant state via Baseline 1 and the proposed
scheme maintains bounded over time.

VI. CONCLUSION

In this paper, we considered a zero-sum game for an
unstable linear system over wireless MIMO fading channels.
We formulated the problem as a stochastic ergodic game and
proposed the reduced-state Bellman optimality equations to
address the “curse of dimensionality” w.r.t. the uncountable
state space. Based on the equations, we analyzed the struc-
tural form of the Nash equilibrium, and further proposed
a novel SA-based online learning algorithm for the Nash
equilibrium. Numerical results were analyzed in terms of
various aspects and we showed that the superior performance
gains could be achieved by the proposed scheme compared
to the baseline schemes.

APPENDIX

A. Proof of Theorem 2
Taking the expectation over the CSI

{δ1(t)H1(t), δ2(t)H2(t)} on both sides of (8), it follows
the equivalent form given by

θ∗i + Ṽ ∗
i (x(t)) = E[min

ui(t)
max
uj(t)

[ri(x(t),u1(t),u2(t)) + E[

Ṽ ∗
i (x(t+ 1))|x(t), δ1(t)H1(t), δ2(t)H2(t),u1(t),u2(t)]]].

(22)

Following the similar approach as that in [22], we first
assume that Ṽ ∗

i (x(t)) has a quadratic form of x(t) and is
given by Ṽ ∗

i (x(t)) = (−1)i+1xT (t)Px(t) with P ∈ SS+
being a constant positive definite matrix. Then, above form
can be further represented as

θ∗i + (−1)i+1xT (t)Px(t)

= E[min
ui(t)

max
uj(t)

[(−1)i+1[xT (t)Qx(t) + uT
1 (t)R1u1(t)−

γ2uT
2 (t)R2u2(t) + (δ1(t)BH1(t)u1(t))

TM1BH1(t)

u1(t)− γ2(δ2(t)BH2(t)u2(t))
TM2BH2(t)u2(t) + (A

x(t) + δ1(t)BH1(t)u1(t) + δ2(t)BH2(t)u2(t))
TP(A

x(t) + δ1(t)BH1(t)u1(t) + δ2(t)BH2(t)u2(t)) + Tr(BT

PB+BW)]]].
(23)

It follows that the optimizer u∗
i (t), i ∈ {1, 2} , is at-

tainable at the equilibrium point of the Hamiltonian for
(23). It follows that the optimizer u∗

1(t) and u∗
2(t) is

given by u∗
1(t) = K1(P, t)x(t), u∗

2(t) = K2(P, t)x(t).
θ∗i = (−1)i+1 Tr(PW + BTPB) and Ṽ ∗

i (x(t)) =
(−1)i+1x(t)TPx(t) = (−1)i+1x(t)E[g(P)]x(t). This con-
cludes the proof.
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